
RASCAL: a Domain Specific Language for Source Code Analysis and
Manipulation

Paul Klint Tijs van der Storm Jurgen Vinju

Centrum Wiskunde & Informatica and Informatics Institute, University of Amsterdam

Abstract

Many automated software engineering tools require tight
integration of techniques for source code analysis and ma-
nipulation. State-of-the-art tools exist for both, but the do-
mains have remained notoriously separate because differ-
ent computational paradigms fit each domain best. This
impedance mismatch hampers the development of each new
problem solution since desired functionality and scalabil-
ity can only be achieved by repeated, ad hoc, integration of
different techniques.

RASCAL is a domain-specific language that takes away
most of this boilerplate by providing high-level integration
of source code analysis and manipulation on the concep-
tual, syntactic, semantic and technical level. We give an
overview of the language and assess its merits by imple-
menting a complex refactoring.

1 The SCAM Domain

Source code analysis and manipulation are large and di-
verse areas both conceptually and technologically. There
are plentiful libraries, tools and languages available but inte-
grated facilities that combine both domains are scarce [19].
Both domains depend on a wide range of concepts such as
grammars and parsing, abstract syntax trees, pattern match-
ing, generalized tree traversal, constraint solving, type in-
ference, high fidelity transformations, slicing, abstract in-
terpretation, model checking, and abstract state machines.
Examples of tools that implement some of these concepts
are ANTLR [15], ASF+SDF [18], CodeSurfer [1], Croco-
pat [4], DMS [3], Grok [11], Stratego [5], TOM [2] and
TXL [7]. These tools either specialize in analysis or in
transformation, but not in both. As a result, combinations
of analysis and transformation tools are used to get the job
done. For instance, ASF+SDF [18] relies on RSCRIPT [13]
for querying and TXL [7] interfaces with databases or query
tools. Other approaches implement both analysis and trans-
formation from scratch, as done in the Eclipse JDT. The
TOM [2] tool adds transformation primitives to Java, such

that libraries for analysis can be used directly. In either ap-
proach, the job of integrating analysis with transformation
has to be done over and over again for each application and
this represent a significant investment.

We propose a more radical solution by completely merg-
ing the set of concepts for analysis and transformation of
source code into one language called RASCAL. This lan-
guage covers the range of applications from pure analyses to
pure transformations and everything in between. The con-
tribution is not new concepts or language features per se,
but rather the careful collaboration, integration and cross-
fertilization of existing concepts and language features.

The goals of RASCAL are: (a) to remove the cogni-
tive and computational overhead of integrating analysis and
transformation tools, (b) to provide a safe and interac-
tive environment for constructing and experimenting with
large and complicated source code analyses and transfor-
mations such as needed for refactorings, and (c) to be eas-
ily understandable by a large group of computer program-
ming experts. RASCAL is not limited to one particular ob-
ject programming language, but is generically applicable.
Reusable, language specific, functionality is realized as li-
braries.

We informally present a first version of RASCAL (Sec-
tion 2) and its application to a complicated refactoring
called “Infer Generic Type Arguments” on Featherweight
Generic Java (Section 3). This example is used for an early
assessment of RASCAL (Section 4).

2 The Rascal Design

RASCAL takes inspiration from many languages and sys-
tems. RASCAL’s syntactic features are directly based on
SDF [10]. Its analysis features take most from relational
calculus, relation algebra and logic programming systems
such as Crocopat [4], Grok [11] and RSCRIPT [13]. We
also acknowledge the analysis and viewing facilities of
CodeSurfer [1]. RASCAL has strongly simplified back-
tracking and fixed point computation features which re-
mind of constraint programming and logic programming
systems like Moreau’s Choice Point Library [14], Prolog

1

Usability

E
xp

re
ss

iv
ity

Safety

comprehensions
traversal
ADTs
concrete syntax
rewrite rules
pattern matching

familiar syntax

side effects

Java FFI

visualization

REPL & IDEstatic type system

immutability

exception handling

Figure 1. Dimensions of requirements

and Datalog. Its transformation and manipulation features
are most directly inspired by term rewriting/functional lan-
guages such as ASF+SDF [18], Stratego [5], TOM [2], and
TXL [7]. Syntactically, RASCAL takes from ASF+SDF,
TXL and TOM, while semantics and implementation de-
tails are very much like ASF+SDF. The ATerm library [16],
inspired RASCAL’s immutable values. The ANTLR tool-
set [15], Eclipse IMP [6] and TOM [2] have been an inspi-
ration because they integrate well with a mainstream pro-
gramming environment. Their tractable and debugable be-
haviour is very attractive. We also picked some cherries
from general purpose languages such as Haskell, Java, and
Ruby.

2.1 Requirements

RASCAL has been designed from a software engineering
perspective and not from a formal, mathematical, perspec-
tive. We have profited from our experience in building
source code analysis and transformation solutions using
ASF+SDF and RSCRIPT to formulate RASCAL’s require-
ments. We have focussed on three dimensions of require-
ments: expressiveness, safety and usability. Figure 1 shows
these dimensions together with some of the design decisions
that are motivated by them. Additionally, sufficient perfor-
mance for a wide range of SCAM applications is another
key requirement. We describe each dimension now in more
detail.

Expressiveness Excellent means for expressing SCAM
solutions is our most important requirement. We can sub-
divide it along the analysis/transformation line. Analy-
sis requires suitable primitives for syntax analysis, pattern
matching and collection, aggregation, projection, compre-
hension and combination of (relational) analysis results.
Transformation requires powerful forms of pattern match-
ing and traversal for high-fidelity source-to-source transfor-

mations. The use of concrete syntax as opposed to abstract
syntax in the definition of transformation rules is essential.

Our goal is to cover the whole spectrum of SCAM. The
language should scale up sufficiently to tackle large, com-
plex problems like, for instance, legacy renovation or refac-
toring. It is preferable to solve these problems completely
in RASCAL without having to resort to ad hoc coding of
custom data-structures and/or algorithms in a general pur-
pose language. However, we also want it to scale down, so
that simple things remain simple. Computing the McCabe
complexity of all methods in a large Java project should be
close to a one-liner. Furthermore, problems usually solved
with simple tools like GREP or AWK, should be easily solv-
able in RASCAL too, and preferably have the same usability
characteristics.

Safety Source code analysis and transformation is a com-
plex domain where solutions are error-prone. Many appli-
cations are both deep (conceptually hard) and wide (many
details to consider). A modular language that facilitates en-
capsulation and reuse helps to deal with such complexity.

A static type system that offers safety features such as
immutability and well-formedness will also help manag-
ing this complexity. We require that this type system in-
tegrates both the analysis and the transformation domain.
This means that analysis results can be easily (re)used dur-
ing transformation and that conversion, encoding and serial-
ization of data between analysis and transformation phases
is avoided. This also implies that source code trees are fully
typed; an essential prerequisite to ensure syntax safety for
high-fidelity source-to-source transformations.

Usability Usability includes learnability, readability, de-
bugability, traceability, deployability and extensibility. We
like the principle of least surprise and take stock in the
fact that source code analysis and transformation is a form
of programming. Staying close to ordinary, main stream
programming languages will lower the barrier to entry for
RASCAL. We also favour the what you see is what you
get paradigm: most forms of implicitness or heuristics will
eventually present usability problems.

No matter how good our domain analysis is, we can-
not anticipate everything. Advanced users of RASCAL
should therefore be able to extend the language with ad-
ditional primitive functions in order to cater for new inter-
facing needs, faster implementation, or dedicated domain
specific functionality. We advocate an open design that en-
ables easy interoperability and integration with third-party
components such as databases, parsers, SAT solvers, model
checkers, visualization tool kits, and IDEs. Finally, we re-
quire RASCAL to have good encapsulation mechanisms that
enable users to build reuseable components. Libraries of

2

Imperative core with
immutable data

Higher-order functions

Closures

Rewrite rules

Generic traversal

Comprehensions

Generators

Pattern matching

Figure 2. Layers in the RASCAL design

reusable solutions for specific programming languages or
programming paradigms directly increase usability.

Performance In addition to the main requirements di-
mensions show in Figure 1, performance requirements de-
pend on the actual SCAM application: batch wise upgrad-
ing of a software portfolio may be less demanding than an
interactive refactoring that is activated from an IDE. The
results of source code analysis are often huge and the RAS-
CAL implementation should be fast and lean enough to sup-
port such applications. Since different use cases may dictate
different performance requirements, users must be able to
supply different implementations of the core RASCAL data-
structures if needed.

2.2 RASCAL Language Design

The design of RASCAL has a layered structure (Fig-
ure 2), a desirable property from an educational point of
view. RASCAL is an imperative language with a statically
checked type system that prevents type errors and uninitial-
ized variables. There are no run-time type casts as in Java
or C# and there are therefore less opportunities for run-time
errors. The type system features parametric polymorphism
to facilitate the definition of generic functions. Functions
(both defined and anonymous) are first-class values and can
be passed to other functions as closures.

The types in RASCAL are distributed over a lattice ac-
cording to a subtype relation with value at the top and
void at the bottom. The subtype relation is co-variant for
parametrized data-types such as sets and relations because
all data is immutable. Sub-typing allows the programmer
to express generic solutions with different levels of static
checking. For instance, it is possible to write a function to
process a parse tree typed over a given grammar. It is, how-
ever, also possible to write less strictly typed functions that
can process parse trees over any grammar. Similarly, het-
erogeneous collections can be represented using the value
type.

Type Example literal
bool true, false
int 1, 0, -1, 123456789
real 1.0, 1.0232e20, -25.5
str ”abc”, ”first\nnext”
loc !file:///etc/passwd
tuple[t1, . . . , tn] 〈1,2〉, 〈”john”,43, true〉
list[t] [], [1], [1,2,3], [true, 2, ”abc”]
set[t] {}, {1,2,3,5,7}, {”john”,4.0}
rel[t1, . . . , tn] {〈1,2〉,〈2,3〉,〈1,3〉},

{〈1,10,100〉,〈2,20,200〉}
map[t,u] (), (1 : true,2 : true), (6 : {1,2,3,6},7 :

{1,7})
node f, add(x, y), g(”abc”, [2, 3, 4])

Table 1. Basic RASCAL Types

2.2.1 Concepts

Data-types and Types RASCAL provides a rich set of
data-types. From Booleans, infinite precision integers and
reals to strings and source code locations. From lists, (op-
tionally labelled) tuples and sets to maps and relations.
From untyped tree structures to fully typed algebraic data-
types (ADTs). The basic data-types are summarized in
Table 1 together with their literal notations. A wealth of
built-in operators is provided on these standard data-types.
Many operators are heavily overloaded to allow for maxi-
mum flexibility.

Since source-to-source transformation requires concrete
syntax patterns, the types of (parse) trees generated by a
given grammar are first class RASCAL types. This includes
all the non-terminals of the grammar, as well as (regular)
grammar symbols, such as S∗, S+ and S?. Parse trees can
be processed as concrete syntax patterns or as instances of
the ADT that is automatically derived from the grammar, or
they can be analysed using a generic ADT for parse trees.

A type aliasing mechanism allows documenting specific
uses of an existing type. The following example is from
RASCAL’s standard library:

alias Graph[&T] = rel[&T from, &T to];

The Graph data-type is equivalent to all binary relation types
that have the same domain and range. Note how the type
parameter &T makes this definition polymorphic and how
the domain and range are labeled to allow projections on
columns g.from and g.to for a graph g.

The user can extend the languages with arbitrary ADTs,
which could, for instance, be used to define the abstract syn-
tax of a programming language. Here is a fragment of the
abstract syntax for statements in a simple programming lan-
guage:

3

data Stat =
asgStat (Id name, Exp exp)
| ifStat (Exp cond, list [Stat] thenPart , list [Stat] elsePart)
| whileStat (Exp cond, list [Stat] body);

Values of the Stat type are constructed using familiar term
syntax. For instance an assignment statement could be con-
structed as follows: asgStat(id(”x”), nat(3)) where id(”x”) and
nat(3) are constructors of Id and Exp respectively.

ADT values can be annotated with arbitrary values. For
instance, expressions in the AST of a programming lan-
guage could be annotated with type information. Annota-
tions are declared so that their correct use can be enforced.

Pattern matching Pattern matching is the mechanism for
case distinction in RASCAL. We provide string matching
based on regular expressions, list (A) and set (ACI) match-
ing, matching of abstract data-types, and matching of con-
crete syntax patterns. All these forms of matching can be
used together in a single pattern. Patterns may contain vari-
ables that are bound when the match is successful. Anony-
mous (don’t care) positions are indicated by an underscore
(). Patterns are used in switch statements, tree traversal,
comprehensions, rewrite rules, exception handlers and in
conditions using the explicit match operator :=. In the latter
case the match can be part of a larger boolean expression.
For instance, the following match expression can be used to
match a while statement as defined above:

whileStat (Exp cond, list [Stat] body) := stat

Pattern variables like cond and body can either be declared
in-line—as in this example—or they may be declared in the
context in which the pattern occurs. Since a pattern match
may have more than one solution, local backtracking over
the alternatives of a match is provided1.

The pattern matching primitives clearly illustrate our ef-
fort to allow RASCAL both to scale up and to scale down.
We provide sophisticated forms of matching but we also
have regular expression patterns similar to those found in
languages like Perl and Ruby.

Comprehensions and Control structures Many soft-
ware analyses are relational in nature. Set comprehensions,
such as found in RSCRIPT [13] provide a powerful, concise
way of expressing a variety of analysis tasks, such as aggre-
gation and projection. RASCAL has inherited comprehen-
sions from RSCRIPT and generalizes them in various ways.
Comprehensions exist for lists, sets and maps. A compre-
hension consists of an expression that determines the suc-
cessive elements to be included in the result and a list of
enumerators and tests. The enumerators (indicated by ←)
produce values and the tests are boolean expressions that
filter them. A standard example is

1For safety, variable assignments are undone if backtracking occurs.

{ x ∗ x | int x ← [1..10], x % 3 == 0 }

which returns the set {9, 36, 81}, i.e., the squares of the in-
tegers in the range [1..10] that are divisible by 3. A more
intriguing example is

{ name | asgStat (Id name,) ←P }

which returns a set of all identifiers that occur on the left-
hand side of assignment statements in program P. The gen-
erator traverses the complete program P (that is assumed
to have a Program as value) and only yields statements that
match the assignment pattern.

Combinations of enumerators and tests also drive control
structures. For instance,

for (asgStat (Id name,) ←P, size(name) > 10)
println (name);

prints all identifiers in assignment statements that consist of
more than 10 characters.

Switching and Visiting The switch statement as known
from C and Java is generalized: the subject value to switch
on may be an arbitrary value and the cases are arbitrary pat-
terns. When a match fails, all its side-effects are undone
and when it succeeds the statements associated with that
case are executed.

Visiting the elements of a data-structure is one of the
most common operations in our domain and we give it first
class support by way of visit expressions that resemble the
switch statement. A visit expression consists of an expres-
sion that may yield an arbitrarily complex subject value
(e.g., a parse tree) and a number of cases. All the elements
of the subject (e.g., all sub-trees) are visited and when one
of the cases matches the statements associated with that case
are executed. These cases may: (a) cause some side effect;
(b) execute an insert statement that replaces the current el-
ement; (c) execute a fail statement that causes the match
for the current case to fail. The value of a visit expression
is the original subject value with all replacements made as
dictated by matching cases. The traversal order in a visit
expressions can be explicitly chosen by the programmer.

Exception handling SCAM solutions are no different
from other software solutions in that exceptional situations
may occur. RASCAL features a try-catch exception handling
mechanism similar to that found in Java/C#.

Functions and Rewrite Rules Functions are explicitly
declared and are fully typed. Here is an example of a func-
tion that computes the cyclomatic complexity in a program:

int cyclomaticComplexity(Program p) {
n = 1;
visit (p) {

case ifStat (, ,) : n += 1;

4

case whileStat (, ,) : n += 1;
}
return n;
}

Note how this function simulates an accumulating traver-
sal [17] using a (local) side-effect. The types of local vari-
ables may optionally be declared and type inference is used
otherwise. This is illustrated by the local variable n which
has the inferred type int.

Rewrite rules are the only implicit control mechanism
in the language and are used to maintain invariants during
computations. For example, the following rule transforms
if-statements of the example programming language.

rule
ifStat (neg(Exp cond), list [Stat] thenPart , list [Stat] elsePart)
⇒ ifStat (cond, elsePart , thenPart);

If the condition of an if-statement contains a negated ex-
pression, the negation is removed and the branches are
swapped. This rule will fire every time an if-statement
is constructed that matches the left-hand side of this rule.
Rules can have conditions similar to the equations of
ASF+SDF. In fact, the rule feature of RASCAL completely
subsumes all features of ASF+SDF.

2.2.2 Implementation and Tooling

It is important to be able to introduce the language in small
steps. This makes it easier to adapt learning material and
learning paths to the background of new users. Such a
piecemeal introduction requires lightweight tooling that fur-
ther lowers the barrier to entry. For this, the RASCAL imple-
mentation features a command line Read-Eval-Print-Loop
(REPL) in which the user can interactively enter RASCAL
declarations and statements thus encouraging experimenta-
tion with small examples.

For professional use we have developed an Eclipse-based
IDE, which currently features syntax highlighting, an out-
liner and a module browser. This IDE includes the RAS-
CAL REPL so that it is still easy to prototype or test snip-
pets of RASCAL code. The IDE also includes a visualiza-
tion component which can be used to display complex data.
This component can be compared to the visualization fea-
tures found in the ASF+SDF Meta-Environment [18] and
Semmle’s .QL environment [8].

The basic data-structures of RASCAL are implemented
by the Program Database (PDB) that is part of the Eclipse
IMP framework. Since we were heavily involved in the de-
sign and implementation of the PDB, it will come as no sur-
prise that there is a seamless match between RASCAL data-
types and PDB data-types. The design of the PDB follows
the AbstractFactory design pattern so that RASCAL can be
made to work with different underlying implementations;
currently there are three such implementations.

RASCAL is accompanied by an elaborate standard li-
brary providing functions operating on the standard data-
types. The library also provides functions for reading and
writing data in various formats (binary PDB values, XML,
RSF). This is another way of enabling RASCAL to inter-
face with existing data and/or tooling. In the near future
we expect to extend the standard library with predefined
data-types and functions from the SCAM domain: libraries
for metrics, control-flow analyses, slicing, etc. Some data-
types and functions in this library may be specialized for the
analysis of specific languages, others may be more generic.

For functionality that is not (easily) expressible in RAS-
CAL itself the user can implement RASCAL functions with
Java method bodies directly in RASCAL source code. This
is implemented by runtime compilation of the Java bodies
and linking them to the interpreter.

RASCAL is a modular language that allows users to cre-
ate reusable building blocks. Source code is divided over a
number of modules that may or may not (the default) export
functions and global variables. Next to importing a module
(which is similar to Java package importing), modules can
be extended. This effectively creates a copy of a module
(an instance) with possibly overridden functions. Module
extension is intended for reuse with variation.

3 Featherweight Refactoring

Let’s demonstrate RASCAL with a small but—we must
warn—non-trivial example. The infer generic type argu-
ments refactoring (IGTA) for Java [9] is interesting since it
needs extensive analysis before simple source transforma-
tions can be applied. This refactoring automatically binds
type parameters in code that uses generic classes but does
not instantiate their type parameters (i.e., it uses raw types).
After that the refactoring removes all casts that have become
unnecessary. It guarantees to preserve type correctness of
the code as well as run-time behaviour, such as method dis-
patch and casts.

To keep this example small we present the RASCAL
code that implements this refactoring for Featherweight
Java with generics—a.k.a. FGJ. This is a micro language
based on a number of core constructs in Java [12]. This ex-
ample does not yet use RASCAL’s concrete syntax feature
because it is unimplemented at the time of writing. The cur-
rent section highlights part of the example refactoring. We
evaluate the results in Section 4.

Assuming the input program is type correct, the refac-
toring algorithm can be outlined in four steps. (1) For each
class extract a set of type constraints that the initial program
satisfies and a refactored program must still satisfy. (2) For
each variable in the original program derive an initial set
of estimated types. (3) Iteratively apply the extracted con-
straints to the estimates to obtain the new types. Finally

5

Listing 1 Abstract syntax of Featherweight Generic Java.

1 module AbstractSyntax
2
3 alias Name = str;
4 data Type = typeVar(Name varName)
5 | typeLit (Name className, list [Type] actuals);
6 alias FormalTypes = tuple[list [Type] vars , list [Type] bounds];
7 alias FormalVars = tuple [list [Type] types , list [Name] names];
8
9 data Class = class (Name className, FormalTypes formals,

10 Type extends , FormalVars fields ,
11 Constr constr , set [Method] methods);
12 data Constr = cons(FormalVars args , Super super , list [Init] inits);
13 data Super = super(list [Name] fields);
14 data Init = this (Name field);
15 data Method = method(FormalTypes formalTypes, Type returnType ,
16 Name name, FormalVars formals, Expr expr);
17 data Expr = var(Name varName)
18 | access (Expr receiver , Name fieldName)
19 | call (Expr receiver , Name methodName,
20 list [Type] actualTypes , list [Expr] actuals)
21 | new (Type class , list [Expr] actuals)
22 | cast (Type class , Expr expr);

(4), rewrite each declaration and remove superfluous casts.
For Java this refactoring quickly runs into scalability prob-
lems. The sheer number of constraints extracted is huge
for average systems. Note that our demonstration already
incorporates some of the optimizations presented in [9].

3.1 Abstract Syntax of FGJ

Listing 1 shows a module defining the abstract syntax of
FGJ. Intuitively, it is a substitution calculus with objects.
Classes and methods may introduce type parameters and
new and call expressions can instantiate them. We assume
that when new is used with an empty type parameter list the
intention is to use the raw type.

Note the use of a set of methods in the definition of
classes, which encodes the fact that the order of method
declarations is irrelevant.

3.2 Querying Types

The extraction phase needs to know the static types of
expressions. Listings 2 and 3 contain snippets of the RAS-
CAL module that implements type queries directly on FGJ
abstract syntax trees. This code implements the definition
of FGJ from [12] and its size approaches the size of that
definition; it is almost a one-to-one mapping. However, the
implementation needs to be more precise in how and when
to apply substitutions while transitively closing the subtype
relations.

Let’s highlight the bindings function from Listing 2, lines
10–14. It implements the binding of actual parameters to
formal parameters in a concise way. A map is generated

Listing 2 Querying FGJ types (1/2)

1 module Types
2 import AbstractSyntax ; import List ;
3
4 public Type Object = typeLit (”Object” ,[]);
5 public map[Name,Class] ClassTable = (”Object”:ObjectClass);
6
7 alias Bounds = map[Type var, Type bound];
8 alias Env = map[Name var, Type varType];
9

10 public map[Type,Type]
11 bindings (list [Type] formals , list [Type] actuals) {
12 return (formals[i] : actuals [i] ? Object |
13 int i ← domain(formals));
14 }
15 public &T inst(&T arg, list [Type] formals , list [Type] actuals) {
16 map[Type,Type] subs = bindings (formals , actuals);
17 return visit (arg) { case Type t ⇒ subs[t] ? t };
18 }
19 public rel [Name sub, Name sup] subclasses () {
20 return { <c, ClassTable [c]. extends .className> |
21 Name c ←ClassTable }∗;
22 }
23 public bool subtype(Bounds bounds, Type sub, Type sup) {
24 if (sub == sup || sup == Object) return true ;
25 if (sub == Object) return false ;
26 if (typeVar(name) := sub) return subtype(bounds[name], sup);
27 if (typeLit (name, actuals) := sub) {
28 Class d = ClassTable [name];
29 return subtype(inst (d. extends , d. formals . vars , actuals), sup);
30 }
31 }
32 public bool subtypes(Bounds env, list [Type] t1 , list [Type] t2) {
33 return !((int i ← domain(t1)) && !subtype(env, t1 [i], t2 [i]));
34 }

using a map comprehension. The formal and actual param-
eters need to be paired to produce a map. The comprehen-
sion iterates over the possible indices of the list of formals
and looks up the actual type for each of them. The ? oper-
ator ensures that if an actual parameter does not exist for a
certain index the type parameter is bound to Object. The re-
sult is short code, but it is precise and it works. Similarly, on
line 33 a generator is used in the subtypes function to quan-
tify over the elements of two lists. It looks for a counter
example where two types are not sub-types at any particular
index in the two lists.

The etype function (Listing 3) computes the type of an
expression. It uses pattern matching in a switch statement
to dispatch over different types of expressions. The reason
this code is very similar to the constraint inference rules
from [12] is that their implicit universal quantification can
be implemented easily using comprehensions (lines 20 and
30). Also de-structuring bind via matching in cases (lines
3, 4, 5, 11–12, 27, and 35) results in concise code. In this
function we use the if conditional to merge the handling of
several inference rules into a single case. We could have
used overlapping case patterns that fail if one of the con-

6

Listing 3 Querying FGJ types (2/2)

1 public Type etype(Env env, Bounds bounds, Expr expr) {
2 switch (expr) {
3 case this : return env[” this ”];
4 case var(Name v) : return env[v];
5 case access (Expr rec , Name field) : {
6 Type Trec = etype(env, bounds, rec);
7 <types, fields > = fields (bound(bounds, Trec));
8 if (int i ← domain(types) && fields[i] == field)
9 return types [i];

10 }
11 case call (Expr rec , Name methodName,
12 list [Type] actualTypes , list [Expr] params) : {
13 Type Trec = etype(env, bounds, rec);
14 <<vars,varBounds>, returnType, formals> =
15 mtype(methodName, bound(bounds, Trec));
16
17 if (subtypes(bounds, actualTypes ,
18 inst (varBounds, vars , actualTypes))) {
19 paramTypes =
20 [etype(env, bounds, param) | param ← params];
21 if (subtypes(bounds, paramTypes,
22 inst (formals , vars , actualTypes))) {
23 return inst (returnType , vars , actualTypes);
24 }
25 }
26 }
27 case new(Type t , list [Expr] params) : {
28 <types, fields > = fields (t);
29 paramTypes =
30 [etype(env, bounds, param) | param ← params];
31 if (subtypes(bounds, paramTypes, types)) {
32 return t ;
33 }
34 }
35 case cast (Type t , Expr sup) : {
36 Tsup = etype(env, bounds, sup);
37 Bsup = bound(bounds, Tsup);
38
39 if (subtype(Bsup, t)) return t ;
40 if (subtype(t , Bsup) && dcast(t , Bsup)) return t ;
41 }
42 }
43 throw NoType(expr);
44 }

ditions of a rule fails, but this was shorter and more clear.

We have left out similar functions such as ftype and mtype
which compute the types of fields and methods. Also note
that error handling, which is not specified in [12] at all,
is implemented using RASCAL’s exception handling in the
form of the throw statement (Listing 3, line 43). RASCAL
also throws IndexOutOfBounds exceptions for array indexers
such as in Listing 2 lines 12–13 and 33. Without exceptions,
error handling is typically an “implementation detail” that
may require a lot of boilerplate code.

Note that we could have annotated every expression with
a type to cache the result of these queries. For simplicity’s
sake we have not, but a more optimized version of this code

Listing 4 Constraint variables, constraints and solutions.

1 module TypeConstraints import AbstractSyntax ; import Types;
2 data TypeOf = typeof (Expr expr) | typeof (Method method)
3 | typeof (Name fieldName) | typeof (Type typeId)
4 | typeof (Type var , Expr expr);
5 data Constraint = eq(TypeOf a, TypeOf b)
6 | subtype(TypeOf a, TypeOf b)
7 | subtype(TypeOf a, set [TypeOf] alts);
8 data TypeSet = Universe | EmptySet | Root | Single (Type T)
9 | Set(set [Type] Ts) | Subtypes(TypeSet subs)

10 | Union(set[TypeSet] args)
11 | Intersection (set [TypeSet] args);
12 rule Set({Object}) ⇒Root;
13 rule Set({}) ⇒EmptySet;
14 rule Single (Type T) ⇒Set({T});
15 rule Subtypes(Root) ⇒Universe;
16 rule Subtypes(EmptySet) ⇒EmptySet;
17 rule Subtypes(Universe) ⇒Universe;
18 rule Subtypes(Subtypes(TypeSet x)) ⇒Subtypes(x);
19 rule Intersection ({Subtypes(TypeSet x), x, set [TypeSet] rest }) ⇒
20 Intersection (Subtypes(x), rest);
21 rule Intersection ({EmptySet, set [TypeSet] })⇒EmptySet;
22 rule Intersection ({Universe , set [TypeSet] x})⇒ Intersection({x});
23 rule Intersection ({Set(set [Type] t1), Set(set [Type] t2),
24 set [TypeSet] rest }) ⇒ Intersection ({Set(t1 & t2), rest });
25 rule Union({Universe,set [TypeSet] }) ⇒Universe;
26 rule Union({EmptySet,set[TypeSet] x}) ⇒Union({x});
27 rule Union({Set(set [Type] t1), Set(set [Type] t2),
28 set [TypeSet] rest }) ⇒Union({Set(t1 + t2), rest });

should certainly do that. RASCAL’s mechanism for declared
and type safe annotations would be useful in that case.

3.3 Defining and Extracting Constraints

Constraint extraction should be complete, so that any
alternative type assignment of the original program P that
satisfies all constraints is guaranteed to preserve static and
dynamic semantics of the original program. Using this in-
formation the refactoring can then choose a type assignment
that binds type parameters (if it exists) and continue to mod-
ify the code.

RASCAL does not have a built-in constraint solver but
has the right primitives to implement a constraint solving al-
gorithm efficiently and without much boilerplate code. List-
ing 4 defines the representation of constraint variables and
constraints. Existing constraint solvers such as the one pre-
sented in [9] are specialized for particular sets of problems.
Hand-crafted data and computation specializations are an
important tool for making source code analyses scale.

Listing 5 shows an excerpt of the RASCAL code that ex-
tracts type constraints (defined by Listing 4) from a FGJ
program. It traverses the AST using the visit statement and
matches each statement or expression that may contribute to
the set of constraints. The set of constraints is incrementally
constructed using simple additions of tuples or set compre-
hensions.

7

Listing 5 Extracting type constraints

1 module Extract
2 import AbstractSyntax ; import TypeConstraints ; import Types; import List ;
3
4 set [Constraint] extract (Bounds bounds, Class def , Method method) {
5 set [Constraint] result = {};
6 bounds += (method.formalTypes.vars [i] :method.formalTypes.bounds[i] | i ← domain(method.formalTypes.vars));
7 env = (” this ”: typeLit (def .className, []));
8
9 visit (method.expr) {

10 case x:access (Expr erec , Name fieldName) : {
11 Trec = etype(env, bounds, erec);
12 fieldType = ftype (Trec, fieldName);
13 if (! isLibraryClass (def .className))
14 result += { eq(typeof (method), typeof (fieldType)), subtype(typeof (erec), typeof (fdecl (Trec, fieldName)))}; }
15 case x:new(Type new, list [Expr] args) : {
16 result += {eq(typeof (x), typeof (new))};
17 if (! isLibraryClass (new))
18 result += { subtype(typeof (args [i]), typeof (constructorTypes (new)[i])) | int i ← domain(args) }; }
19 case x: call (Expr rec , Name methodName, list[Type] actuals , list [Expr] args) : {
20 Trec = etype(env, bounds, rec);
21 result += {subtype(typeof (x), typeof (Trec))};
22 if (! isLibraryClass (Trec)) {
23 methodType = mtype(methodName, Trec);
24 result += eq(typeof (x), typeof (methodType.resultType));
25 result += { subtype(typeof (args [i]), typeof (methodType.formals[i])) | int i ← domain(args) }; }
26 else {
27 methodType = mtype(methodName, Trec);
28 result += cGen(typeof(etype(env, bounds, x)), methodType.returnType, rec , #eq);
29 result += { c | i ← domain(args), Ei := args [i], c ← cGen(Ei, methodType.formals[i], rec , #subtype)}; } }
30 case x: cast (Type to , Expr expr) :
31 result += {eq(typeof (x), typeof (to)), subtype(typeof (expr), typeof (to))};
32 case x:var(” this ”) :
33 result += {eq(typeof (x), typeof (typeLit (def .className,def. formals .bounds)))};
34 }
35 return result ;
36 }
37
38 set [Constraint] cGen(Type a, Type T, Expr E, Constraint (TypeOf t1, TypeOf t2) op) {
39 if (T in etype ((),(), E). actuals)
40 return {#op(typeof(a), typeof (T, E))};
41 else if (typelit (name, actuals) := T) {
42 Wi = ClassTable [name].formals . vars ;
43 return { c | i ← domain(Wi), Wia := a. actuals [i], c ← cGen(Wia, Wi[i], E, #eq)}
44 + { #op(typeof (a), typeof (T)) }; }
45 }

The cGen function (Listing 5, lines 38–45) is interesting.
It is a bit simpler than the definition in [9] because FGJ is
simpler than Java, otherwise it is very similar. It even uses a
higher order data constructors (#eq) as function parameters
(lines 28, 43).

3.4 Constraint Evaluation

The constraint evaluation implementation in Listing 6 is
straightforward. An initial estimate is computed for each
constraint variable. For most variables this set will be the
Universe. Then, in a fixed point computation implemented
by the solve statement (Listing 6, lines 8–15), using Inter-

sections implied by the extracted constraints all estimates
are reduced to smaller sets.

We implemented the optimization from [9] to never fully
enumerate the subtypes of any type during constraint solv-
ing using algebraic simplification. E.g. the rewrite rules
from Listing 4 will eliminate Intersection nodes using set
matching, but the Subtypes node will remain. After con-
straint solving, the visit statement on lines 18 – 22, will ex-
pand all nested Subtypes nodes after which the rewrite rules
will reduce each estimate to a final set of type literals.

Note that set matching in Listing 4 is used here to sim-
ulate matching modulo associativity, commutativity and
idempotence of the binary set intersection operator.

8

Listing 6 Solving constraints.

1 module ConstraintEvaluation
2 import TypeConstraints ; import Types;
3 import AbstractSyntax ; import Extract ;
4 public map[TypeOf var, TypeSet possibles] solveConstraints () {
5 constraints = {c | name ←ClassTable, c ← extract(name)};
6 with
7 estimates = initialEstimates (constraints);
8 solve
9 for (TypeOf v ← estimates,

10 subtype(v, typeof (Type t)) ← constraints) {
11 estimates [v] = Intersection ({ estimates [v],
12 Subtypes(Single (t))});
13 }
14
15 types = {}; visit (constraints) {case Type t : types += {t};};
16 subtypes = {<u,t> | t ← types, u ← types, subtype ((), t , u)};
17
18 estimates = innermost visit (estimates) {
19 case Subtypes(Set({s , set [Type] rest })) ⇒
20 Union({Single(s), Set(subtypes[s]),
21 Subtypes(Set({ rest }))}) };
22 return estimates ;
23 }
24 public map[TypeOf, TypeSet]
25 initialEstimates (set [Constraint] constraints) {
26 map[TypeOf, TypeSet] result = ();
27 visit (constraints) {
28 case eq(TypeOf t , typeof (Type o)) : result [t]=Single (o);
29 case t : typeof (typeVar(x), expr) : result [t]=Single (Object);
30 case t : typeof (u: typeLit (x,y)) : ;
31 case TypeOf t : result [t]=Universe;
32 };
33 return result ;
34 }

3.5 Source Manipulation

Finally, the resulting estimates for the constraint vari-
ables can be used to modify the code. This code is so trivial
we will not show it here. The visit statement is used to find
instances of expressions that can now be typed more pre-
cisely and the insert statement is used to replace them.

4 Assessment

Expressiveness. Table 2 shows size comparisons of the
definitions of the FGJ type system and the IGTA refactoring
functionality and their implementation in Rascal (including
functions that we omitted from this paper). As measures we
use Lines of Print (LOP) and Lines of Code (LOC). Lines of
print of inference rules is counted as if rules are printed in
a single column, but premises share single lines exactly as
they are printed in the respective papers. Otherwise LOP is
simply the lines of text in the two respective single-column
papers. Lines of code is counted as number of non-empty,
non-single-bracket, non-comment lines that fit on a 80 col-
umn page, but are otherwise formatted for understandabil-

ity.
This comparison shows that the RASCAL implementa-

tion competes with the abstract mathematical and natural
language explanation in terms of size. Unavoidably, the
comparison is unfair to both representations. First, the
(in)formal definitions use concrete syntax patterns, while
the implementation in RASCAL uses abstract syntax and—
this may come as a surprise to some readers—abstract syn-
tax is more verbose.2 Second, the (in)formal definitions
use single character variables, while the implementation in
RASCAL uses full identifier names. Third, the English ex-
planations have gaps of imprecision and ambiguity, while
the implementation is complete and non-ambiguous. In [9]
some inference rules even share conditions to save space.
On the one hand, our typing rules assume that the input
program is valid, which saves a number of conditions to
implement. On the other hand, the inference rules for con-
straint extraction assume type analysis and name binding to
have been completed, which our implementation does on-
the-fly. Finally, the extraction rules from [9] have two rules
for static methods that FGJ does not implement, which are
good for 4 LOP and 4 shared premises.

With these provisions in mind, we conclude from Ta-
ble 2 that the (in)formal definition and the actual implemen-
tation in RASCAL are very close in size, that there is appar-
ently hardly any boilerplate code and that RASCAL offers
the right domain abstractions.

Safety The IGTA refactoring on FGJ represents a signifi-
cant amount of work. Both the language and the refactoring
are far from trivial. Therefore, as in every software project,
the implementation changed gradually from an initial, ex-
plorative prototype to a final “product”. We started with a
completely different definition of the abstract syntax which
was shorter but less like the original definition in [12]. Also
we have had different representations for the constraints and
different implementations of the solver.

The abstract data definitions served as contracts for the
code which the RASCAL type checker could check for ob-
vious mistakes while code was migrated. Also, the types of
functions serve to keep things working. However, we fre-
quently used the local type inference for variables in func-
tions, just to be able to ignore thinking about specific details
about intermediate variables while coding. We noticed that
such type inference sometimes leads to “stupid” mistakes,
but since their influence is always local to a function they
are easy to trace and fix by adding the missing type decla-
rations.

Usability. The refactoring code we demonstrated contains
many design choices. Many different styles of implemen-

2Recall that we do not use RASCAL’s concrete syntax feature.

9

Feature (In)formal definition Implementation in RASCAL
Inf. rules Premises LOP Functions Cases+cond’s LOC

Typing [12] 28 66 62 16 8+22 101
Constraint Extraction [9] 25 41 49 6 5+6 78
Constraint Evaluation [9] English explanation of 1200 words 85 lines 2 27+0 56
Rewriting [9] English explanation of 76 words 6 lines 1 4+0 15

Table 2. Definition versus Implementation in RASCAL: LOC (250) on par with lines of print (202).

tations would have been possible in RASCAL, all on the
same level of abstraction, but with different characteristics.
It means that RASCAL is not closed to a specific way of
solving analysis and manipulation problems, but allows to
experiment with different algorithms and data structures on
a high level of abstraction.

Performance We have yet to evaluate the design and im-
plementation of RASCAL in terms of performance. There
are obvious ways of improving performance however, by
using existing optimization techniques from term rewriting
engines, such as ASF+SDF, Tom and Stratego, and rela-
tional calculators such as Grok and Crocopat. Additionally,
we expect that just-in-time compilation to Java byte-code
will pay off. One data point we can provide, is that we can
currently compute the transitive closure of the method call
graph of the complete Eclipse JDT source in 16 seconds on
a 2GHz dual core machine.

Acknowledgements. We thank Bob Fuhrer (IBM Re-
search) for co-authoring the PDB and explaining the IGTA
refactoring. He also sketched out an initial design for List-
ings 4, 5, and 6. We thank Arnold Lankamp for implement-
ing the faster implementations of the PDB API.

References

[1] P. Anderson and M. Zarins. The CodeSurfer software understand-
ing platform. In Proceedings of the 13th International Workshop on
Program Comprehension (IWPC’05), pages 147–148. IEEE, 2005.

[2] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles. Tom:
Piggybacking rewriting on java. In Proceedings of the 18th Confer-
ence on Rewriting Techniques and Applications (RTA’07), volume
4533 of Lecture Notes in Computer Science, pages 36–47. Springer-
Verlag, 2007.

[3] I. Baxter, P. Pidgeon, and M. Mehlich. DMS R©: Program transforma-
tions for practical scalable software evolution. In Proceedings of the
International Conference on Software Engineering (ICSE’04), pages
625–634. IEEE, 2004.

[4] D. Beyer. Relational programming with CrocoPat. In Proceed-
ings of the 28th international conference on Software engineering
(ICSE’06), pages 807–810, New York, NY, USA, 2006. ACM.

[5] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Strate-
go/XT 0.17. A language and toolset for program transformation. Sci-
ence of Computer Programming, 72(1-2):52–70, June 2008. Special
issue on experimental software and toolkits.

[6] P. Charles, R. M. Fuhrer, and S. M. Sutton Jr. IMP: a meta-tooling
platform for creating language-specific IDEs in eclipse. In R. E. K.
Stirewalt, A. Egyed, and B. Fischer, editors, Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’07), pages 485–488. ACM, 2007.

[7] J. R. Cordy. The TXL source transformation language. Science of
Computer Programming, 61(3):190–210, August 2006.

[8] O. de Moor, D. Sereni, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ek-
man, N. Ongkingco, and J. Tibble. .QL: Object-oriented queries
made easy. In R. Lämmel, J. Visser, and J. Saraiva, editors, Gen-
erative and Transformational Techniques in Software Engineering II,
International Summer School, GTTSE 2007, Braga, Portugal, July 2-
7, 2007. Revised Papers, volume 5235 of Lecture Notes in Computer
Science, pages 78–133. Springer, 2008.

[9] R. M. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller. Efficiently
refactoring Java applications to use generic libraries. In ECOOP
2005 — Object-Oriented Programming, 19th European Conference,
pages 71–96, Glasgow, Scotland, July 27–29, 2005.

[10] J. Heering, P. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF - reference manual. SIGPLAN Notices, 24(11):43–
75, 1989.

[11] R. C. Holt. Grokking software architecture. In Proceedings of
the 15th Working Conference on Reverse Engineering (WCRE’08),
pages 5–14. IEEE, 2008. Most influential paper.

[12] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a mini-
mal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, 2001.

[13] P. Klint. Using Rscript for software analysis. In Working Session on
Query Technologies and Applications for Program Comprehension
(QTAPC 2008), 2008.

[14] P.-E. Moreau. A choice-point library for backtrack programming.
JICSLP’98 Post-Conference Workshop on Implementation Tech-
nologies for Programming Languages based on Logic, 1998.

[15] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[16] M. van den Brand, H. de Jong, P. Klint, and P. Olivier. Efficient
Annotated Terms. Software, Practice & Experience, 30:259–291,
2000.

[17] M. van den Brand, P. Klint, and J. J. Vinju. Term rewriting with
traversal functions. ACM Trans. Softw. Eng. Methodol., 12(2):152–
190, 2003.

[18] M. van den Brand, A. van Deursen, J. Heering, H. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment:
a Component-Based Language Development Environment. In
R. Wilhelm, editor, Compiler Construction (CC ’01), volume 2027
of Lecture Notes in Computer Science, pages 365–370. Springer-
Verlag, 2001.

[19] J. J. Vinju and J. R. Cordy. How to make a bridge between
transformation and analysis technologies? In Dagstuhl Semi-
nar on Transformation Techniques in Software Engineering, 2005.
http://drops.dagstuhl.de/opus/volltexte/2006/426.

10

