
Automated Validation of State-Based
Client-Centric Isolation with TLA+

Tim Soethout1,2(B) , Tijs van der Storm2,3, and Jurgen J. Vinju2,4

1 ING Bank, Amsterdam, The Netherlands
tim.soethout@ing.com

2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
tim.soethout@cwi.nl

3 University of Groningen, Groningen, The Netherlands
4 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Clear consistency guarantees on data are paramount for the
design and implementation of distributed systems. When implementing
distributed applications, developers require approaches to verify the data
consistency guarantees of an implementation choice. Crooks et al. define
a state-based and client-centric model of database isolation. This paper
formalizes this state-based model in tla+, reproduces their examples and
shows how to model check runtime traces and algorithms with this for-
malization. The formalized model in tla+ enables semi-automatic model
checking for different implementation alternatives for transactional oper-
ations and allows checking of conformance to isolation levels. We repro-
duce examples of the original paper and confirm the isolation guarantees
of the combination of the well-known 2-phase locking and 2-phase com-
mit algorithms. Using model checking this formalization can also help
finding bugs in incorrect specifications. This improves feasibility of auto-
mated checking of isolation guarantees in synthesized synchronization
implementations and it provides an environment for experimenting with
new designs.

Keywords: Distributed systems · Model checking · Isolation
guarantees

1 Introduction

Automatically generating correct and performant implementations from high-
level specifications is an important challenge in computer science and soft-
ware engineering. Ideally one makes high-level specifications, which completely
describe the functional and relevant parts of an application, without having to
bother with low-level implementation details at the same time. Implementation
is left to specialized tools and approaches that benefit from automated model
checking and other debugging tools.

A benefit of high-level specifications is that they enable more specialized
and fine-tuned implementations than general purpose implementation strategies,
c© Springer Nature Switzerland AG 2021
L. Cleophas and M. Massink (Eds.): SEFM 2020 Workshops, LNCS 12524, pp. 43–57, 2021.
https://doi.org/10.1007/978-3-030-67220-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67220-1_4&domain=pdf
http://orcid.org/0000-0001-7477-9967
http://orcid.org/0000-0002-2686-7409
https://doi.org/10.1007/978-3-030-67220-1_4

44 T. Soethout et al.

which in essence have to take into account all possible variations of operations
users can define. High-level domain knowledge offers the potential to automati-
cally generate and optimize code, e.g. removing locks and blocking for improved
performance when it can derive that this is never necessary the specific situation.

Such optimizations often involve managing concurrency and parallelism on
accessing data. These optimizations of course need to be correct w.r.t. the spec-
ification: data consistency needs to be guaranteed. Application logic defines
the functional consistency and transaction isolation manages the consistency
of concurrent operations. Historically, isolation concerns have been outsourced
to database systems, using general purpose transactions and similar constructs.
These databases generally support acid transactions, with a variety of isolation
guarantees [2,7], where Serializability is the strongest guarantee.

In order to optimize the performance of specialized implementations, some
parts of the general purpose transaction mechanism incorporated either in the
application itself or in the database implementation. When developing these
specialized implementations of higher-level specifications, we need to be sure
that they guarantee the acid properties, or, if not, to what extent. The seminal
definition of isolation levels is given by Adya [1]. Adya uses transaction histo-
ries, where transactions have dependencies on each other based on accessing the
same data. If a cycle can be found in the graph of these dependencies, an isola-
tion anomaly is present. Crooks et al. [6] model a state-based and client-centric
approach to isolation and prove that it is equivalent to Adya’s formalization.

Various tools are available which try to find or visualize isolation anoma-
lies [14,16,18]. Many rely on specific scripted error scenarios to show anomalies.
The elle tool [14] can be used to validate of traces of implementations using
Adya’s formalization, but still required careful setup and tuning of a test setup.
It infers the histories Adya requires from client-centric observed transactions.
Crooks’ formalization is defined from a client-centric perspective and is directly
defined in terms of observed transactions. The state-based and client-centric
isolation definitions of Crooks et al. are referenced as Crooks’ Isolation (ci)
throughout this paper.

This paper describes an approach using formal methods to (semi-)
automatically validate the isolation level of observed transactions using ci. First,
we give an introduction to ci and a formalization of it in tla+. Next we discuss
how this formalization is used to validate the consistency guarantees of a trans-
action algorithm using two-phase commit (2pc) with two-phase locking (2pl),
and use it to find a specification bug.

The formalization of ci and the tla+ model checker enable rapid checking of
multiple isolation levels of different synchronization algorithms. This technique
can be used to both validate observed transactions from run-time systems and
of formalizations of algorithms.

The main contributions of this paper are:

1. Formalization of the core of ci in tla+ and updated definitions to allow
incremental model checking (Sect. 3).

2. Reproduction of the claims and properties [6] using model checking (Sect. 4).

Automated Validation of State-Based Client-Centric Isolation with TLA+ 45

S0{
A �→ 100
B �→ 100

}
T1−→

S1{
A �→ 150
B �→ 50

}
T2−→

S2{
A �→ 165
B �→ 55

}

Fig. 1. Example execution with initial state S0 for transactions T1 = 〈r(A, 100),
r(B, 100), w(A, 150), w(B, 50)〉 and T2 = 〈r(A, 150), r(B, 50), w(A, 165), w(B, 55)〉.

3. Formalization of 2pl/2pc in tla+ and validation of Serializability using
model checking of the ci tla+ formalization (Sect. 5).

4. An example of finding isolation bugs in the algorithm specification of 2pl/2pc
(Sect. 5.3).

Section 6 discusses results, limitations and future work based on this approach.
We conclude in Sect. 7. All source code can be found on Zenodo [24].

2 Background: State-Based Client-Centric Consistency

Crooks et al. [6] define a state-based and client centric consistency model (ci) for
reasoning about isolation levels. It defines predicates to state if a set of observed
transactions occurs under a given isolation level. The main concepts of ci are
transactions and executions. A transaction is a sequence of operations, consisting
of reads and writes which includes observed keys and values: r(k, v)/w(k, v). An
execution represents a possible ordering of a set of transactions with the resulting
intermediate database states. A state is a mapping from all database keys to a
specific value. Within an execution each following state only differs in the values
written by the intermediate transaction on the previous or parent state.

Figure 1 shows an example execution of two bank accounts A and B, which
both have a balance of e100 in the initial state S0. Transaction T1 is money
transfer: e50 is deposited from account A and withdrawn from account B, real-
ized using two reads and two writes. Transaction T2 is paying of interest: 10% of
the balance is added to both accounts; this transaction also involves two reads
and two writes. Note that from a starting state and an ordering of transactions
the other states can be derived by applying the intermediate transaction’s writes.

For a set of observed transactions T to satisfy an isolation level I, a commit
test CT for I should hold for a possible execution e of T : ∃e : ∀t ∈ T : CTI (t, e).
The commit test for serializability, for example, is that all reads in a transaction
must be able to have read their value from the direct parent state. In our example
all the values of T1’s and T2’s read operations are the same as their parent state’s
values for each corresponding key, e.g. T1’s r(A, 100) can read from T1’s parent
S0’s A �→ 100.

Another isolation level is Snapshot Isolation, where the commit test requires
that all reads of a single transaction can be read from the same earlier, not
necessarily parent, state, which represents the database snapshot.

46 T. Soethout et al.

3 Formalizing CI in TLA+

tla+ [20] is a formal specification language for action-based modeling of pro-
grams and systems. PlusCal [19] is an abstraction on top of tla+ for concurrent
and distributed algorithms and compiles to tla+. In practice tla+ is used to
model distributed algorithms and systems [5,9,11,21,22]. tla+ models states
and transitions. A specification defines an initial state and atomic steps to a
next state. Complex state machines and their transitions can be represented
this way. Multiple concurrently-running state machine define their local steps
and the global next step non-deterministically picks one machine to progress
each step. This captures all possible interleavings of these multiple machines.

ci is formalized as properties that hold on a tla+ state. This
enables querying the system if an initial database state together with
an a set of observed transactions satisfies an isolation level, e.g.,

. When using tla+ to formally
specify an algorithm, this isolation property is added as an invariant during
model checking. tla+’s model checker tlc can then check the isolation guaran-
tees at every state in the algorithm’s execution and produce a counter example
if the invariant is violated.

To formalize ci, we assume the following tla+ definitions:

The system is modeled as a mapping from keys to values. and
are left abstract on purpose here, since they differ per concrete model. In

tla+ sets and set membership are often used. represents the
set of possible tuples of and , we bind this to to easily reference
this later in the specification. are a read or write of a value on a key
and a is a sequence of these operations. An is represented
as a sequence of transactions with their parent state.

As intuitively sketched earlier ci checks if values could have been read from
earlier states. The following definition of RS (“read states”) captures this for an
execution e and an operation o = r(k, v):

RSe(o) =

{
s ∈ Se

∣∣∣∣ s
∗→ sp

a

∧ (
(k, v) ∈ s

b1

∨ (∃w(k, v) ∈ ΣT : w(k, v)
to→ r(k, v))

b2

)}

Read states are a subset of the states in the execution Se, which are: (a)
up to and including the parent state sp in the execution; (b1) have the same
key and value as the operation o = r(k, v); or (b2) there exists a write operation
w(k, v) with the same key and value earlier in the same transaction’s operations
(ΣT).

Automated Validation of State-Based Client-Centric Isolation with TLA+ 47

The tla+ version of this definition is shown in Listing 1. These read states
are defined for each operation given an execution. tla+’s syntax allows group-
ing of conjunctions (∧) and disjunctions (∨) by vertical indentation. The func-
tion denote the sequence of states in an .
extracts the parent state of a given an . has the
standard semantics. The rest of (Lines 4 to 5) follows the ci defini-
tion quite literally, except that the third alternative (Line 13) is not captured
in the ci definition for RS above, but represents the “convention [that] write
operations have read states too” [6] to include all states up until the parent state
for writes.

A state is complete when all reads of a transaction could have read their
values from it. It is the intersection of the states in which each operation of the
transaction could read from. The following definition is extended to take into
account transactions without operations to support the iterative construction of
transactions, starting with the empty ones:

completee,T (s) ≡ s ∈
(⋂

o∈ΣT

RSe(o) ∩
{

s′ ∈ Se|s′ ∗→ sp

})

We omit the tla+ version () for the sake of brevity, but it closely follows
the mathematical definition, just like did compared to RS.

A commit test CT I(T, e) determines if a set of transactions T is valid under
an isolation level I and execution e. For a set of transactions to satisfy an isolation
level, there needs to exist at least one possible ordering, for which the commit test
holds for all transactions. Transactions describe the values that a client observes
including the actual values read and written. The values observed by the client
are compatible with an ordering of the transactions that satisfies the isolation
level. This is why it is sufficient for a single possible execution ordering to satisfy
the commit test. The specific commit test for an isolation level I abstracts over
which reads are valid for I.

48 T. Soethout et al.

Different isolation-level commit tests are shown in Table 1, both mathe-
matically and in tla+. Note that the ci definitions and their tla+ counter-
parts are very similar. The definitions of and

can be found in Listing 2.

4 CI Examples

The static examples of the ci-paper are reproduced using tla+’s model checker
tlc and the operator. The model checker checks if the assumed property
is valid. Figure 2 shows a minimal example of transactions to , which are
checked for four different isolation levels given initial state . tlc checks the
assumptions and all evaluate to . The source code [24] reproduces more
checks on this example.

Bank Transfer Example. The bank transfer example introduced by Crooks et al.,
shows the difference between Snapshot Isolation and Serializability. Alice and
Bob simultaneously take money out of their joint current and savings accounts,
both from the other account. The bank requires the sum of the balances of both
accounts to stay positive.

The following execution contains the transactions
Talice = 〈r(S, 30), r(C, 30), w(C,−10)〉 and Tbob = 〈r(S, 30), r(C,−10),

abort〉. A serializable implementation requires Tbob to abort. Talice reads both
balances of C and S and withdraws e40 from C. Tbob reads the result and aborts
because not enough balance is available for his withdraw of e40 from S:

S1{
C �→ 30
S �→ 30

}
Talice−→

S2{
C �→ −10
S �→ 30

}
Tbob−→

S3{
C �→ −10
S �→ 30

}

The tla+ code to check this is shown on the right of Fig. 2.

Automated Validation of State-Based Client-Centric Isolation with TLA+ 49

Table 1. Commit tests and corresponding tla+ definitions.

Fig. 2. Running example (left) and serializable bank account example (right) from
Crooks et al. [6] in tla+.

The same example is considered under Snapshot Isolation with transac-
tions Talice = 〈r(S, 30), r(C, 30), w(C,−10)〉 and Tbob = 〈r(S, 30), r(C, 30),
w(S,−10)〉. Both Talice and Tbob read from S1 and find that there is enough
total balance available. They both withdraw e40 from respectively C and S:

50 T. Soethout et al.

S1{
C �→ 30
S �→ 30

}
Talice−→

S2{
C �→ −10
S �→ 30

}
Tbob−→

S3{
C �→ −10
S �→ −10

}

Snapshot Isolation allows this because both Talice and Tbob read from a valid
snapshot or complete state and there is no conflict in their writes, because they
write to different accounts. However, this violates the overall invariant that the
sum of the balances should remain positive. This is the write skew isolation
anomaly [1]. This can be checked by using a specification similar to the right-
hand side of Fig. 2, with modified transactions, and assuming Serializability is

.

5 Model Checking Algorithms Using CI

In contrast to the previous, static examples, where tla+’s state steps are not
used, we now look at a tla+ specification of a transactional protocol (2pl/2pc)
using states. At each step of the algorithm tlc checks if the isolation guarantees
hold.

5.1 Formalizing 2PL/2PC

Two-Phase Commit (2pc) combined with Two-Phase Locking (2pl) forms a
protocol used to implement acid transactions. 2pc takes care of atomicity of a
transaction and 2pl provides Serializable isolation. We extend the formalization
of 2pc by Gray and Lamport [9] to support multiple parallel transactions via
2pl.

We model 2pl/2pc in the PlusCal algorithm language, which is compiled
down to regular tla+, but provides a higher-level notation, closer to imper-
ative programming languages. PlusCal describes multiple possibly different
processes with atomic steps. During model checking, one of the processes takes
a single step, which allows processes to be interleaved. The model checker makes
sure all possible interleavings are explored.

The PlusCal encoding of 2pl/2pc consists of two types of processes: trans-
action managers and transaction resources. The actual number of processes is
defined by model constants and . Message passing is mod-
eled by a monotonically growing set of messages. This means that messages are
never lost, but a recipient process might handle them out of order or not at all.

Listing 3 shows the definition of the transaction manager. There is a
process for each of the . PlusCal processes do atomic steps, each
represented by a label such as . A label can intuitively be viewed as a state
in the process’ state machine. All statements within a step are done as a single
step.

Automated Validation of State-Based Client-Centric Isolation with TLA+ 51

A transaction manager first sends out the VoteRequest message by
adding a tuple with the transaction’s identifier and the message label

to the set. Then its next step is in which three alterna-
tives () can occur: 1) either it receives messages of type
of each resource occurring in the set of messages, and sends GlobalCommit;
2) or one message of type and sends GlobalAbort; 3) or it times
out and aborts (to prevent deadlock). The construct ensures that a step
only happens if its precondition is fulfilled. tlc makes sure that all alternatives
are explored. are added to explicitly label the steps for readability in the
model checker’s execution. is a special PlusCal label, which represents the
process being completed.

The PlusCal specification of a transaction resource, shown in Listing 4, is
slightly more involved. The resource process has local variables (Lines 1 to 6) to
keep track of stopping, votes, commits, aborts and resource state. The state is
used for ci as a symbolic state, represented by an integer.

When the resource is started (Lines 7 to 18), it does noth-
ing () and decrements receives a message.

denotes choosing a transaction ID from the
set of minus the transactions already for. The resource can
then either VoteCommit or VoteAbort. The local variable keeps track
of the transactions it has already voted for and is updated to make sure to only
vote once per transaction.

Next, it becomes (Lines 19 to 30) and waits on either GlobalCommit
or GlobalAbort, but only for transactions which it voted for, and has not
committed yet. It keeps track of the and transactions in order to
not send duplicate messages and to later check the atomicity of the transactions.
Each iteration, decrements to ensure termination.

52 T. Soethout et al.

In order to model check ci it captures the read and written values in
(Line 23) and updates its local . Both reads and writes are

added on commit and not on vote, because if reads are added on vote, it could
be the case that the resource reads a later committed value when responding
to the VoteRequest later which will always be aborted anyway. This results
in a violation of Serializability for the ci check, while it is technically never an
observed value.

5.2 Model Checking 2PL/2PC

As sanity check for the formalization of 2pl/2pc, first atomicity and termination
are checked:

Automated Validation of State-Based Client-Centric Isolation with TLA+ 53

For atomicity, when all transactions are completed (process counter is
), for all pairs of resources it should not () be the case that a transaction

is aborted by one resource, but committed by the another. So all should either
committed or aborted the transaction. Property makes
sure that eventually () all transactions complete.

To model check the isolation guarantees an instance of the ci formalization
is added, which gives access to the previously defined isolation level tests (see
Sect. 4), given the initial state and the observed transactions.

In this case all cases are valid when we run the tlc model checker for
and .

The model checker then checks the isolation guarantees for each step of the
algorithm. When the isolation test fails, it presents a counter example. Table 2
gives an intuition on the relative time durations of the tlc model checker on dif-
ferent numbers of transactions and resources. The model checker checks the four
ci isolation levels (Serializability, Snapshot Isolation, Read Committed, Read
Uncommitted) on each of the model’s steps. It never invalidates the checks, so
it traverses the entire state space.

Table 2. Run time durations of tlc on ci checks for different number of transactions
and resources n of 2pl/2pc. Results on MacBook Pro (13-inch, 2016) with 3,3 GHz Intel
Core i7 with 4 worker threads and allocated 8 GB ram on AdoptOpenJDK 14.0.1+7,
on tlc 2.15 without profiling and using symmetry sets for constants.

#tx n = 1 n = 2 n = 3

1 7 s 9 s 19 s

2 8 s 21 s 5 m 55 s

3 11 s 1 m 53 s 3 h 21 m 54 s

5.3 2PL/2PC Bug Seeding

To additionally stress the formalization presented above, we have introduced
a subtle, but realistic bug in the definition of transaction resource. When the
resource is in the ready state and waiting on a GlobalCommit or Global-
Abort message from the transaction manager, the resource should only wait for

54 T. Soethout et al.

these messages when it is the actual transaction it voted for. This is guaranteed
by in Listing 4 Line 20. The bug is to replace this
with . This means can faultily represent
a never-seen before transaction as well.

When this model is checked with two transactions and resources, all of the
invariants hold and no problem is found. However, with three transactions and
two resources the Serializability invariant is violated and a counter example with
20 steps is found within half a minute; this trace shown in Fig. 3. The example
shows that due to this bug it is possible for a resource to side-step an in progress
transaction, by responding to the GlobalCommit of a different transaction.

First and request to vote and votes to commit for , then aborts
due to timeout with GlobalAbort(t2). then uses this abort to abort its
waiting on . This is possible because
allows . It receives the GlobalAbort(t2), aborts and steps to receive the
next transaction. The model checker requires some more steps to find non-
serializable behavior, when the other transactions and commit and their
effects are applied in different order on and , hence the system is not serial-
izable.

Fig. 3. Non-serializable trace found for bugged 2pl/2pc specification. Horizontal
lines represent processes over time with state changes. Arrows represent messages
sent and received. Message labels are abbreviations of 2pc messages: VoteRequest,
VoteCommit, GlobalAbort and GlobalCommit.

These kinds of bugs during specification can occur naturally, for example
when specializing algorithms for specific applications with the goal of added
efficiency [25]. Using ci in model checking helps us find bugs while designing
new algorithms and also for validating claims of existing algorithms.

6 Discussion and Future Work

The formalization of ci in tla+ is relatively straightforward. The definitions for
the base abstractions, such as and , influence the whole formal-
ization. Staying as close as possible to the mathematical model however, results
in quite verbose output, since there are no labels on transactions. The definition
on read states was improved to support incremental model checking, starting
with empty transactions.

Automated Validation of State-Based Client-Centric Isolation with TLA+ 55

The main limitation of using model checking to find isolation violations is
the state explosion when the numbers of processes grows. As seen in Table 2,
running times grow rapidly and model checking becomes infeasible when more
transactions are added. Since the model checker evaluates the isolation guaran-
tees in every algorithm state we assume, however, that most isolation violations
can be found in small examples. The small scope hypothesis [13] supports this
saying that most bugs have small counterexamples. Nevertheless, we can not be
entirely sure that anomalies that only occur in larger interactions and longer
traces are found by the current approach, but it gives us confidence in the the
checked isolation level, while keeping it feasible.

There is a lot of research focusing on proving distributed consistency proper-
ties. Model checking tools, such as Uppaal [3], Spin [12], LTSMin [4], mCRL2 [10]
and tla+ [20] are used to verify distributed systems and algorithms as well as
real-world implementations and protocols [8,11,21,22].

There are also many approaches [2,17,23,28] that try to balance the trade-
off between performance and data-consistency by choosing different isolation
guarantees. Our work adds to this knowledge by providing a reusable framework
to investigate and model check distributed consistency protocols.

To further evaluate the usefulness of our approach for real-life systems,
it would be insightful to reproduce known isolation bugs in older versions of
database implementations, such as found by Jepsen [14,15] and Bailis et al. [2].
In order to do this we could either create one or more clients that capture the
observed transactions, or instrument the database to store this information for
offline model checking.

Furthermore the scripts of the isolation anomalies of Hermitage [18] can
be reproduced as tlc model checks to strengthen (our formalization of) ci.
The tla+ Toolbox also features a theorem prover. The ci formalizations could
be extended by proving certain properties, such as reproducing the proofs on
equivalence with Adya’s formalization and proving conformity to isolation levels
for specific algorithms.

Generating performant and correct implementations from high-level specifi-
cations is an attractive goal in software engineering, as it would bring the benefits
of (semi-)automatic verification to correct-by-construction implementation.

For instance, the Rebel domain-specific language has been used to specify
realistic systems (for instance, in the financial domain), from which highly scal-
able implementations are generated using novel consistency algorithms [25–27].
It is however, a far from trivial endeavour to state and prove isolation guar-
antees of some of these algorithms. ci can be extended to support operations
on a semantically higher level than reads and writes, such as the semantically
richer operations used in Rebel. A tla+ formalization can then be used to allows
for rapid prototyping of synchronization implementation alternatives for Rebel,
while leveraging the higher-level semantics [29]. The checking of isolation guar-
antees can then be automated.

56 T. Soethout et al.

7 Conclusion

This paper formalizes Crooks’ state-based client-centric isolation model (ci) in
tla+ in order to check conformance to isolation levels using model checking. The
running examples of Crooks et al. [6] are reproduced and validated in tla+. An
example of a transaction implementation using two phase locking (2pl) and two
phase commit (2pc) is formalized in tla+. The tlc model checker is used to
automatically show conformance to the ci formalization. The ci formalization
is also used to find a bug in the algorithm’s formalization.

Formalizing ci in tla+ enables automatic validation of isolation guarantees of
synchronization implementations by mapping their algorithms to read and write
operations. It can be used both for checking isolation conformance of run-time
traces of (distributed) systems and of formal specification of algorithms.

References

1. Adya, A.: Weak consistency: a generalized theory and optimistic implementations
for distributed transactions. Ph.D. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science (1999)

2. Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly
available transactions - virtues and limitations. Proc. VLDB Endow. 7(3), 181–192
(2013). https://doi.org/10.14778/2732232.2732237

3. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

4. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

5. Brooker, M., Chen, T., Ping, F.: Millions of tiny databases. In: Bhagwan, R.,
Porter, G. (eds.) 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020, Santa Clara, CA, USA, 25–27 February 2020, pp.
463–478. USENIX Association (2020)

6. Crooks, N., Pu, Y., Alvisi, L., Clement, A.: Seeing is believing. In: Proceedings of
the ACM Symposium on Principles of Distributed Computing, pp. 73–82. ACM,
July 2017. https://doi.org/10.1145/3087801.3087802

7. Fekete, A., Liarokapis, D., O’Neil, E.J., O’Neil, P.E., Shasha, D.E.: Making snap-
shot isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005).
https://doi.org/10.1145/1071610.1071615

8. Gomes, V.B., Kleppmann, M., Mulligan, D.P., Beresford, A.R.: Verifying
strong eventual consistency in distributed systems. Proc. ACM Program. Lang.
1(OOPSLA), 1–28 (2017). https://doi.org/10.1145/3133933

9. Gray, J., Lamport, L.: Consensus on transaction commit. ACM Trans. Database
Syst. 31(1), 133–160 (2006). https://doi.org/10.1145/1132863.1132867

10. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

11. Gustafson, J., Wang, G.: Hardening Kafka replication (2020). https://github.com/
hachikuji/kafka-specification

https://doi.org/10.14778/2732232.2732237
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1145/3087801.3087802
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/3133933
https://doi.org/10.1145/1132863.1132867
https://github.com/hachikuji/kafka-specification
https://github.com/hachikuji/kafka-specification

Automated Validation of State-Based Client-Centric Isolation with TLA+ 57

12. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

13. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

14. Kingsbury, K., Alvaro, P.: Elle: inferring isolation anomalies from experimental
observations. CoRR abs/2003.10554 (2020)

15. Kinsbury, K.: Jepsen: distributed systems safety research (2020). http://jepsen.io/
16. Kinsbury, K.: Knossos (2020). https://github.com/jepsen-io/knossos
17. Kleppmann, M.: Designing Data-Intensive Applications: The Big Ideas behindReli-

able, Scalable, and Maintainable Systems. O’Reilly, Sebastopol (2016)
18. Kleppmann, M.: Hermitage: testing transaction isolation levels (2020). https://

github.com/ept/hermitage
19. Lamport, L.: The PlusCal Algorithm Language - Microsoft Research. https://www.

microsoft.com/en-us/research/publication/pluscal-algorithm-language/
20. Lamport, L.: Specifying Systems, the TLA+ Language and Tools for Hardwareand

Software Engineers. Addison-Wesley, Boston (2002)
21. Microsoft: High-level TLA+ specifications for the five consistency levels offered by

Azure Cosmos DB (2020). https://github.com/Azure/azure-cosmos-tla
22. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:

How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015). https://doi.org/10.1145/2699417

23. Preguiça, N.M., Baquero, C., Shapiro, M.: Conflict-free replicated data types
CRDTs. In: Sakr, S., Zomaya, A.Y. (eds.) Encyclopedia of Big Data Technolo-
gies. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77525-8 185

24. Soethout, T.: TimSoethout/tla-ci: TLA+ specifications used in “Automated Val-
idation of State-Based Client- Centric Isolation with TLA+”. Zenodo (2020).
https://doi.org/10.5281/zenodo.3961617

25. Soethout, T., van der Storm, T., Vinju, J.: Path-sensitive atomic commit. Pro-
gramming 5(1) (2020). https://doi.org/10.22152/programming-journal.org/2021/
5/3

26. Soethout, T., van der Storm, T., Vinju, J.J.: Static local coordination avoidance
for distributed objects. In: Proceedings of the 9th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control
- AGERE 2019, pp. 21–30. ACM Press, Athens (2019). https://doi.org/10.1145/
3358499.3361222

27. Stoel, J., van der Storm, T., Vinju, J., Bosman, J.: Solving the bank with Rebel: on
the design of the Rebel specification language and its application inside a bank. In:
Proceedings of the 1st Industry Track on Software Language Engineering - ITSLE
2016, pp. 13–20. ACM Press (2016). https://doi.org/10.1145/2998407.2998413

28. Tanenbaum, A.S., van Steen, M.: Distributed Systems - Principles and Paradigms,
2nd edn. Pearson Education, Upper Saddle River (2007)

29. Weikum, G.: Principles and realization strategies of multilevel transaction man-
agement. ACM Trans. Database Syst. 16(1), 132–180 (1991). https://doi.org/10.
1145/103140.103145

http://jepsen.io/
https://github.com/jepsen-io/knossos
https://github.com/ept/hermitage
https://github.com/ept/hermitage
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://www.microsoft.com/en-us/research/publication/pluscal-algorithm-language/
https://github.com/Azure/azure-cosmos-tla
https://doi.org/10.1145/2699417
https://doi.org/10.1007/978-3-319-77525-8_185
https://doi.org/10.5281/zenodo.3961617
https://doi.org/10.22152/programming-journal.org/2021/5/3
https://doi.org/10.22152/programming-journal.org/2021/5/3
https://doi.org/10.1145/3358499.3361222
https://doi.org/10.1145/3358499.3361222
https://doi.org/10.1145/2998407.2998413
https://doi.org/10.1145/103140.103145
https://doi.org/10.1145/103140.103145

	Automated Validation of State-Based Client-Centric Isolation with TLA+
	1 Introduction
	2 Background: State-Based Client-Centric Consistency
	3 Formalizing CI in TLA+
	4 CI Examples
	5 Model Checking Algorithms Using CI
	5.1 Formalizing 2PL/2PC
	5.2 Model Checking 2PL/2PC
	5.3 2PL/2PC Bug Seeding

	6 Discussion and Future Work
	7 Conclusion
	References

