
Accelerating the Creation of Customized,
Language-Specific IDEs in Eclipse

Philippe Charles, Robert M. Fuhrer,
Stanley M. Sutton Jr., Evelyn Duesterwald

IBM T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

pcharles, rfuhrer, suttons, duester@us.ibm.com

Jurgen Vinju

CWI
Amsterdam, Netherlands

jurgen.vinju@cwi.nl

Abstract
Full-featured integrated development environments have
become critical to the adoption of new programming lan-
guages. Key to the success of these IDEs is the provision of
services tailored to the languages. However, modern IDEs
are large and complex, and the cost of constructing one from
scratch can be prohibitive. Generators that work from lan-
guage specifications reduce costs but produce environments
that do not fully reflect distinctive language characteristics.

We believe that there is a practical middle ground be-
tween these extremes that can be effectively addressed by
an open, semi-automated strategy to IDE development. This
strategy is to reduce the burden of IDE development as much
as possible, especially for internal IDE details, while open-
ing opportunities for significant customizations to IDE ser-
vices. To reduce the effort needed for customization we pro-
vide a combination of frameworks, templates, and genera-
tors. We demonstrate an extensible IDE architecture that em-
bodies this strategy, and we show that this architecture can be
used to produce customized IDEs, with a moderate amount
of effort, for a variety of interesting languages.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Software—integrated development environments

General Terms Languages

Keywords IDE, Eclipse, generation, meta-tooling, IDE
workbench.

1. Introduction
After decades of activity, programming languages remain a
vital area of active research, and new languages are intro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 2009 October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 AC M 978-1-60558-734-9/09/10. . . $10.00

duced with surprising frequency. Motivations include basic
research into new computing and system architectures, new
application domains, new programming paradigms, and ped-
agogical purposes. Some topics of recent special interest in-
clude parallel languages (e.g., X10 (Charles et al. 2005)),
domain-specific languages, scripting languages (e.g., Ruby
(ruby-lang.org) or Python (python.org)), and aspect-oriented
languages (e.g., AspectJ (eclipse.org/aspectj)). In fact, this
trend may even deepen: “language-oriented programming”
(Fowler) aims to make the development of languages cost-
effective even for use in a single application.

Alongside this proliferation of languages, the last 25
years have seen Integrated Development Environments (IDEs)
rise from novelty status to fundamental need. IDEs provide
critical tooling, such as editors, viewers, dependency man-
agement, and build support, that enable programming lan-
guages to be used most effectively. The existence of a full-
featured IDE has become critical to a language’s widespread
adoption.

Such a rich feature set comes at a cost, however: mod-
ern IDEs are large and complex software systems, incorpo-
rating large amounts of highly customized language-specific
functionality. As a result, constructing a modern IDE from
scratch requires a level of effort and cost that is often pro-
hibitive.

An alternative approach to IDE development relies on au-
tomatic generation. Examples include the Synthesizer Gen-
erator (Reps and Teitelbaum 1984), the ASF+SDF Meta-
Environment (van den Brand et al. 2001), and SmartTool-
s (Attali et al. 2001). In this approach, meta-tools consume
a specification of the syntax and (possibly) semantics of the
language, and generate tools such as parsers, compilers, in-
terpreters, and debuggers. Some of these systems are capable
of generating IDE tooling, such as editors and viewers. Al-
though this can greatly relieve the burden of producing the
IDE, it comes with significant limitations. Specifically, while
generation-based IDEs provide basic functionality for the
given language, they do so at the expense of the language-
specific customizations in appearance and behavior that give

191

the greatest productivity boost. Often, their feature sets pro-
vide only the “lowest-common denominator” across all lan-
guages, resulting in IDEs that do not offer the leverage that
makes IDEs popular. Additionally, the meta-tools for gen-
eration often dictate the use of specific parsing or compiler
technology. This can be highly impractical in cases where a
compile front-end already exists that would have to be re-
written to match the required parsing technology. For these
reasons, generation-based approaches, while successful in
limited applications such as parser generators, have not had
corresponding success in the domain of IDEs.

In fact, these two development approaches represent the
end-points of a spectrum. Building a high-powered IDE
from scratch is feasible when a sizable group of people with
the appropriate expertise make a substantial and sustained
resource commitment. Generating an IDE from a language
specification can be performed by a small group (or an indi-
vidual) when the main interest and expertise is in language
development and a basic IDE is adequate to their purpos-
es. We see a practical middle ground between these two
extremes of IDE development, one where a high degree of
reuse is balanced with fulfillment of language-specific re-
quirements, where incremental efforts are rewarded by in-
cremental value, and where developers can pick the degree
of functionality and the level of investment.

We hypothesize that this middle ground can be effectively
addressed by an open, semi-automated strategy for IDE de-
velopment. First, we relieve the IDE developer of as much of
the burden of IDE development as possible, particularly for
those parts of the IDE that are of least interest, such as the
internal details of user interface componentry. Second, to af-
ford maximum flexibility for customization, we define open
interfaces for the implementation of IDE services and make
it possible to provide a service in entirely original ways. To
reduce the effort that is needed, we facilitate the implemen-
tation and customization of IDE services by a combination
of frameworks, templates, generators, and domain-specific
languages. Finally, we provide other avenues to IDE cus-
tomization, including the ability to select which services are
incorporated into the IDE and the ability to introduce ser-
vices ad hoc. This strategy effectively combines the power
of tool generation with the flexibility of manual construction.

Our contribution in this paper is two-fold. First, we
demonstrate an extensible IDE architecture that separates
and encapsulates the language-independent framework, ex-
poses significant points for language-specific extensions and
customizations, and generally enables these extensions and
customizations to be implemented with minimal reference
to the underlying framework. Second, we show that this ar-
chitecture is practical and can be used to produce useful
IDEs for a variety of interesting languages with a moderate
amount of effort. Additionally, we have implemented our
approach as the IDE Metatooling Platform (IMP), which
is available as an Eclipse Project on www.eclipse.org/imp.

This paper updates and elaborates work previously pub-
lished in (Charles et al. 2007), describing new features, giv-
ing additional details about the development process and
architecture, and reporting new information on experience
and evaluation.

The rest of this paper is organized as follows. Section 2
states our vision of an IMP IDE and contrasts this briefly
with some other approaches. Section 3 states our goals and
approach more specifically. As a means to document the lev-
el of effort involved in developing an IMP IDE, the IMP
IDE development process is explained in Section 4. Sec-
tion 5 presents the IMP architecture, highlighting aspects
that make the IMP approach to IDE development possible.
Section 6 describes experience with IMP (mostly our own)
and Section 7 gives an evaluation based mainly on that expe-
rience. Section 8 discusses related work. Section 9 presents
some open issues, and we conclude in Section 10.

2. An IMP IDE
As stated earlier, our primary goal is to facilitate the devel-
opment of language-specific IDEs in Eclipse. The premier
example for such an IDE is the Java Development Toolkit
(JDT) (eclipse.org/jdt). The JDT exemplifies both a sensible
approach to IDE architecture and a useful set of tools, fea-
tures, and functions.

On the architectural level, the JDT consists of a collec-
tion of Java-oriented tools which operate on an abstract mod-
el of Java workspaces, projects, and programs. Some of the
JDTs tools are defined as extensions of more general user-
interface elements provided by the Eclipse framework. Ad-
ditional services that support software development in gen-
eral, such as resource management, version control, prefer-
ences support, and support for plug-in development, are also
provided by Eclipse. Moreover, the Eclipse framework’s ex-
tensibility permits the creation of additional Java-specific or
Java-compatible tools and services.

Similarly, an IMP IDE is a collection of mainly language-
specific tools organized around an abstract program mod-
el that are situated in the larger context of an Eclipse
workspace. IMP also supports the development of language-
independent IDE features. Many IMP-based tools extend el-
ements in the Eclipse framework. Users of an IMP IDE are
able to draw on other components available through Eclipse
to address services that IMP does not support. Like Eclipse,
IMP is itself extensible and offers support for an expanding
variety of tools and functions.

Although IMP provides support specifically for building
IDEs in Eclipse, many aspects of its approach generalize
readily to other IDE frameworks. Also, IMP does not di-
rectly address IDE development through infrastructure such
as notification mechanisms, communication buses, or object
repositories (e.g., (Reiss 1990; Purtilo 1994; Kadia 1992)).
At the same time, IMP does nothing to prevent the use of
such mechanisms; e.g., Eclipse provides an extensive frame-

192

Figure 1. An IMP-based IDE for the LPG grammar specification language

work for tool notification and resource management that in-
teroperates with IMP.

Similar to the JDT, an IMP IDE offers what many devel-
opers have come to expect from a modern IDE: a language-
sensitive editor with features such as syntax highlighting,
hover help, hyper-linking (e.g., from references to declara-
tions), and content assist; structural and navigational views
(e.g. outline views); and program building services. Figure 1
shows a screenshot of an IMP-based IDE with various el-
ements called out. While the look and feel of the depicted
IDE is similar to the JDT, the language for which it is in-
tended is the grammar specification language for the LPG
parser generator (lpg.sourceforge.net).

Figure 2 shows a listing of IDE services that are available
(or under development) in IMP, as an image of the menu by
which service implementations are created. Many of these
services will be familiar to users of modern IDEs; several
are discussed in detail later in the paper. A few menu en-
tries are not targeted at specific services but instead represent
generic hooks for the introduction of arbitrary functionality

in different contexts. These include the Editor Actions Con-
tributor, which adds commands to the editor’s context menu,
the Introduced Editor Service, which specifies functions to
be invoked automatically along with other editor services,
and the Refactorings Contributor, which augments the set of
language-specific program refactorings.

The “LPG” category of services in Figure 2 addresses
syntax definition and parser generation via the LPG pars-
er generator (lpg.sourceforge.net). However, IMP does not
mandate any particular technology for syntax definition,
parsing, or program representation – the IDE developer
can choose any desired technology (see Sections 4 and 5).
Nonetheless, the IMP distribution includes, as an option, the
LPG parser generator and an accompanying IDE in order
to offer a more complete package for out-of-the-box IDE
development.

As of this writing, IMP does not provide any framework
components or meta-tooling for developing or interacting
with language runtimes and debuggers. Although IMP’s ag-
nostic position with respect to language technology makes

193

Figure 2. IMP support for IDE services.

defining runtime and debug-time tooling more difficult (re-
quiring a bridging layer of semantic descriptions), we be-
lieve it is still eminently possible. This is an open area for
research and further development.

3. Goals and Approaches
Through a hybrid approach to IDE development, combining
the flexibility of manual construction with those of automat-
ed generation, we hope to achieve the following goals:

To support the development of IDEs by people whose
primary competency is not IDE development or user-
interface frameworks. This includes, for example, lan-
guage developers.

To support the development of “effective” IDEs, that
is, IDEs that have a substantial subset of the features and
functions that are expected in a modern IDE, and that have
acceptable performance and size characteristics. We consid-
er the Eclipse Java Development Toolkit (eclipse.org/jdt) as
the “gold standard” of IDE effectiveness.

To significantly reduce the time and effort required to
develop a useful IDE. Where it might now take several IDE
specialists person-months of effort to develop a modest IDE
for a moderately sized language, our goal is to reduce that to
a few person-weeks of effort by a non-specialist. Ultimately,
we intend to shift the economics of IDE development such
that IDEs can be developed “on demand” as a normal part
of language definition, application development, research
projects, and academic courses.

To enable significant customization of both the set of
IDE features, and the behavior of those features. Cus-
tomization for specific languages, users, and purposes is a
key to an IDE’s success.

To accommodate alternative tooling for key IDE com-
ponents such as parsers, AST representations, and edi-
tors. This allows IDE developers to use whatever software
assets they already have to lower development costs, and still
gain the benefits of an IDE framework.

To allow IDEs to be developed selectively, iteratively
and incrementally. This allows IDE developers to focus
first on priority features, and allowing them to add additional
features if and when the need arises.

To realize these goals, we further base our approach to
IDE meta-tooling on the following design principles:

• Build IDE components and services upon models of the
program under development (rather than linking services
directly to one another). This enables incremental devel-
opment of IDE services and increases the substitutability
of IDE components.

• Enable as much of the IDE as possible to function inde-
pendently of any particular service. This facilitates selec-
tive and incremental development.

• Provide templates for IDE service implementations that
help developers focus on language-specific customiza-
tions and other important aspects of IDE behavior and
appearance.

• Provide language independent base classes for service
implementations. Where possible, provide concrete class-
es that provide a useful level of functionality without
modification.

• Separate the creation, management, and invocation of
editor services from the editors and other views, so that
the editor is replaceable.

194

• Support an open-ended set of services with public exten-
sion points. This supports the usability, extensibility, and
customizability of developed IDEs.

The following sections address our implementation of
these approaches.

4. IMP Development Process
This section gives an overview of the process of developing
an IMP-based IDE. We illustrate that IMP affords the follow-
ing benefit automatically: (i) that in-depth knowledge of the
framework (especially that of the underlying Eclipse frame-
work) is not required to implement substantial, customized
IDE services; (ii) that the effort required is proportional to
the benefit received (i.e., that there is low development over-
head relative to the functionality of interest); and (iii) that
the expertise required for IDE development centers around
knowledge of the language.

Before beginning development of the various services,
the developer must supply basic information about the lan-
guage. This is done through a “New Programming Lan-
guage” wizard, which collects a list of filename extensions a-
long with a unique identifier for the language (used to match
content to the appropriate service implementations).

For the most part, the IDE developer can select the de-
sired services and implement them in any order. The most
obvious exception to this is the parsing service, which gener-
ally comes first, since most services rely on the token stream
and ASTs. There are a few additional (though fairly obvi-
ous) dependencies that imply an order (e.g., content assist
typically depends on reference resolution).

Each step in the process is initiated by means of a wizard
through which the user identifies the target project, language,
and service implementation classes. Certain wizards permit
limited customization through additional fields, rather than
by modifying the service implementation code.

Finishing the wizard typically has two effects. First, an
extension is created in the plug-in meta-data that register-
s the service implementation with the IMP runtime. Sec-
ond, a skeletal service implementation is generated, which
may provide limited functionality without further implemen-
tation (e.g., the skeletal token-colorer highlights keyword-
s). However, most services naturally require additional work
to implement the desired functionality. IMP alleviates the
burden of this additional work by factoring the language-
independent infrastructure concerns into framework classes,
enabling the developer to focus on language-specific con-
cerns. IMP also provides domain-specific languages for cer-
tain services, to minimize syntactic and semantic overhead.

The generated skeletons contain an example implemen-
tation for a simple, block-structured, imperative language,
called “LEG” (”Little Expression Grammar”). The generat-
ed files are automatically opened in the appropriate editor
and positioned where customizations are to be performed.

4.1 IDE Services

IDE services can be divided into user visible services (e.g.
token coloring) and internal services (such as parsing and
reference resolution). We discuss below the implementation
of a representative selection of services of both kinds.

The first service typically implemented is the parser ser-
vice, which must implement the “parse controller” interface.
IMP is designed to work with any parser, whether hand-
coded or generated, so this interface is appropriately neutral.
For example, it includes methods to parse a string (returning
the resulting AST), to get the keywords of the language, or
to return an iterator over tokens within a given range in the
source text. Additionally, IMP interfaces typically represent
abstract syntax trees (ASTs) and other language-specific en-
tities as plain objects.

To facilitate the creation of a parser, the IMP meta-tooling
includes a complete IMP-based IDE for the LPG parser
generator (lpg.sourceforge.net). (Similar support can easily
be added to IMP for other parser generators.) Like many
modern parser generators, LPG features include automatic
generation of AST classes from the grammar, as well as AST
visitor classes to assist in AST traversal.

For developers using other parser generators, or existing
parsers, or who want to write their parser manually, IMP also
provides a “parser-wrapper” wizard that creates a skeleton
for the parse controller class that delegates all operations to
the existing parser class.

Once this step is complete, the nascent IDE is already
(minimally) usable: the source editor provides “live pars-
ing,” presenting syntax errors as source annotations.

Perhaps the simplest user-visible service to implement is
token coloring (syntax highlighting). The principal method
in the requisite interface for this service is

getColoring(IParseController, Object)

where the Object represents the text to be “colored” and
the parse controller provides access to the AST, among oth-
er things. The Object given to getColoring is typically a
lexical token. In any case, the entity’s kind is used to deter-
mine the text attributes to apply to the corresponding source.
Information about the context of the token in the surround-
ing AST can also be consulted. To determine how much text
to re-color for any given textual change, the token colorer
interface defines the method

calculateDamageExtent(IRegion)

which takes a “damaged” (modified) text region and returns
a possibly larger one whose coloring needs to be updated. By
default, this method simply returns the region it was given.

The label provider and documentation provider ser-
vices are implemented similarly to the token colorer in that
both take a program entity (often representing an AST node)
and return a value based on the type of the entity. In the for-
mer case, the value returned is the text or image to be used to
represent the given entity in various UI views. In the latter,

195

the value is the relevant documentation for the given entity
(e.g., its JavaDoc).

Some IMP services, such as the source-text folder and
tree-model builder1, are easily implemented using AST
visitors. The service implementor provides a visit(...)
method for each AST-node type for which source folding
or an outline item is desired. For a source folder, the trivial
visit(...) method for any foldable AST-node type con-
sists of a call to the method FolderBase.makeFoldable().
For a tree-model builder, the visitor implementation is on-
ly slightly less trivial, as it typically must ensure that the
tree model mirrors the AST’s structure. Both the source
folder and tree-model builder permit more complex logic,
e.g., to fold regions of text that don’t correspond exactly
to AST nodes or to rearrange the tree model (e.g. sorting
a node’s children based on their type or labels). As shown
in Section 7, though, the typical implementation of a visitor
method is just a couple of lines. As a result, the size of these
service implementations depends mainly on the number of
nodes addressed.

Reference resolution is a core internal service in IMP
that is used by several other services. The principal method
to implement is getLinkTarget(...). If a compiler front
end is available to provide binding information, this method
can simply return the precomputed binding. If not, it must
produce this information by other means.

The hover-help service is one for which IMP provides a
default implementation but which also facilitates consider-
able customization. This implementation takes advantage of
a reference resolver and a documentation provider, if avail-
able. First, if a reference resolver exists, it is used to find the
declaration corresponding to the AST node over which the
cursor hovers, if that node is a reference node; otherwise, the
“hovered node” is used. Next, if a documentation provider
exists, the hover helper returns whatever the provider pro-
duces for that node. If no documentation provider exists, the
hover helper simply returns the source text associated with
that AST node. Finally, if no reference resolver exists, the
default hover helper simply returns the source text associat-
ed with the given AST node, if different from the “hovered
node.” Of course, if the above logic is insufficient, the de-
veloper can always create a custom hover implementation to
completely control the information that is presented. In all
cases, however, note that the IDE developer is responsible
only for defining what to display, rather than how or when to
display it.

4.2 Arbitrary Services

IMP provides extension points and supporting mechanisms
explicitly designed for a number of anticipated IDE services
such as token coloring and text folding (see Section 7 for
a more complete list). The following additional extension

1 The tree model is available for any client’s use; the standard IMP outline
view uses it to present the source text’s structure.

points allow for the introduction of arbitrary services in a
number of specific contexts:

• The “model listener” extension point permits arbitrary
clients to be notified whenever the source model (AST)
changes in response to text edits.

• The “refactoring contributor” extension point allows
IDE plugins to contribute one or more language-specific
refactorings. Refactorings are generally triggered on be-
half of a selected program entity (e.g., in the source editor
or outline), via the context menu.

• The “editor actions contributor” extension point allows
IDE plugins to programmatically contribute actions to the
Eclipse menu bar, tool bar, and status bar.

IMP provides wizards for each of these extension kinds that
generate very basic implementation skeletons.In the case of
the “New Refactoring” wizard, however, the code skeletons
themselves encapsulate nontrivial knowledge about the re-
lationship among several key Eclipse APIs for refactoring,
structured text rewriting, undo support, and the like.

4.3 Help for the IDE Developer

The IMP development process is well documented, with a
User’s Guide and Eclipse cheat sheets. Cheat sheets are in-
tegrated into the IMP IDE, and provide a semi-interactive,
step-by-step guide through the development process. Also
included is documentation for LPG, the PrefSpecs language
for specifying preferences and preference pages, and the
source formatting language and IDE. The IMP IDE devel-
oper can actually run through all of the IMP wizards and
create an operational LEG IDE without editing any code;
this IDE can then be used for experimenting with alternative
language formulations or service implementations. The IMP
release contains the source for several functioning IMP IDEs
that are part of IMP itself, notably for the LPG, PrefSpecs,
and source formatting languages, as well as others that are
under development. The IMP-based IDE for X10 is available
as open-source on SourceForge.

5. IMP Architecture
5.1 Meta-Tooling and Runtime

IMP consists of two kinds of components: meta-tooling
components, which are used when developing an IDE, and
runtime components, which are used during the execution of
that IDE. The relationship between these two sets of compo-
nents is depicted in Figure 3. The meta-tooling components
includes wizards, templates, and generators that are used (as
described in Section 4) to declare a language and develop
specific IDE services. The meta-tooling also includes sev-
eral IMP-based IDEs for domain- specific languages to aid
in implementing certain services. Among these languages
are LPG grammar and preference page specifications (see
Sections 2 and 4).

196

Figure 3. IDE Development and IDE Runtime

The IMP runtime framework builds on the ”Eclipse Rich
Client Platform”, a set of generic, mostly programming-
oblivious components, comprising text editors, tree views,
and so forth. IMP components extend these to provide user-
visible IDE services that are relevant to most programming
languages such as source editors, parser problem annotations
and markers and structural views. The IMP runtime frame-
work also provides internal functions critical to an IDE’s
execution, such as the identification, instantiation, and dis-
patching of language-specific services (discussed below).

The IMP meta-tooling and runtime frameworks are lan-
guage independent, but they naturally rely on language-
specific code to provide the language-specific behavior for
the various IDE services. To plug language-specific services
into the language-independent framework, IMP uses the
Eclipse extension-point mechanism (Bolour). Specifically,
most IDE services managed by the IMP runtime framework
correspond directly to IMP- or Eclipse-defined extension
points. Thus, as mentioned in Section 4, IMP service cre-
ation wizards typically create one or more implementation
classes and register them as extensions of the corresponding
extension point. IMP runtime components (such as the Uni-
versal Editor) then query the extension registry to find the
implementations for the language service in question.

As shown in Figure 4, IMP locates language-specific
service implementations using an IMP-maintained mapping
from filename extensions to known languages. This mapping
is defined by extensions of the IMP ”language descriptor”
extension point.2 Likewise, the extension metadata for each
service implementation identifies the language for which it
is intended.

2 This is done in part so that service implementations can be distributed
across multiple plug-ins.

Figure 4. Locating service implementations

For example, IMP’s source editor makes use of var-
ious language-specific service implementations. One of
these is token coloring, which identifies the text attributes
to be used in displaying each source text entity. For this
service, IMP defines the tokenColorer extension point.
Extensions of this extension point must implement the
IMP ITokenColorer interface. The “New Token Colorer”
wizard generates a skeleton implementation of this inter-
face, and automatically registers it as an extension of the
tokenColorer extension point. (The implementation will
typically be customized by the IDE developer.) At runtime,
when the IMP editor opens a file belonging to a given lan-
guage, it consults the IMP Language Registry and Service
Manager (as shown in Figure 4) to locate the extension of
the tokenColorer extension point for that language. If one
exists, the implementation class is used to color the source.

5.2 Runtime Operation

The execution flow of the token colorer is typical of most
language services: it is invoked by the IMP framework, per-
forms some language-specific analysis on its arguments, and
returns the results to the framework. Interactions between
the service and the rest of the IDE infrastructure are man-
aged entirely by IMP. This arrangement enables the service
implementations to focus on language-specific structure and
semantics rather than on user interface APIs or other infras-
tructure components.

Figure 5 depicts the flow of events that lead from user
editing actions to the resulting analyses and view updates. To
first order, source document changes result in the updating
of one or more models, such as the token stream, AST, and
search indices. Changes to these models are propagated to
listeners that form the basis for nearly all IDE services.

In more detail, editing actions, such as inserting text, re-
sult in a region of “damaged” source text, managed by the
underlying Eclipse text components. The damaged region
is propagated in the foreground (i.e., in the same thread) to
an IMP “service controller” class, which mediates between
the IMP framework components (e.g., the editor) and the
language-specific services. In particular, this controller in-

197

Figure 5. Service scheduling

Figure 6. Service dependence on analyses

vokes the parsing service to produce the new token stream
and AST from the source text. Certain light-weight listeners
are notified synchronously (e.g., for token coloring). Oth-
er listeners are notified of model changes pending sufficient
idle time. If more edits arrive in the interim, pending notifi-
cations are abandoned, and another model update cycle be-
gins.3 For heavier-weight analyses, such as search index cre-
ation, background jobs listen for changes to resources with-
in the workspace, and perform the appropriate processing to
update their results. Certain services, e.g., refactoring, may
require additional analyses that are too expensive to perform
eagerly; hence they are only performed on demand. Depen-
dences of various services on various kinds of analysis are
shown in Figure 6.

3 In fact, parsing and other analyses can be interrupted, if the parser supports
the appropriate API.

At present, model changes are represented as entirely new
models; in the future, some analyses may process changes
incrementally.

5.3 Architectural Substitution

The same architectural features that accommodate pluggable
IDE services also supports substitution of major IDE com-
ponents, such as the editor. Editor substitution is useful for
languages with unusual syntactic requirements that are oth-
erwise amenable to typical IDE services. For example, lega-
cy languages such as FORTRAN or COBOL are column-
sensitive and require specialized editing functionality that
the Eclipse text editor does not support. By separating the
Language Registry and Service Manager from the IDE com-
ponents, as shown in Figure 4, and by encapsulating the ini-
tialization and configuration of the IMP runtime framework,
editor substitution is straightforward. A foreign editor can
be integrated by extending or wrapping it and using the Lan-
guage Registry and Service Manager to access IMP meta-
data and services. It is similarly straightforward to do like-
wise with other services and views.

6. Experience
We have substantial experience in using IMP and IMP-based
IDEs. Several IMP-based IDEs are part of the IMP release:

• The LEG language is a simple, procedural language that
is provided for pedagogical purposes.

• The Box (van den Brand and Visser 1996) language is a
simple DSL for text-formatting rules. This IDE was orig-
inally developed to support the debugging of Box tools
and is now an integral part of IMP’s source formatting
specification editor.

• The PrefSpecs language is a DSL for the specification
of preference pages, fields and values. We have used this
IDE for the preferences of IMP itself, as well as for other
IDEs listed here.

• The LPG grammar specification language is used by the
LPG parser generator. We have used the LPG IDE in
specifying the grammars for a wide variety of languages
(e.g., Box, X10, PrefSpecs, COBOL, and the LPG gram-
mar specification language itself). The LPG IDE can be
used separately from IMP.

• The PSP language is a DSL for declarative aspects of IDE
presentation.

We and others have also used IMP to develop IDEs that
are not part of the IMP release:

• The X10DT, an IDE for the X10 language (Charles et al.
2005), an extension of Java for highly concurrent applica-
tions such as scientific and engineering applications (this
IDE is available as part of the X10 release (X10.source-
forge.net))

198

• An extension to an existing COBOL IDE to provide sup-
port for COBOL development on Eclipse (released as
part of IBM’s Rational Developer for zSeries (RD/z))

• An IDE for SDF and ASF+SDF, which is a port of The
Meta-Environment (van den Brand et al. 2001) to Eclipse
using IMP.

• An IDE for Rascal, a DSL for source code analysis and
manipulation based on a combination of algebraic spec-
ification and relational calculus primitives (Vinju et al.
2008). Its intended application domain is implementation
of static analyses and refactorings for other DSLs intend-
ed for use in IDEs.

• An IDE for ToolBus Script, a coordination language
based on algebra of communicating processes (ACP).
It connects tools written in arbitrary languages to a coor-
dination bus which is scripted in a formal language that
can be easily analyzed (Fokkink et al. 2008).

• ’Spoofax/IMP is an IDE tooling platform integrating S-
DF and Stratego/XT into Eclipse.’ It uses SDF(Heering
et al. 1989) for defining grammar rules and Stratego (Viss-
er 2004) for semantic rules and realizes the IDE using
IMP (Kats and Kalleberg 2009).

IMP is also used to develop IDEs as part of other projects
in IBM Research, such as an IDE for the SPADE stream-
processing specification language (Gedik et al. 2008). Most
of the IDEs listed above are publicly available.

To give just a few observations about our experience, the
above languages range in grammar size from fewer than two
dozen rules (for Box), to over 1000 rules (for COBOL). The
size of the IDEs also varies widely, in terms of both code size
and the number of features realized. Some representative
numbers on code size are given in Section 7.3. Regarding
the number of features, the set of typical “core” features for
the IDEs that have been developed as part of IMP include

• Parsing with error annotations and problem markers

• Syntax highlighting (token coloring)

• Source-text folding

• Tree model builder (used, e.g., in outlining)

• Label provider (used, e.g., in outlining)

• Reference resolution (used, e.g., in hover help and occur-
rence marking)

• Hover help

• Occurrence marking

• Content assist

• Documentation provider

• Project building

These are all found in the LEG, LPG, and PrefSpecs IDEs
and in X10DT. Additionally, the PrefSpecs IDE has a second
documentation provider and the LPG IDE provides several

refactoring and context-menu actions. The LPG and X10
IDEs have an IMP-based preference page (as does IMP
itself).

Some IMP-based IDEs implement only a subset of these
features. The COBOL IDE offers only six of the above-listed
services, but these are used in conjunction with other ser-
vices and tools developed earlier outside of Eclipse. The Box
IDE has only parsing, syntax highlighting, and a builder,
which were sufficient for its intended purpose of support-
ing debugging of Box tooling. The Rascal IDE has parsing,
syntax highlighting, outlining, and a custom console. This
clearly demonstrates that IMP reduces the cost of building
IDEs to the point that it can be sensible to do so even for a
relatively modest payoff.

The kinds of languages that have been supported through
IMP include both specification languages and programming
languages; the former have been mainly domain specific,
while the latter have been more general purpose.

In developing IMP we have seen a number of opportuni-
ties where a domain-specific language could facilitate IDE
development. Taking advantage of such opportunities was
considerably easier because IMP made it practical to develop
IDEs for these languages. Other IMP users have also found
it opportune to couple IMP with DSLs to support aspects of
IDE development (e.g., as for The Meta-Environment, Ras-
cal (Vinju et al. 2008), and Spoofax/IMP (Kats and Kalle-
berg 2009)).

IMP has also provided the leverage to move some existing
IDEs (e.g., for COBOL, The Meta-Environment) onto a new
platform (i.e., Eclipse).

7. Evaluation
This section evaluates IMP against the goals set in Section 3.
The basis for this evaluation is our experience in using IMP
to build the IDEs described in the previous section. As dis-
cussed there, these languages and their IDEs vary widely is
character and size. Many are in regular use, and most are
publicly available. Table 1 lists several of the languages and
gives measurements of the size of their grammars.

Language # non-terminals # rules
Box 9 21
LEG 23 37
PrefSpecs 66 71
LPG 66 100
ToolBus Script – 118
X104 69 204
Rascal5 200 582
Cobol 535 1124

Table 1. Languages with IMP IDEs and their grammar sizes

199

7.1 Ease of IDE Development

How hard is it for someone who is not an “IDE expert” to
build an IMP IDE? In principle this could be measured ex-
perimentally, but such experiments are beyond the means of
our project. Thus, we have not had the opportunity to con-
duct trials that would allow a truly robust quantitative eval-
uation. So, while the evidence collected to date is primarily
anecdotal and qualitative, it nevertheless suggests that we
have made substantial progress toward our goal.

We have observed a number of novice IMP users that
were able to construct nontrivial IDEs with no particular
background in IMP or the Eclipse infrastructure and with-
out help much beyond the available documentation. We
continue to find that IMP attracts both novice and experi-
enced IDE developers, both within IBM and externally (see
news://eclipse.org/imp/).

Furthermore, we know from our own experience that
the amount of time needed to develop a nontrivial IDE or
a significant IDE service is relatively small (hours, days,
or weeks, depending on the scale of the effort). Also, the
amount of code that needs to be written for many services
is small in an absolute sense or relative to the complexity of
the target language (e.g., the number of AST node types).
Further details on these points are provided in Section 7.3.

Finally, we have made several decisions in the design of
IMP in large part (if not entirely) to ease the burden of IDE
development. Examples include:

• Use of simple specification languages and generators for
some services, such as preference pages and IDE presen-
tation

• The provision of base classes and implementation skele-
tons for many services that such that typical implementa-
tions can be programmed concisely and without signifi-
cant reference to the Eclipse platform

• The handling of IDE related extensions and extension
points (e.g., for service registrations and lookup) by the
IMP meta-tooling and runtime, thus freeing the IDE de-
veloper from involvement with these details

Additionally, IMP’s ability to support iterative and incre-
mental development makes it possible for novice developers
to “go slowly” as they are gaining experience.

We regard this as an area for continuous improvement in
IMP. For example, we continue to refine base classes and
interfaces as users help us discover how to improve their us-
ability. At the same time, we take care to preserve opportu-
nities for more sophisticated implementation approaches for
those users with more demanding requirements.

5 X10 data exclude elements of the Java, which serves as a base language.
5 Rascal data include elements adopted from the Java statement and expres-
sion languages.

7.2 Effectiveness of IDEs

We consider the ability of IMP to support the development
of “effective” IDEs from two angles: the set of services
supported and IDE size and performance.

7.2.1 Supported Services

The set of services that an IDE may support is effectively
open-ended. IMP provides direct support for a significant
set of specific services, and the opportunity to add further,
unanticipated services. Most of the services for which IMP
provides development support are shown in Figure 2. This
compares relatively favorably with the range of services
provided by industry-leading Java IDEs, such as the Eclipse
JDT (eclipse.org/jdt). As noted previously, IMP’s support for
execution, runtimes, debugging, and refactoring is presently
very limited.6 Support for indexing and searching in IMP
is still under development. Also, IMP is lacking in the area
of project-level navigation and support for entity-creation
wizards (e.g., ”New Project” wizards).

Most of the services indicated in Figure 2 are common
in modern IDEs. The JDT in particular is a highly advanced
IDE that has been in commercial development for almost
a decade and continues to advance. In contrast, basic IMP-
based IDEs can be constructed within days or weeks, de-
pending on the complexity of the language, features of inter-
est, and desired level of functionality.

7.2.2 Size and Performance

We examine IDE size and performance metrics for a set of
IMP IDEs to which we have access. Specifically, we mea-
sured code size, memory footprint and interactive respon-
siveness.

Table 2 shows the total size of the JAR files that comprise
the distribution of the IDEs under consideration. The size
varies widely depending on the size of the language and
features in the IDE, among other things. For example, the
Cobol IDE provides fewer services than some of the others
but for a much larger language, while the LPG IDE includes
refactoring, search, and view support that is not found in
most of the other IDEs. Also, unlike the other IDEs, the
release for X10 does not include the AST representation
(as the X10 compiler is packaged separately from the X10
IDE). Generally, though, these values are well within the
range of typical IDE-scale software systems, which may be
megabytes larger (a recent JAR file for JDT core source
alone was about 3.5 MB).

To give an indication of the runtime size of an IMP IDE,
we measured the heap memory footprint using a synthetic
workload that consisted of running the IDE and opening six
editors. The resulting memory footprint ranged from 23 MB
for our smallest IMP-based IDE, the LEG IDE, up to 41 MB
for our most complex IDE, the X10 IDE. For comparisons

6 IMP provides minimal support for execution and debugging for languages
that translate to Java.

200

IDE JAR Size (KB)
LEG 164
PrefSpecs 298
LPG 1,299
X10 1,425
Cobol 2,815

Table 2. Size of exported JAR files for selected IMP IDEs.
(Includes source, binaries, meta-data, and miscellaneous
files.)

we ran the same experiment with the JDT, which resulted
in a memory footprint of 35 MB. This demonstrates that the
size of an IMP-based IDE can vary, depending on features
of the IDE, but is generally within an acceptable range for
an Eclipse IDE.

To assess IDE responsiveness we instrumented several
IMP IDEs to measure IDE start-up time. Cold start-up time
is measured as the time it takes to initially invoke the IDE
with a representative input file until the IDE has initial-
ized all views and is responsive to user input, excluding the
Eclipse start-up time. Warm start-up time is the time it takes
for consecutive editors to open. We measured cold and warm
start-up times as the average over 4 experiments.

Cold start-up times ranged from 2.3 seconds for the LEG
IDE (opening a file with 15 LOC) up to 4.7 seconds for the
X10 IDE (opening a file with 400 LOC). Consecutive warm
start-up times ranged from 0.04 seconds for the LEG IDE
to 1.0 second for the X10 IDE. These numbers are more or
less comparable to our experience with the Eclipse JDT and
demonstrate that IMP-based IDEs, even complex ones, are
sufficiently responsive for interactive use.

7.3 Reduction of Time and Effort

Our IMP IDEs have not been developed under controlled
conditions, but our experience indicates that useful IMP
IDEs can be developed in days or weeks. For example,
development of the initial PrefSpecs IDE took about one
week by one person, beginning with the specification of
the grammar and generation of the parser using LPG, and
including implementations for token coloring, outlining, text
folding, reference resolution, content assist, two alternative
documentation providers, and a builder.

For the Cobol IDE, the time required to implement vari-
ous services has ranged from one hour or less (e.g., for the
token colorer and source-text folder) to several hours (e.g.,
for the occurrence marker). The very simple Box IDE took
less than one day. The Rascal IDE (with parser, token col-
orer, outlining, and a custom console) took an experienced
IMP developer less than two days. The ToolBus Script IDE
was developed by two people in two days. Despite the em-
phasis that we have placed on feature richness, sometimes
a simple language-sensitive editor will meet a developer’s
needs.

In our experience, the most difficult part of building an
IMP IDE may be defining the grammar. Grammer definition
requires careful consideration for any non-trivial language.
IMP shields the language developer from the complexities
of IDE development, but we do not attempt to obviate the
intellectual challenges of language design. For a complex
language, the definition of the grammar may take more time
than the construction of a basic IDE using IMP.

In order to provide an objective approximation of IDE
development effort using IMP we measured the amount of
custom code the IDE developer has to write in order to
complete an IDE service implementation. Table 3 shows, for
a representative set of services, the numbers of custom lines
of code (LOC), the number of AST node types to which the
service applies, and the corresponding LOC per AST node
type. The top part of Table 3 shows four user-visible services
and the bottom part shows four internal IDE services.

Most services shown in Table 3 require very little cus-
tom code, especially when considering the amount of cus-
tom code per relevant AST node type. Builders are a ser-
vice that tends to be either trivial (e.g., LEG and PrefSpecs
builder) or highly customized in a fairly complex way (e.g.,
X10 builder). Services like the occurrence marker and the
tree-model builder, which are typically based on the Visitor
pattern, may be relatively large (if there are many AST node
types) but still conceptually simple. The amount of custom
code for most reference resolvers is relatively small. The one
exception here is for PrefSpecs which, unlike the other IDEs,
builds its own symbol table rather than relying on one pro-
vided by the parser. Note that the Cobol IDE does not yet
have a builder and documentation provider.

Some IMP services may not need any customization. The
IMP framework provides a default hover helper implemen-
tation that works automatically with an existing reference
resolver and documentation provider. This has worked well
for the LEG, LPG, and X10 IDEs; the PrefSpecs IDE used
a non-default hover helper to obtain more control over the
source of documentation.

Table 3 shows that the service implementations for IMP-
based IDEs are relatively small, often quite small in propor-
tion to the number of AST node types involved. Considering
that most of the service implementations are also fairly styl-
ized (e.g., implementing a visitor), this demonstrates sub-
stantial success in isolating the language-specific elements
of these service implementations and in simplifying their
customization by IDE developers.

7.4 Enabling of Customization

IMP affords many points of customization to the IDE devel-
oper, such as customization of the parsing technology, the
AST representation, and the editor. Beyond that, an IMP-
based IDE can be customized with respect to the services or
features it includes. With very few restrictions, the available
services can be combined in almost arbitrary ways, and the

201

Service LEG Pref- LPG Cobol X10
Specs

Occurence marker (Template = 255 LOC)
LOC 176 272 70 153 59

AST nodes 14 30 3 10 10
LOC/AST node 12 9 23 15 6
Token Colorer (Template = 46 LOC)

LOC 8 38 26 27 12
AST nodes 4 26 6 14 9

LOC/AST node 2 2 4 2 2
Source folder (Template = 26 LOC)

LOC 4 24 82 68 65
AST nodes 1 6 17 17 21

LOC/AST node 4 4 5 4 3
Builder (Template = 79 LOC)

LOC 1 1 450 N/A 977

Document provider (Template = 38 LOC)
LOC 8 79 17 N/A 576

AST nodes 3 31 4 - 35
LOC/AST node 3 3 4 - 16
Label provider (Template = 83 LOC)

LOC 20 56 113 145 178
AST nodes 6 19 50 35 18

LOC/AST node 3 3 2 4 9
Reference resolver (Template = 23 LOC)

LOC 5 178 11 5 60
AST nodes 1 2 1 2 14

LOC/AST node 5 89 11 3 4
Tree-model builder (Template = 44 LOC)

LOC 22 133 247 258 56
AST nodes 5 19 26 35 19

LOC/AST node 5 7 8 7 3

Table 3. Size of templates and additional custom lines of
code (LOC) for representative service implementation in
representative IDEs. Also shown, the number of AST node
types referenced in the service implementation and the cor-
responding LOC per referenced node type (approximate w-
hole number).

IMP framework provides extension points for the introduc-
tion of arbitrary services.

Individual IDE services can be customized through pa-
rameters specified at the time that initial implementations
are generated or through the way in which service imple-
mentations are completed or extended. To facilitate service
implementation, we provide base classes and default, skele-
ton implementations for many services.

Some open points in the default implementations for se-
lected services are shown in Table 4. However, customiza-
tions are not restricted to predefined points; any service can
be implemented using an arbitrary program.

Following are some examples of customizations that were
made in the IDEs we evaluated:

Service Example Customizations
Definition of text attributes

Syntax Assignment of text attributes to tokens
colorer Use of non-local information

(e.g., from AST)
Determination of region to re-color
Included elements
Element order

Outliner Indentation structure
Text labels and icons
Use of extra information
Tests for file types (src, incl, ...)
Marker IDs

Builder Dependency computation
Compile method
Overrides of defaults for message
management, dialogs, ...

Table 4. Example customizations for selected IDE services

• The use of Polyglot (Nystrom et al. 2003) rather than
LPG as the basis for representing AST nodes in the X10
IDE.

• The use of a javacup-based parser in the ToolBus Script
IDE

• The use of a preexisting column-oriented editor in the
Cobol IDE rather than the standard IMP editor

• The use of a custom console in the Rascal IDE based on
the the ScriptConsole class from the Dynamic Languages
Toolkit (eclipse.org/dltk).

• The provision of “language-oriented” documentation,
rather than the more common “program-oriented doc-
umentation”, in hover help for the PrefSpecs IDE

• The use of different algorithms for reference resolution
in the X10 (prescreening link source nodes), LPG (no
prescreening link source nodes), and PrefSpecs (use of
token stream instead of the AST to find references)

• The recognition of specially-formatted comment tags
(e.g. “TODO”) in the X10 compiler

• The computation of cross-compilation unit dependencies
in the X10 compiler

These are in addition to the selection of different service sets
for different IDEs and more routine choices about syntax
coloring, and outline construction.

7.5 Iterative, Incremental, and Selective Development

IMP supports the ability to freely select which services to
provide in an IDE. No two of the evaluated IMP IDEs offer
exactly the same set of services. Furthermore, development
of an IMP IDE is incremental since services are generated
one at a time and are mostly individually completed. This

202

incrementality is beneficial in that it allows IMP IDEs to be
verified at each stage of development.

Iterative development is possible both for adding new
services to an IDE and for refining or replacing existing
services. However, not all incremental changes to an IMP
IDE can be localized impact-free. For instance, the biggest
crosscutting concern in any IMP IDE is inevitably the AST
representation and node types. If the underlying grammar
changes, the AST types will generally also change, with
more or less impact. If new AST node types are added, the
existing IDE services should continue to work, albeit ignor-
ing the new node types. The services can be updated indi-
vidually as needed to address the new types. If existing node
types are modified or deleted, then dependent IDE services
will have to be repaired before they can be recompiled and
used. Better support for IDE evolution is a topic for future
work.

Finally, an important advantage of IMP’s incremen-
tal development is the ability to construct basic limited-
functionality IDEs with very little effort. In situation where
simple IDEs with limited functionality are sufficient, IMP
provides an ideal framework to arrive at a solution quickly.

7.6 Accommodating Language Changes

Several of the above languages (notably LPG, PrefSpecs,
and X10) were evolving while their IDEs were under devel-
opment. This raises another important question in assessing
the effectiveness of our framework: how difficult is it to keep
an IDE implementation in sync with language changes? This
section offers some qualitative experience to address that is-
sue.

Specifically, the LPG grammar was refactored and aug-
mented to effect various syntactic enhancements. In this
case, the bulk of the IDE implementation (coloring, fold-
ing, outlining, reference resolution, etc.) was affected lit-
tle, requiring only a few isolated lines of alteration. The
grammar refactoring implementations and grammar analy-
sis, however, were naturally impacted more significantly by
the changes to the AST hierarchy.

Likewise, the PrefSpecs language was enhanced to sup-
port additional preference data types, multiple hierarchical
preference pages, and to make various specification item-
s optional. Again, the bulk of the IDE required little or no
work to accommodate these changes. On the other hand,
the PrefSpecs compiler that generates Java implementation
classes for various user interface componentry, and its da-
ta structures and code generator required significant adapta-
tion, as one would expect.

The X10DT, on the other hand, faced significant changes
of two different kinds: (a) in the initialization and invocation
of the underlying Polyglot compiler framework and the orga-
nization of compiler passes (which the X10DT’s builder ex-
tends), and (b) in the AST hierarchy and type system APIs,
in partial support of generic types. In essence, the former
changes were more difficult to accommodate, requiring a

nontrivial reworking of the life cycle of the IParseController
and related classes. It seems unlikely that the IDE framework
could do much to insulate the IDE developer from such prob-
lematic API changes without a tight integration between the
IDE framework and the compiler, which would violate one
of our key design goals (technology agnosticism). The sec-
ond set of changes, on the other hand, corresponds more di-
rectly to language changes, and was actually much easier to
accommodate, particularly as they were systematic.

In short, for the most part, the bulk of the effort in ac-
commodating language changes lies mainly in the code that
is intrinsically complex, as it should be.

8. Related Work
There is a long tradition of work on the automatic generation
of programming-related tools from language definitions and
related specifications (Reps and Teitelbaum 1984; Borras
et al. 1988; Henriques et al. 2005; van den Brand et al. 2001).
These systems differ from one another, and from IMP, in the
form of language definition used, the particular tools or ser-
vices generated, and aspects of processing, architecture, and
infrastructure. Here, though, we are more concerned with the
general goals and approach. All of these systems, including
IMP, share the goal of simplifying the creation of program-
ming tools, thereby making it easier to develop and adopt
new programming languages, and improving the quality of
programs and the programming process. All also make use
of some combination of language-independent library com-
ponents and language-specific generated components.

The main difference between IMP and the earlier ap-
proaches is that IMP puts a heavier emphasis on customiza-
tion of the resulting IDE. In the previous work, once the
tools are generated, they are done. This certainly minimizes
the subsequent work of the IDE developer, but at the cost
of customizability. With IMP, once tools are generated, ad-
ditional customization is possible, if not required. In effect,
IMP shifts the focus of customization from the language def-
inition to the tool implementation. This means that the pro-
grammer typically has work to do subsequent to tool gener-
ation, but it affords very broad opportunities for customiza-
tion. We have attempted to minimize the amount of work that
is required of programmers, though, by providing default im-
plementations where feasible, introducing specification lan-
guages to enable some implementations to be customized
declaratively, and by stripping away most of the IDE-related
parts of tool implementations so that the developer can focus
on the language-related parts.

MPS (Jetbrains.com) has goals that are very similar to
IMP’s. Its authors claim that it is an implementation of Lan-
guage Oriented Programming that facilitates the definition
of domain-specific languages with full IDE support (code
completion, navigation, refactoring, and more) that also al-
lows the user to add specialized support (such as special edi-
tors). Unfortunately, not enough technical detail on this work

203

is available in the literature to enable us to make a detailed
comparison to IMP.

The work on Gen-Voca (Batory et al. 2002) describes the
application of a sort of aspect-oriented composition frame-
work to the creation of variant IDEs for variants of Java.
Language variants are defined by extensions to Java; IDE
variants are defined by extensions of tools in the Java IDE.
In contrast, IMP starts with a language-independent IDE
framework, and it incorporates language-specific extensions
through extension point and object-oriented mechanisms.
Whereas (Batory et al. 2002) focused mainly on the com-
bination of existing modules in alternative ways, IMP is
focused on supporting the initial development of the mod-
ules. IMP might benefit from compositional technologies
like Gen-Voca, but research in that area is beyond our current
scope.

Marama is an Eclipse-based set of meta-tools for gener-
ating visual programming languages that support diagram-
ming applications (Grundy et al. 2008). As with IMP, a goal
for Marama is to enable the rapid development of simple
modeling tools while allowing more complex tooling to be
developed over time. Unlike IMP, both the meta-modeling
tools and the resulting modeling notations are highly visual
(although constraints and behaviors can be specified in tex-
tual formulae and, as a last resort, in Java). Also unlike IMP,
but like most generation-based IDEs for textual languages,
a major part of the framework and tooling are dedicated to
execution support. Visual languages are beyond the current
scope of IMP, but the prospect of combining meta-tooling
for textual and visual languages is an interesting challenge
for the future.

The Dynamic Languages Toolkit (DLTK) (eclipse.org/dltk)
is an Eclipse technology project aimed at facilitating the de-
velopment of JDT-like IDEs for dynamic languages. In this
it shares some context and high-level goals with IMP. How-
ever, the DLTK and IMP differ in important ways. Since the
DLTK is targeted toward dynamic languages it can adopt a
“common tooling” approach: common AST representation,
common runtime, and common services. It provides exe-
cution support for these languages and aims for language
interoperability. IMP, in contrast, does not restrict its focus
to a particular family of languages. To maintain language-
independence the IMP framework provides language-neutral
APIs to language-specific services. For example, it does not
rely on any particular internal representation; it supports
custom ASTs and accommodates the use of alternative com-
piler front-ends. IMP does not provide any special support
for program execution or language interoperability. Howev-
er, one of our goals for future work is to support IDE and
language extensibility.

9. Open Issues
There is a clear tension between our desire to provide a
framework that is independent of any particular language

technology and our desire to make things easy for IDE devel-
opers, who obviously must select a specific language tech-
nology. As a consequence, our APIs are necessarily agnos-
tic, e.g., using Object to represent tokens or AST nodes. To
help resolve this tension, our runtime framework provides
base classes to ease the implementation of language process-
ing for LPG-based parsers and scanners, and program analy-
ses for Polyglot-based front-ends. Similarly specialized base
classes can easily be provided for other parser/compiler tech-
nologies and program representations. Better support for ex-
ecution and debugging is a topic for future work.

Another challenge which language-technology indepen-
dence presents is the ability to introspect on the target lan-
guage’s syntax or semantics. For example, the presentation
specification language IDE would benefit from being able to
query the sets of non-terminals and terminals (e.g. for con-
tent assist), regardless of the kind of parser generator be-
ing used. It requires carefully crafted APIs that are both ag-
nostic of particular parsing technologies but accommodat-
ing to them. The IParseController interface does this
for parsing services, but the analogous interface exposing
language properties has yet to be designed. Such an in-
terface would enable promoting certain development-time
meta-tooling services that are presently language-specific in-
to the language-independent framework.

Another ongoing concern is how best to create new IDE
service implementations. This is presently handled by a
combination of wizards, domain specific languages, gen-
erators, and Java implementation. All have proven useful,
but the most appropriate balance among them is not clear.
IMP currently relies to a significant degree on wizards to ini-
tiate the development of an IDE service. In so doing, many
details of setting up the service can be hidden from the us-
er, simplifying the process. However, the user may not have
a clear mental model of the wizard’s effect on the system.
In particular, the user may wish to change a decision made
when interacting with a wizard, but not know whether it is
safe to re-run the wizard.7 Moreover, decisions made when
interacting with a wizard often ”disappear into the code”
(or the meta-data), making it hard to discover later on what
choices were already made. In contrast, most IDE develop-
ers have well-defined expectations regarding compilers and
builders. Thus, it may be more user-friendly to move more
of the setup and creation of IDE services out of wizards and
into a DSL compiler. This might keep the specification of
IDE services simple while providing greater transparency to
developers.

This raises another issue, however, that of the tradeoff be-
tween implementation via DSLs versus Java. The issue is ex-
acerbated by the relatively large number of services support-
ed by IMP. On the specification side, it is generally consid-
ered that DSLs are easier to write than imperative programs,

7 Sadly, there seems to be little consistency in this regard among wizards in
general.

204

since specifications tend to be more abstract and yet more
concise.One extreme is to provide a separate DSL for each
service. This requires learning a new language for each ser-
vice – though each language may be relatively simple. The
other extreme is to use one DSL for many services. Although
this requires learning just one language, the language will
naturally be more complex. On the programming side, the
IMP IDE developer almost certainly has good knowledge of
Java, and many IMP services can be implemented with very
little code. As a result, the IDE developer may be more com-
fortable implementing services in Java than specifying them
in one or more DSLs. Fortunately, IMP’s use of the Eclipse
extension point mechanism permits implementation of any
given service by any of the above means, so that an IDE de-
veloper need not make a single choice for all services.8 We
are still evaluating the various approaches.

10. Conclusions
We have presented an approach to the construction of
language-specific IDEs in Eclipse that draws on both au-
tomated generation and manual implementation. We do this
by a combination of meta-tooling and carefully engineered
runtime interfaces that cleanly separate language-specific
concerns from the details of IDE and UI infrastructure and
interoperation. For the IDE developer, this approach is in-
tended to strike a flexible balance between customizabili-
ty and ease of development. For the IDE user, the benefit
should be IDEs that offer a good range of features that are
well adapted to details of language syntax and semantics.
This combination of functionality and language sensitivity
appears to be critical for the widespread adoption of an IDE.

Our design goals represent a unique blend of elements
that distinguishes our work from prior work in the area. In
this regard, important aspects of our approach are our em-
phasis on language-specific customization, great flexibili-
ty in the selection of IDE features, neutrality with respect
to language/parsing technology and program representation,
and the ability to swap out major components of the archi-
tecture, such as the editor. This combination makes the ap-
proach a practical solution for a wide range of IDE develop-
ment scenarios.

We have realized our approach in the Eclipse IDE Meta-
tooling Platform – IMP (http://www.eclipse.org/imp/). IMP
has been used, by us and others, to develop IDEs for a wide
variety of domain-specific and general-purpose languages.
IMP has been used to develop entirely new IDEs (often
for new languages) and to help migrate existing IDEs on-
to Eclipse. Some of the IDEs support meta-tooling in IDE
development (e.g., in support of grammar specification and
parser generation), while others represent tooling for appli-
cation development (e.g., in COBOL). Many of these IDEs
are in regular use and most are publicly available.

8 In fact, the Spoofax IDE uses a single DSL interpreter as the implementa-
tion for a significant subset of the IDE services that IMP supports.

We have also presented an evaluation of IMP that ad-
dresses (a) ease of IDE development, (b) feature sets and
performance of IMP-based IDEs, (c) reduction of IDE de-
velopment effort, (d) enabling of IDE customization, and
(e) support for incremental, iterative, and selective IDE de-
velopment. Our measurements and experience to date sug-
gest that IMP significantly simplifies IDE development, pro-
duces practical IDE implementations, and significantly re-
duces IDE development effort. Overall, IMP appears to offer
an effective solution to many crosscutting problems present-
ed by this complex development domain.

One present limitation of our framework is that the ab-
straction of language-processing technologies and program
representations makes it somewhat more difficult to provide
execution and debugging support. Similarly, we currently
have limited capability to introspect on grammar structure,
which complicates providing certain meta-tooling services
in a language-independent way. We are investigating how to
provide additional leverage in these areas.

Another area of ongoing research is how best to support
IDE developers, especially novice developers, in the imple-
mentation of IDE services. We currently use a combination
of wizards, DSLs, generators, and manual programming. All
are useful, but we continue to look for further opportunities
to simplify and clarify the IDE development process.

Acknowledgments
This work is based in part upon work supported by the De-
fense Advanced Research Projects Agency under its Agree-
ment No. HR0011-07-9-0002.

References
Isabelle Attali, Carine Courbis, Pascal Degenne, Alexandre Fau,

Didier Parigot, and Claude Pasquier. Smarttools: A generator of
interactive environments tools. In CC, pages 355–360, 2001.

Don Batory, Roberto E. Lopez-Herrejon, and Jean-Philippe
Martin. Generating product-lines of product-families. In IEEE
Conf. on Automated Software Engn., page 81, 2002.

Azad Bolour. Notes on the eclipse plugin architecture.
http://www.eclipse.org/articles/Article-Plug--

in-architecture/plugin-architecture.html.

P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn,
B. Lang, and V. Pascual. Centaur: the system. In ACM
Symposium on Practical Software Development Environments,
pages 14–24, 1988.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun,
and Vivek Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In OOPSLA, pages 519–538,
2005. ISBN 1-59593-031-0.

Philippe Charles, Robert M. Fuhrer, and Stanley M. Sutton Jr.
IMP: a meta-tooling platform for creating language-specific
IDEs in eclipse. In 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), November
5-9, 2007, Atlanta, Georgia, USA, pages 485–488, 2007.

205

eclipse.org/aspectj. AspectJ project.
http://www.eclipse.org/aspectj/.

eclipse.org/dltk. Dynamic Languages Toolkit.
http://www.eclipse.org/dltk/.

eclipse.org/jdt. Eclipse Java Development Tools.
http://www.eclipse.org/jdt/.

Wan Fokkink, Paul Klint, Bert Lisser, and Yaroslav S. Usenko.
Towards formal verification of toolbus scripts. In AMAST 2008:
Proceedings of the 12th international conference on Algebraic
Methodology and Software Technology, pages 160–166, Berlin,
Heidelberg, 2008. Springer-Verlag.

M. Fowler. Language workbenches: The killer-app for domain
specific languages?
http://www.martinfowler.com/articles/language-
Workbench.html.

Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and
Myungcheol Doo. Spade: the system s declarative stream
processing engine. In SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD international conference on Management of
data, pages 1123–1134, New York, NY, USA, 2008. ACM.

John Grundy, John Hosking, Jun Huh, and Karen Na-Liu Li.
Marama: an eclipse meta-toolset for generating multi-view
environments. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages
819–822, New York, NY, USA, 2008. ACM.

J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism sdf—reference manual—. SIGPLAN Not.,
24(11):43–75, 1989. ISSN 0362-1340.

Pedro Rangel Henriques, Maria Joao Varanda Pereira, Marjan
Mernik, Mitja Lenic, Jeff Gray, and Hui Wu. Automatic
generation of language-based tools using LISA. IEE
Proceedings - Software, 152(2):54–69, April 2005.

Jetbrains.com. JetBrains Meta Programming System.
http://www.jetbrains.com/mps/.

R. Kadia. Issues encountered in building a flexible software
development environment: lessons from the arcadia project.
SIGSOFT Softw. Eng. Notes, 17(5):169–180, 1992. ISSN
0163-5948.

Lennar Kats and Karl Trygve Kalleberg.
StrategoXT–Spoofax-IMP.
http://strategoxt.org/Stratego/Spoofax-IMP, 2009.

lpg.sourceforge.net. LPG.
http://www.sourceforge.net/projects/lpg/.

N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An extensible
compiler framework for Java. In CC, pages 138–152, 2003.

James M. Purtilo. The polylith software bus. ACM Trans.
Program. Lang. Syst., 16(1):151–174, 1994. ISSN 0164-0925.

python.org. Python. http://www.python.org/.

Steven P. Reiss. Connecting tools using message passing in the
field environment. IEEE Softw., 7(4):57–66, 1990. ISSN
0740-7459.

T. Reps and T. Teitelbaum. The synthesizer generator. In ACM
Symposium on Practical Software Development Environments,
pages 42–48, April 1984.

ruby-lang.org. Ruby. http://www.ruby-lang.org/.

Mark van den Brand and Eelco Visser. Generation of formatters
for context-free languages. ACM Trans. Softw. Eng. Methodol.,
5(1):1–41, 1996. ISSN 1049-331X.

Mark van den Brand et al. The ASF+SDF meta-environment: A
component-based language development environment. In
Computational Complexity, pages 365–370, 2001.

Jurgen Vinju, T. van der Storm, Paul Klint, Bas Basten, and
Arnold Lankamp. Rascal: A domain specific language for
software analysis and transformation. Poster presentation,
Scientific ICT-Research Event Netherlands (SIREN), Sep. 29,
2008, 2008.

Eelco Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9. In C. Lengauer
et al., editors, Domain-Specific Program Generation, volume
3016 of Lecture Notes in Computer Science, pages 216–238.
Spinger-Verlag, June 2004.

X10.sourceforge.net. X10.
http://www.sourceforge.net/projects/x10/.

206

