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ABSTRACT
Real programming languages are often defined using am-
biguous context-free grammars. Some ambiguity is inten-
tional while other ambiguity is accidental. A good grammar
development environment should therefore contain a static
ambiguity checker to help the grammar engineer.

Ambiguity of context-free grammars is an undecidable prop-
erty. Nevertheless, various imperfect ambiguity checkers ex-
ist. Exhaustive methods are accurate, but suffer from non-
termination. Termination is guaranteed by approximative
methods, at the expense of accuracy.

In this paper we combine an approximative method with
an exhaustive method. We present an extension to the
Noncanonical Unambiguity Test that identifies production
rules that do not contribute to the ambiguity of a grammar
and show how this information can be used to significantly
reduce the search space of exhaustive methods. Our ex-
perimental evaluation on a number of real world grammars
shows orders of magnitude gains in efficiency in some cases
and negligible losses of efficiency in others.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting System

General Terms
Experimentation, Performance

1. INTRODUCTION
Real programming languages are often defined using am-
biguous context-free grammars. Some ambiguities are inten-
tional, while others are accidental. It is therefore important
to know all of them, but this can be a very cumbersome
job if done by hand. Automated ambiguity checkers are
therefore very valuable tools in the grammar development

process, even though the ambiguity problem is undecidable
in general.

In [2] we compared the practical usability of several ambigu-
ity detection methods on a series of grammars1. The exhaus-
tive derivation generator Amber [10] was the most practical
in finding ambiguities for real programming languages, de-
spite its possible nontermination. The main reasons for this
are its accurate reports (Figure 1) that contain examples
of ambiguous strings, and its impressive efficiency. It took
about 7 minutes to generate all the strings of length 10 for
Java. Nevertheless, this method does not terminate in case
of unambiguity and has exponential performance. For ex-
ample, we were not able to analyze Java beyond a sentence
length of 12 within 15 hours.

Another good competitor was Schmitz’s Noncanonical Un-
ambiguity Test [8] (NU test). This approximative method
always terminates and can provide relatively accurate results
in little time. The method can be tuned to trade accuracy
for performance. Its memory usage grows to impractical
levels much faster than its running time. For example, with
the best available accuracy, it took more than 3Gb to fully
analyze Java. A downside is that its reports can be hard to
understand due to their abstractness (Figure 2).

In this paper we propose to combine these two methods. We
show how the NU test can be extended to identify parts of
a grammar that do not contribute to any ambiguity. This
information can be used to limit a grammar to only the
part that is potentially ambiguous. The smaller grammar is
then fed to the exhaustive Amber and Cfg Analyzer [1]
methods to finally obtain a precise ambiguity report.

The goal of our approach is ambiguity detection that scales
to real grammars and real sentence lengths, providing accu-
rate ambiguity reports. Our new filtering method leads to
significant decreases in running time for Amber and Cfg

Analyzer, which is a good step towards this goal.

Related Work. Another approximative ambiguity detec-
tion method is the Ambiguity Checking with Language
Approximation framework [4] by Brabrand, Giegerich and
Møller. The framework makes use of a characterization
of ambiguity into horizontal and vertical ambiguity to test
whether a certain production rule can derive ambiguous

1In the current paper we also use Cfg Analyzer [1] which
was not included in [2].
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GRAMMAR DEBUG INFORMATION
Grammar ambiguity detected. (disjunctive)
Two different ‘‘type_literals’’ derivation trees for the same phrase.

TREE 1
------
type_literals alternative at line 787, col 9 of grammar {
VOID_TK
DOT_TK
CLASS_TK

}

TREE 2
------
type_literals alternative at line 785, col 16 of grammar {
primitive_type alternative at line 31, col 9 of grammar {
VOID_TK

}
DOT_TK
CLASS_TK

}

Figure 1: Excerpt from an ambiguity report by Amber on a Java grammar.

strings. This method might be extended in a comparable
fashion as we propose to extend the NU test here.

Other exhaustive ambiguity detection methods are [5] and
[6]. These can benefit from our grammar filtering similarly
to Amber and Cfg Analyzer.

Outline. In Section 2 we explain the NU test, how to ex-
tend it to identify harmless productions, and how to con-
struct a filtered grammar. Section 3 contains an experimen-
tal validation of our method. We summarize our results in
Section 4.

2. FILTERING UNAMBIGUOUS PRODUC-
TIONS

In this section we explain how to filter productions from
a grammar that do not contribute to any ambiguity. We
first briefly recall the basic NU test algorithm before we
explain how to extend it to identify harmless productions.
This section ends by explaining how to construct a valid
filtered grammar that can be fed to any exhaustive ambi-
guity checker. A more detailed description of our method,
together with proofs of correctness, can be found in [3].

2.1 Preliminaries
A grammar G is a four-tuple (N,T, P, S) where N is the
set of non-terminals, T the set of terminals, P the set of
productions over N × (N ∪ T )∗, and S is the start symbol.
V is defined as N ∪ T . We use A,B,C, . . . to denote non-
terminals, u, v, w, . . . for strings of T ∗, and α, β, γ, . . . for
sentential forms: strings over V ∗. The relation =⇒ denotes
derivation. We say αBγ directly derives αβγ, written as
αBγ =⇒ αβγ if a production rule B → β exists in P . The
symbol =⇒∗ means “derives in zero or more steps”. An item
indicates a position in a production rule using a dot, for
instance as S → A•BC.

2.2 The Noncanonical Unambiguity Test

The Noncanonical Unambiguity test [8] by Schmitz is an
approximated search for two different parse trees of the same
string. It uses a bracketed grammar, which is obtained from
an input grammar by adding a unique terminal symbol to
the beginning and end of each production. The language of a
bracketed grammar represents all parse trees of the original
grammar.

From the bracketed grammar a position graph is con-
structed, in which the nodes are positions in strings gener-
ated by this grammar. The edges represent evaluation steps
of the bracketed grammar: there are derivation, reduction,
and shift edges. Derivations and reductions correspond to
entries and exits of a production rule, while shifts corre-
spond to steps inside a single production rule over terminal
and non-terminal symbols.

This position graph describes the same language as the
bracketed grammar. Every path through the graph de-
scribes a parse tree of the original grammar. Therefore, the
existence of two different paths of which the labels of shift
edges form the same string indicates the ambiguity of the
grammar. So, position graphs help to point out ambiguity
in a straightforward manner, but they are usually infinitely
large. To obtain analyzable graphs Schmitz describes the use
of equivalence relations on the nodes. These should induce
conservative approximations of the unambiguity property of
the grammar. If they report ambiguity we know that the
input grammar is potentially ambiguous, otherwise we know
for sure that it is unambiguous.

2.3 LR(0) Approximation
An equivalence relation that normally yields an approxi-
mated graph of analyzable size is the “item0” relation [8].
We use item0 here to explain the NU test for simplicity’s
sake, ignoring the intricacies of other equivalence relations.

The item0 position graph of a grammar closely resembles
its LR(0) parse automaton [7]. The nodes are labeled with
the LR(0) items of the grammar and the edges correspond
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5 potential ambiguities with LR(1) precision detected:
(method_header -> modifiers type method_declarator throws . ,
method_header -> modifiers VOID_TK method_declarator throws . )

(method_header -> type method_declarator throws . ,
method_header -> VOID_TK method_declarator throws . )

(method_header -> type method_declarator throws . ,
method_header -> modifiers VOID_TK method_declarator throws . )

(method_header -> VOID_TK method_declarator throws . ,
method_header -> modifiers type method_declarator throws . )

(type_literals -> primitive_type DOT_TK CLASS_TK . ,
type_literals -> VOID_TK DOT_TK CLASS_TK . )

Figure 2: Excerpt from an ambiguity report by NU test on a Java grammar.

to actions. Every node with the dot at the beginning of a
production of the start symbol is a start node, and every
item with the dot at the end of a production of the start
symbol is an end node. There are three types of transitions:

• Shift transitions, of form A → α•Xβ
X
7−→ A → αX•β

• Derivation transitions, of form A → α•Bγ
di7−→ B →

•β, where i is the number of the production B → β.

• Reduction transitions, of form B → β•

ri7−→ A →
αB•γ, where i is the number of the production B → β.

The derivation and shift transitions are similar to those in
an LR(0) automaton, but the reductions are different. The
item0 graph has reduction edges to every item that has the
dot after the reduced non-terminal, while an LR(0) automa-
ton jumps to a different state depending on the symbol that
is at the top of the parse stack. As a result, a certain path
through an item0 graph with a di transition from A → α•Bγ
does not necessarily match an ri transition to A → αB•γ.
The language characterized by an item0 position graph is
thus a superset of the language of parse trees of the original
grammar.

2.4 Finding ambiguity in an item0 position
graph

To find possible ambiguity, we can traverse the item0 graph
using two cursors simultaneously. If we can traverse the
graph while the two cursors use different paths, but con-
struct the same string of shifted tokens, we have identified
possible ambiguity.

An efficient representation of all such simultaneous traver-
sals is a position pair graph (PPG). The nodes of this graph
represent the pair of cursors into the original item0 graph.
The edges represent steps made by the two cursors, but not
all transitions are allowed. An edge exists for either an in-
dividual derivation or reduction transitions by one of the
cursors, or for a simultaneous shift transition of the exact
same symbol by both cursors.

A path in a PPG thus describes two potential parse trees
of the same string. We call such a path an ambiguous path
pair, if the two paths it represents are not identical. The ex-
istence of ambiguous path pairs is indicated by a join point :
a reduce transition from a pair with different items to a pair
with identical items. Ergo, in the item0 case we can effi-

ciently detect (possible) ambiguity by constructing a PPG
and looking for join points.

To optimize the process of generating PPGs we can omit
certain nodes and edges. In particular, if two paths derive
the exact same substring for a certain non-terminal this sub-
string can safely be replaced by a shift over the non-terminal.
We call this process terminalization of a non-terminal. Such
optimizations can significantly improve the size of the graph.

2.5 Filtering Harmless Production Rules
The NU test stops after a PPG is constructed and the am-
biguous path pairs are reported to the user. In our approach
we also use the PPG to identify production rules that cer-
tainly do not contribute to the ambiguity of the grammar.
We call these harmless production rules.

The main idea is that a production rule is harmless if its
items are not used in any ambiguous path pair. The set
of ambiguous path pairs describes an over-approximation
of the set of all parse trees of ambiguous strings. So, if a
production is not used by this set it is certainly not used by
any real parse tree of an ambiguous string.

Note that a production like that may still be used in a parse
tree of an ambiguous sentence, but then it does not cause
ambiguity in itself. In this case the ambiguity already ex-
ists in a sentential form in which the non-terminal of the
production is not derived yet.

We use knowledge about harmless rules to filter the PPG
and to eventually produce a filtered grammar containing
only rules that potentially contribute to ambiguity. This
is an outline of our algorithm:

1. Remove pairs not used on any ambiguous path pair.
2. Remove noticeably invalid (over-approximated) paths,

until a fixed-point:

(a) Remove incompletely used productions.
(b) Remove unmatched derivation and reduction

steps.
(c) Prune dead ends and unreachable sub-graphs.

3. Collect the potentially harmful production rules that
are left over.

Step 1 and Step 3 are the essential steps, but there is
room for optimization. Because the item0 graph is an over-



approximation, collecting the harmful productions also takes
parse trees into account that are invalid for the original
grammar. There are at least two situations in which these
can be easily identified and removed.

Incompletely Used Productions
Consider that any path in the item0 graph that describes
a valid parse tree of the original grammar must exercise all
items of a production. So, if any item for a production is not
used by any ambiguous path pair, then the entire production
never causes ambiguous parse trees for a sentence for the
original grammar.

Note that due to over-approximation, other items of the
identified production may still be used in other valid paths
in the item0 graph, but these paths will not be possible in
the unapproximated position graph since they would com-
bine items from different productions.

Once an incompletely used production is identified, all pairs
that contain one of its items can be safely removed from
the pair graph and new dead ends and unreachable sub-
graphs can be pruned. This removes over-approximated in-
valid paths from the graph.

Unmatched derivations and reductions
Furthermore, next to nodes we can also remove certain
derivation and reduction edges from the PPG. Consider that
any path in the item0 graph that describes a valid parse tree
of the original grammar must both derive and reduce every
production that it uses. More specifically, if a di transition
is followed from A → α•Bγ to B → •β, the matching ri
transition from B → β• to A → αB•γ must also be used,
and vice versa. Therefore, if one of the two is used in the
PPG, but the other is not, it can be safely removed, and the
PPG can be pruned again.

The process of removing items and transitions can be re-
peated until no more invalid paths can be found this way.
After that the remaining PPG uses only potentially harmful
productions. We can gather them by simply collecting the
productions from all items used in the graph. Note that the
item0 graph remains an over-approximation, so we might
collect productions that are actually harmless. In Section
3 we investigate whether the reduction of the grammar will
actually result in performance gains for exhaustive methods.

2.6 Grammar Reconstruction
From applying the previous filtering process we are left with
the set of productions that potentially lead to ambiguity. We
want to use this set of productions as input to an exhaus-
tive ambiguity detection method such as Cfg Analyzer

or Amber in order to get precise reports and clear exam-
ple sentences. Note that the set of potentially ambiguous
productions may be empty, in which case this step can be
omitted completely.

The filtered set of productions can represent an incomplete
grammar for two reasons. Firstly, non-terminals from the

top2 of the grammar may have been filtered. Secondly,
non-terminals might not have any productions left, but they
could still occur in productions of other non-terminals (they
have been terminalized). To restore the reachability and
productivity properties of the grammar, a new start sym-
bol, new terminals, non-terminals, and production rules will
have to be introduced.

Let us use Ph to denote the set of potentially harmful produc-
tions of a grammar. From Ph we can create a new grammar
G′ by constructing3:

1. The set of defined non-terminals of Ph:
Ndef = {A|A → α ∈ Ph}.

2. The used but undefined non-terminals of Ph:
Nundef = {B|A → αBβ ∈ Ph}\Ndef .

3. The unproductive non-terminals:
Nunpr = {A|A ∈ Ndef ,¬∃u : A =⇒∗ u using only pro-
ductions in Ph}.

4. The start symbols of Ph:
Sh = {A|A ∈ Ndef ,¬∃(B → βAγ) ∈ Ph}.

5. New terminals tA, bA, eA for each non-terminal A.
6. New productions to define a new start-symbol S′:

P ′

S = {S′ → (bA)
kA(eA)

l| A ∈ Sh, k = minprefix(A),
l = minpostfix(A)}.

7. Productions to complete the unproductive and unde-
fined non-terminals: P ′ = Ph∪ P ′

S ∪ {A → (tA)
k | A ∈

Nundef ∪ Nunpr, k = minlength(A)}.
8. The new set of terminal symbols:

T ′ = {a|(A → βaγ) ∈ P ′}.
9. Finally, the new grammar:

G′ = (Ndef ∪ {S′}, T ′, P ′, S′).

Surrounding the non-terminals in Sh with unique terminals
at step 6 prevents the rules of S′ from being ambiguous with
eachother. Also, they make sure that in all derivations of S′

up to a certain length, the non-terminals in Sh can not be
expanded further than in the original grammar. At step 7
we prevent the non-terminals from being expanded less far
than in the original grammar. This way every derivation of
the original grammar corresponds to a derivation of equal
length in the filtered grammar. The number of derivations
of the filtered grammar up to a certain length is then always
less or equal to that of the original grammar, and certainly
not greater.

2This are the non-terminals that are injected directly into
the start symbol.
3Where minlength(A) = min({k|∃u, A =⇒∗ u : k = |u|}),
minprefix(A) = min({k|∃u, α : S =⇒∗ uAα, k = |u|}), and
minpostfix(A) = min({k|∃u, α : S =⇒∗ αAu, k = |u|}).



Rules filtered Time Memory (Mb)
Grammar Rules LR0 SLR1 LALR1 LR1 LR0 SLR1 LALR1 LR1 LR0 SLR1 LALR1 LR1
SQL.0 79 79 79 79 79 0.4s 0.4s 1.0s 3.1s 16 16 49 54
SQL.1 79 65 65 65 65 0.5s 0.4s 1.4s 3.9s 17 16 51 56
SQL.2 80 47 47 47 47 1.1s 1.1s 1.9s 6.0s 34 32 58 74
SQL.3 80 54 54 54 54 0.6s 0.5s 1.3s 3.9s 18 17 50 56
SQL.4 80 71 71 71 74 0.4s 0.4s 1.1s 3.1s 17 17 51 45
SQL.5 80 68 68 68 72 0.5s 0.4s 1.2s 3.9s 17 16 53 54
Pascal.0 176 21 30 176 176 2.4s 2.2s 2.4s 15.1s 50 42 160 181
Pascal.1 177 21 25 25 104 2.4s 2.4s 5.9s 40.3s 48 49 162 297
Pascal.2 177 21 25 25 104 2.3s 2.4s 5.8s 46.9s 52 51 159 325
Pascal.3 177 21 30 30 144 2.5s 2.2s 5.0s 20.7s 52 47 160 248
Pascal.4 177 20 24 24 103 2.4s 2.3s 5.9s 42.5s 50 50 163 294
Pascal.5 177 21 25 25 103 2.4s 2.3s 5.8s 32.8s 52 49 159 326
C.0 212 41 44 212 212 4.2s 3.9s 15.8s 9m40s 88 83 427 1397
C.1 213 41 44 44 44 4.3s 3.7s 2m03s 1h45m 100 80 615 2898
C.2 213 41 44 44 44 4.3s 3.9s 1m45s 41m58s 101 80 611 2940
C.3 213 40 43 43 43 4.2s 4.1s 1m59s 42m57s 87 81 615 2885
C.4 213 41 44 44 44 4.2s 3.9s 2m06s 1h30m 87 80 607 2894
C.5 213 40 43 43 43 4.3s 3.9s 1m55s 47m15s 91 80 631 3107
Java.0 349 56 70 349 349 8.2s 6.9s 54.0s 37m47s 153 116 556 1362
Java.1 350 56 70 70 74 8.2s 6.9s 10m24s 3h55m 144 118 1088 2908
Java.2 350 53 66 66 70 8.8s 7.8s 29m57s 8h48m 168 124 1427 3209
Java.3 350 56 70 70 74 8.3s 6.9s 10m38s 3h27m 146 120 1123 3014
Java.4 350 55 69 69 73 8.2s 6.6s 10m57s 4h11m 156 119 1117 3073
Java.5 350 53 66 66 70 8.3s 6.9s 10m40s 8h01m 153 121 1117 3126

Table 1: Results of Filtering (LR1 was run on C and Java after filtering first with SLR1, due to excessive memory usage).



3. EXPERIMENTAL VALIDATION
After constructing a new, much smaller, grammar we can
apply exhaustive algorithms like Amber or Cfg Analyzer

on it to search for the exact sources of ambiguity. The search
space for these algorithms is exponential in the size of the
grammar. Therefore our experimental hypothesis is:

By filtering the input grammar we can gain an or-
der of magnitude improvement in run-time when
running Amber or Cfg Analyzer as compared
to running them on the original grammar.

Since building an LR(0) PPG and filtering it is polynomial
we also hypothesize:

For many real-world grammars the time invested
to filter them does not exceed the time that
is gained when running Amber and Cfg An-

alyzer on the filtered grammar.

We will also experiment with other approximations, such as
SLR(1), LALR(1) and LR(1) to be able to reason about the
return of investment for these more precise approximations.

3.1 Experiment Setup
To evaluate the effectiveness of our approach we must run
it on realistic cases. We focus on grammars for reverse engi-
neering projects. Grammars in this area target many differ-
ent versions and dialects of programming languages. They
are subject to a lengthy engineering process that includes
bug fixing and specialization for specific purposes. Our
realistic grammars are therefore “standard” grammars for
mainstream programming languages, augmented with small
variations that reflect typical intentional and accidental de-
viations.

We have selected standard grammars for Java [12], C [13],
Pascal [14] and SQL [15] which are initially not ambiguous.
We labeled them Java.0, C.0, Pascal.0 and SQL.0. Then,
we seeded each of these grammars with different kinds of
ambiguous extensions. Examples of ambiguity introduced
by us are:

• Dangling-else constructs: Pascal.3, C.2, Java.3
• Missing operator precedence: SQL.1, SQL.5, Pascal.2,

C.1, Java.4
• Syntactic overloading4: SQL.2, SQL.3, SQL.4, Pas-

cal.1, Pascal.4, Pascal.5, C.4, C.5, Java.1, Java.5
• Non-terminals nullable in multiple ways: C.3, Java.2

For each of these grammars we measure5:

1. Amber/Cfg Analyzer run-time and memory usage,

4Syntactic overloading happens when reusing terminal sym-
bols. E.g. the use of commas as list separator and binary
operator, forgetting to reserve a keyword, or reuse of juxta-
positioning.
5Measurements done on an Intel Core2 Quad Q6600
2.40GHz PC with 8Gb DDR2 memory.

2. Filtering run-time with precisions LR(0), SLR(1),
LALR(1) or LR(1),

3. Amber/Cfg Analyzer run-time and memory usage
after filtering.

Observing only a marginal difference between measures 1
and 3 would invalidate our experimental hypothesis. Ob-
serving the combined run-times of measure 2 and 3 being
longer than measure 1 would invalidate our second hypoth-
esis.

To help explaining our results we also track the size of the
grammar (number of production rules), the number of
harmless productions found with each precision (rules fil-
tered), and the number of tokens explored to identify the
first ambiguity (length).

We have used Amber version 30/03/20066 and Cfg An-

alyzer version 03/12/20077 . To experiment with the NU

test algorithm and our extensions we have implemented a
prototype in the Java programming language. We measured
CPU user time with the GNU time utility and measured
memory usage by polling a process with pid every 0.1 sec-
onds.

3.2 Experimental Results
Results of Filtering Prototype. All measurement results
of running our filtering prototype on the benchmark gram-
mars are shown in Table 1. As expected, every precision
filtered a higher or equal number of rules than the one be-
fore. Columns 3 to 6 show how much production rules could
be filtered with each of the implemented precisions. We see
that LR(0) on average filtered respectively 76%, 12%, 19%
and 16% of the productions of the SQL, Pascal, C and Java
grammars. SLR(1) filtered the same or slightly more, with
the largest improvement for the Java grammars: 19%. Re-
markably LALR(1) never filtered more rules than SLR(1).
LR(1) improved over SLR(1) for 12 out of 20 ambiguous
grammars. On average it filtered 78% for SQL, a remark-
able 64% for Pascal, and 21% for Java.

Columns 7 to 10 show the run-time of the filtering tool, and
columns 11 to 14 show its memory usage. We see that the
LR(0) and SLR(1) precisions always ran under 9 seconds
and used at most 168Mb of memory. SLR(1) was slightly
more efficient than LR(0), which can be explained by the
fact that an SLR(1) position graph is generally more de-
terministic than its LR(0) counterpart. They both have the
same number of nodes and edges, but the SLR(1) reductions
are constrained by lookahead, which results in a smaller po-
sition pair graph.

An LALR(1) position automaton is generally several fac-
tors larger than an LR(0) one, which shows itself in longer
run-time and more memory usage. The memory usage of
the LR(1) precision became problematic for the C and Java
grammars. For all variations of both grammars it needed
more than 4Gb. Therefore we ran it on the C and Java
grammars that we filtered first with the SLR(1) precision,

6downloaded from http://accent.compilertools.net/
7downloaded from http://www2.tcs.ifi.lmu.de/
~mlange/cfganalyzer/



Time
Grammar Orig LR0 SLR1 LR1 Length
SQL.1 28m26s 0.1s 0.1s - 15
SQL.2 0.0s 0.0s 0.0s - 7
SQL.3 0.0s 0.0s 0.0s - 6
SQL.4 0.0s 0.0s 0.0s 0.0s 9
SQL.5 1.3s 0.0s 0.0s 0.0s 11
Pascal.1 0.3s 0.1s 0.1s 0.0s 9
Pascal.2 0.0s 0.0s 0.0s 0.0s 7
Pascal.3 31.8s 2.9s 1.9s 0.0s 11
Pascal.4 0.0s 0.0s 0.0s 0.0s 8
Pascal.5 0.0s 0.0s 0.0s 0.0s 8
C.1 42.1s 0.1s 0.0s - 5
C.2 >4.50h1 >18.8h >15.3h - >11
C.3 0.1s 0.0s 0.0s - 3
C.4 42.0s 0.5s 0.4s - 5
C.5 19m09s 0.7s 0.5s - 6
Java.1 >25.0h2 12.2h 3.9h 3.7h 13
Java.2 0.0s 0.0s 0.0s 0.0s 1
Java.3 1h25m 5m35s 2m28s 2m21s 11
Java.4 17.0s 2.9s 1.8s 1.7s 9
Java.5 0.1s 0.0s 0.0s 0.0s 7
1only reached string length of 7.
2only reached string length of 12.

Table 2: Running Amber on filtered and non-filtered
grammars.

and then it only needed around 3Gb. Here we see that fil-
tering with a lesser precision first can be beneficial for the
performance of more expensive filters.

On average the tool uses its memory almost completely for
storing the position pair graph, which it usually builds in
two thirds of its run-time. The other one third is used to
filter the graph. If we project this onto the run-times of
Schmitz’ C tool [9], it should filter all our grammars with
LR(0) or SLR(1) in under 4 seconds, if extended.

Results of Amber. Table 2 shows the effects of grammar
filtering on the behavior of Amber. Columns 2 to 5 show
the time Amber needed to find the ambiguity in the origi-
nal grammars and the ones filtered with various precisions.
There is no column for the LALR(1) precision, because it
always filtered the same number of rules as SLR(1). For
LR(1) we only mention the cases in which it filtered more
than SLR(1). Amber’s memory usage was always less than
1 Mb of memory.

In all cases we see a decrease in run-time if more rules were
filtered, sometimes quite drastically. For instance the unfil-
tered Java.1 grammar was impossible to check in under 25
hours, while filtered with SLR(1) or LR(1) it only needed
less than 4 hours. The C.2 grammar still remains uncheck-
able within 15 hours, but the LR(0) and SLR(1) filtering ex-
tended the maximum string length possible to search within
this time from 7 to 11. The decreases in run-time per string
length for this grammar are shown in Figure 3.

This confirms our first hypothesis. To test our second hy-
pothesis, we also need to take the run-time of our filtering
tool into account. The left part of Figure 4 shows the com-
bined computation times of filtering and running Amber,
compared to only running Amber on the unfiltered gram-

Time
Grammar Orig LR0 SLR1 LR1 Length
SQL.1 17.6s 1.8s 1.8s - 11
SQL.2 0.4s 0.1s 0.1s - 3
SQL.3 0.4s 0.0s 0.1s - 3
SQL.4 1.4s 0.0s 0.0s 0.0s 5
SQL.5 14.4s 0.8s 0.8s 0.4s 11
Pascal.1 1.1s 0.9s 0.9s 0.3s 3
Pascal.2 0.5s 0.4s 0.4s 0.1s 2
Pascal.3 9.6s 8.1s 7.5s 1.2s 7
Pascal.4 1.1s 0.9s 0.9s 0.3s 3
Pascal.5 3.5s 0.9s 0.9s 0.3s 3
C.1 1.7s 1.3s 1.3s - 3
C.2 3.00h 1.77h 1.11h - 11
C.3 0.7s 0.5s 0.5s - 2
C.4 1.7s 1.3s 1.3s - 3
C.5 6.6s 5.1s 4.9s - 5
Java.1 48.9s 39.2s 32.5s 32.4s 7
Java.2 0.5s 0.4s 0.4s 0.4s 1
Java.3 47.2s 40.0s 35.2s 35.1s 7
Java.4 8.4s 6.7s 6.5s 6.5s 4
Java.5 4.3s 3.4s 3.3s 3.3s 3

Table 3: Running Cfg Analyzer on filtered and non-
filtered grammars.

mars. Not all SQL grammars are mentioned because both
filtering and Amber took under 1 second in all cases. Also,
timings of filtering with LR(1) are not mentioned because
they are obviously too high and would reduce the readability
of the graph. Apart from that, we see that the short filtering
time of LR(0) and SLR(1) do not cancel out the decrease
in run-time for grammars SQL.1, SQL.5, Pascal.3, C.1, C.4,
C.5, Java.3 and Java.4. Add to that the effects on grammars
C.2 and Java.1 and we get a significant improvement for 10
out of 20 ambiguous grammars. For the other 10 grammars
we don’t see improvements because Amber already took less
time than it took to filter them.

Column 6 shows the string lengths thatAmber had to search
to find the ambiguity in each grammar. All filtered gram-
mars required the same string length as their original ver-
sions, as could be expected from our grammar reconstruction
algorithm.

Results of Cfg Analyzer. Table 3 shows the same results
as Table 2 but then for Cfg Analyzer. Again we see a
decrease in run-time in almost all cases, as the number of
filtered rules increases, but less significant than in the case
of Amber. We also see that Cfg Analyzer is much faster
than Amber. It was even able to check the SLR(1) filtered
C.2 grammar in 1 hour and 7 minutes. Cfg Analyzer’s
memory usage always stayed under 70Mb, except for C.2:
it used 1.21Gb for the unfiltered grammar, 1.31Gb for the
LR(0) filtered one, and 742Mb in the SLR(1) case.

We see that Cfg Analyzer always needed smaller lengths
than Amber. This is because Cfg Analyzer searches all
parse trees of all non-terminals simultaneously, whereas Am-

ber only checks those of the start symbol.

The right part of Figure 4 shows the combined run-times
of our filtering tool and Cfg Analyzer. Here we see only
significant improvements for grammars SQL.1, SQL.5, C.2,
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Figure 3: Run-time of Amber and Cfg Analyzer on grammars Java.1 (syntax overloading) left and C.2
(dangling-else) right.
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Figure 4: Added run-time of grammar filtering and ambiguity checking with Amber (left) and Cfg Analyzer
(right).

Java.1 and Java.3. In all other cases Cfg Analyzer took
less time to find the first ambiguity than it took our tool to
filter a grammar.

3.3 Analysis and conclusions
We saw that filtering more rules resulted in shorter run-times
for both Amber and Cfg Analyzer. Especially Amber

profited enormously for certain grammars. The reductions
in run-time of Cfg Analyzer were smaller but still signif-
icant. This largely confirms our first hypothesis.

We conclude that the SLR(1) precision was the most ben-
eficial for reducing the run-time of Amber and Cfg Ana-

lyzer, while requiring only a small filtering overhead. In
some cases LR(1) provided slightly larger reductions, but
these did not match up against its own long run-time. Fil-
tering with SLR(1) resulted in significant decreases in run-
time for Amber on 10 of the 20 ambiguous grammars, and
for Cfg Analyzer on 5 grammars. In all other cases the

filtering did not contribute to an overall reduction, because
it took longer than the time the tools initially needed to
check the unfiltered grammars. Nevertheless, this was never
more than 9 seconds. Therefore our second hypothesis is
confirmed for the situations that really matter.

3.4 Threats to validity
Internally a bug in our implementation would invalidate
our conclusions. This is unlikely since we tested and com-
pared our results with other independently constructed tools
(NU test [9], Cfg Analyzer and Amber) for a large
number of grammars and we obtained the same results.
Our source code is available for your inspection at http:

//homepages.cwi.nl/~basten/ambiguity/. Also note that
our Java version is slower than Schmitz’s original implemen-
tation in C. An optimized version would eliminate some of
the overhead we observed while analyzing small grammars8.

8We are thankful to Arnold Lankamp for his help fixing
efficiency issues in our Java version.



As for external validity, it is entirely possible that our
method does not lead to significant decreases in run-time
for any specific grammar that we did not include in our ex-
periment. However, we did select representative grammars
and the ambiguities we seeded are typical extensions or try-
outs made by language engineers.

About the application of our method to scannerless gram-
mars, such as used by SDF [11], we do not have any infor-
mation. Assuming that the average token length is about
8 in a language like Java, then to let ambiguity detection
methods scale to a scannerless grammars would mean to
scale to 8 times the currently maximally feasible sentence
length. Also, it remains to be seen if our method applied to
scannerless grammars would have a similarly positive effect
since such grammars are quite different.

4. CONCLUSIONS
We proposed to adapt the approximative NU test to a
grammar filtering tool and to combine that with the ex-
haustive Amber and Cfg Analyzer ambiguity detection
methods. Using our grammar filters we can conservatively
identify production rules that do not contribute to the am-
biguity of a grammar. Filtering these productions from the
grammar lead to significant reductions in run-time, some-
times orders of magnitude, for running Amber and Cfg

Analyzer. The result is that we could produce precise am-
biguity reports in a much shorter time for real world gram-
mars.
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