
Meta-Language Support for Type-Safe Access to
External Resources

Mark Hills1, Paul Klint1,2, and Jurgen J. Vinju1,2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2 INRIA Lille Nord Europe, France

Abstract. Meta-programming applications often require access to het-
erogeneous sources of information, often from different technological
spaces (grammars, models, ontologies, databases), that have specialized
ways of defining their respective data schemas. Without direct language
support, obtaining typed access to this external, potentially changing,
information is a tedious and error-prone engineering task. The Rascal
meta-programming language aims to support the import and manipula-
tion of all of these kinds of data in a type-safe manner. The goal is to lower
the engineering effort to build new meta programs that combine informa-
tion about software in unforeseen ways. In this paper we describe built-in
language support, so called resources, for incorporating external sources
of data and their corresponding data-types while maintaining type safety.
We demonstrate the applicability of Rascal resources by example, showing
resources for RSF files, CSV files, JDBC-accessible SQL databases, and
SDF2 grammars. For RSF and CSV files this requires a type inference
step, allowing the data in the files to be loaded in a type-safe manner
without requiring the type to be declared in advance. For SQL and SDF2
a direct translation from their respective schema languages into Rascal is
instead constructed, providing a faithful translation of the declared types
or sorts into equivalent types in the Rascal type system. An overview of
related work and a discussion conclude the paper.

1 Introduction

Software language engineers, such as those working in the grammarware, model-
ware, or ontologyware domains, write meta-programs. These programs, used for
tasks such as calculating software metrics, performing static analysis, mining soft-
ware repositories, and building IDEs, use information provided by a wide number
of different sources. While some of these are internal to the application, some
may be external, e.g., the contents of software repository commit messages, the
values in a database storing bug reports, or an already-defined grammar for the
language being manipulated. In general, this external information may be created
using a number of different tools, each with its own data formats and methods of
storing data. These data formats can be defined explicitly, such as with a table
definition in a database or an SDF2 [7,16] definition for a grammar, but may
also be defined implicitly, such as is found in RSF (Rigi Standard Format) files,

http://homepages.cwi.nl/~hills
http://homepages.cwi.nl/~paulk
http://homepages.cwi.nl/~jurgenv
http://www.cwi.nl
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe

which provide a textual representation of binary relations (see Section 4.1), and
in CSV (Comma-Separated Values) files, which provide a textual representation
of tabular data.

Without direct language support for accessing external data sources, dif-
ferent libraries have to be developed, each targeted at a different data source.
Each library provides a different mechanism for naming these data sources and
determining the type of data stored in a resource, including how the external
values and types map into the values and types of the host language. Actually
writing out these types is a manual task, and synchronization in cases where
the underlying types change (e.g., a database table that has been altered, a
CSV file with added columns) also must be performed manually. The more
sizable and complex data sources described by Bugzilla’s entity/relationship
(E/R) model are a case in point. This paper is about managing these repetitive
and error-prone software language engineering tasks in the context of the Rascal
meta-programming language [10].

We describe built-in Rascal language support for incorporating external
sources of data (identified by URIs) and their corresponding types: resources.
Resources allow the meta-programmer to generate type declarations statically,
when a resource is imported, before type-checking takes place. This resources
feature builds on essential Rascal language features, described in Section 2. This
discussion of enabling features is then followed by the main contributions of this
paper, given in Sections 3 and 4. Section 3 discusses the design of the Rascal
resources language feature, while Section 4 demonstrates the use of resources
through four case studies, including the application of resources to typical software
engineering tasks. Sections 5 and 6 then close, presenting related work and a
final discussion with ideas for future work, respectively.

2 Enabling Rascal Features

To explain Resources, we first discuss four key enabling Rascal features: type
literals that allow types to be treated as values, source location literals that
provide access to external resources via Uniform Resource Locators (URIs),
string templates for code generation, and the Rascal-to-Java bridge to connect
arbitrary Java libraries to Rascal.

2.1 Type Literals

The Rascal type system provides a uniform framework for both built-in
and user-defined types, with the latter defined for both abstract datatypes
and grammar non-terminals (also referred to as concrete datatypes). A built-
in tree datatype (node) acts as an umbrella for both abstract and concrete
datatypes. The type system is based on a type lattice with void at the bottom
and value at the top (i.e., the supertype of all types). In between are the types
for atomic values (bool, int, real, str, loc, datetime), types for tree values
(node and defined abstract and concrete datatypes), and composite types with

typed elements. Examples of the latter are list[int], set[int], tuple[int,str],
rel[int,str], and, for a given non-terminal type Exp, map[Exp,int]. Sub-typing
is always covariant with respect to these typed elements; with functions, as is
standard, return types must be covariant, while the argument types are instead
contravariant. For example, for sets, set[int] is a subtype of set[value], while
for functions, int(value) is a subtype of value(int).

Formal type parameters allow the definition of generic types and functions.
All non-atomic types can have explicit type parameters, written either as &T or
&T <: Bound. The former can be bound to any Rascal type, the latter only to
subtypes of the type Bound. For example, rel[&T,&T] defines a generic binary
relation type over elements of the same type, list[&T <: num] defines a list
with elements that can only be one of the subtypes of the type num, and list[&T]
reverse(list[&T] L) defines the type of a function with the name reverse that
returns a list with the same element type as its argument L.

Reified types make it possible to manipulate types as ordinary values that can
be passed around, queried and manipulated. Rascal’s reification operator creates
self-describing type values which contain both the reified type and all datatypes
used in this type. A type can be reified using the prefix reification operator
(#); we call such an expression a type literal. A reified type value contains a
symbol to represent the type and a map of definitions for any abstract or concrete
datatype dependencies. It is guaranteed to have the type type[&T], where the
type parameter &T is bound to the type that was reified. For example:

– #int produces a literal value type(\int(),()) of type type[int].
– #rel[int,str,bool] produces type(\rel([\int(),\str(), \bool()]),())

of type type[rel[int,str,bool]].

The type data constructor used to build type literals is built in to Rascal; the rep-
resentations for type symbols and their definitions are defined as Rascal datatypes
in a library module. Above, the map of definitions was empty: (). For abstract
or concrete datatypes this map will contain the complete (possibly recursive)
abstract datatype or grammar. Assume a definition for Boolean connectives:

data Bool = and(Bool l, Bool r) | t() | f();

then the reified type #Bool will produce the following term of type type[Bool]
(some details have been elided):

type(adt("Bool"),

(adt("Bool"):choice(...,constructor(adt("Bool"),"and",

[label("l",adt("Bool")),label("r",adt("Bool"))]),...)))

Such self-describing type values are particularly useful in the context of defining
resources, where we want to import, and compute types for, otherwise untyped
or unknown data from outside of Rascal. Using type literals we can write library
functions that bind arbitrary (external) data to specific types.

2.2 Source Locations

Rascal provides built-in support for location literals (values of type loc) that are
Uniform Resource Identifiers1 (URIs) optionally followed by text coordinates that
allow the identification of specific text ranges in the information the URI points at.
Location literals are quoted with bars, such as |http://www.rascal-mpl.org|.

In addition to the standard schemes like file (local file access) and http

(remote file access), a number of Rascal-special schemes are supported such as cwd
(current working directory), home (the user’s home directory), std (the Rascal
standard library), jar (an entry in a jar file), and project (an Eclipse project).
The collection of schemes is openly extensible – the extension implements a
contribution interface in Java.

The location datatype conveniently provides direct access to parts of the URI
and gives short-hands to interact with file systems and web pages. Source locations
in Rascal are very versatile and are, for instance, used for tasks such as accessing
source code locations in editors and providing hyperlinking functionality in the
IDE. In the context of the resources feature, we use them to identify external
sources of type information.

2.3 String Templates and Concrete Syntax Templates

Rascal provides both string templates and concrete syntax templates for code
generation, a frequently occurring operation in meta-programming. String tem-
plates are multi-line string literals with a left-margin, interpolation of arbitrary
expressions, auto-indentation, and structured control flow. For example, the
following code generates the definition of a Java class named name with a number
of fields (given as name×type pairs in relation fields), all indented by 2 spaces:

str class(str name, rel[str,str] fields) =

"class <name> {
’ <for (<f,t> <- fields) {><t> <f>;

’<}>
’}";

Concrete syntax templates are parsed fragments of code, used for pattern
matching and pattern construction. Concrete syntax fragments are supported for
languages that have a grammar defined in Rascal. For example:

import lang::rascal::syntax::Rascal;

Module m = ‘module M imports N; ...‘;

The fragment within the backquotes will be parsed using the grammars defined
in the current scope (here, the imported grammar of Rascal). Concrete syntax
fragments allow for anti-quoting to expand variables or to match and bind parts
using pattern matching. The benefit of concrete syntax fragments is that both
generated code and patterns are statically guaranteed to be syntactically correct.

1 See http://www.ietf.org/rfc/rfc3986.txt.

http://www.rascal-mpl.org
http://www.ietf.org/rfc/rfc3986.txt

2.4 Rascal-to-Java Bridge

The Rascal-to-Java Bridge makes it possible to call Java functions from Rascal
code and to build Rascal data values in Java code. Rascal users can extend their
library reusing existing Java code or building on top of the Java standard library.
This enables, for example, reuse of JDBC libraries, open Java compilers, SMT
solvers, and the Apache Math library. The author of a library written in Java
is responsible for producing Rascal data of the right type. Consider the size
function for lists:

@javaClass{org.rascalmpl.library.Prelude}
public java int size(list[&T] lst);

The modifier java indicates that the function size is written in Java and the
annotation javaClass defines in which class the method size can be found. The
function is then implemented by the following Java code:

public class Prelude {
IValueFactory vf;

...

IInteger size(IList lst) {
return vf.integer(lst.length());

}
}

The Java API IValueFactory makes it possible to construct arbitrary Rascal
values. If the returned type does not match the return type of the associated
Rascal function, a run-time type exception will occur, ensuring this mechanism
cannot be used to break type safety.

3 Rascal Resources

Given the above motivation and prerequisites, we explain the core contribution
of this paper: the design and realization of user-defined resources in Rascal.

3.1 Design of Resources

There are four requirements for resources in Rascal. First, resources should be
accessible with a uniform naming scheme. Second, access to resources should
be statically typed. Third, the types of resources should be transparently ob-
servable to the Rascal programmer. Fourth, where possible, resources should be
implemented directly in Rascal. We discuss the first three requirements below.

Uniform naming scheme: Many of the libraries for accessing external sources
of data in Rascal use their own naming schemes to refer to the sources of the data.
For instance, file-based resources tend to use the location of the file, encoded as a
Rascal location. By contrast, JDBC resources use JDBC connect strings, strings
encoding the information needed to connect to the database (host, database,

user id, etc), and built either directly as strings or using driver-specific functions
that accept the proper parameters. Resources based on data retrieved in JSON
format over HTTP may encode the query URL directly.

To obtain a uniform naming scheme, we took as inspiration work on both the
Unix [14] and Plan 92 operating systems. Unix introduced a major innovation in
the handling of I/O by providing a uniform interface for many input and output
sources. This allowed special devices, such as terminals, and pseudo-devices to be
treated like files, given they provided implementations of operations such as read
and write. Plan 9 took this even further and allowed each resource (including
processes and network resources) to have a unique path name to be accessed
uniformly. This goal of providing a uniform addressing mechanism can also be
realized by the URIs that we already use in Rascal locations, as described above.

It is natural to use Rascal’s existing location values to identify and locate
external sources of data and types. These external sources introduce new schemes,
which bind to functionality for interpreting specific kinds of external data sources
(like comma separated values or JDBC data sources). The authority, path and
query components serve to identify, unambiguously, which particular source of
data is imported and to provide all necessary parameters to do so. We use a
+ sign to split the scheme into a logical and a physical part. Two examples of
locations that identify resources are:

– |csv+file:///Users/foo/projects/data.csv| uses a CSV resource to ac-
cess a file in a folder of user foo.

– |sdf:///languages/ansi-c/syntax/Main| uses an SDF resource to import
a grammar with main module languages/ansi-c/syntax/Main (using an
implicit search path, see below).

The format of the information in the location is dependent on the resource—the
only requirement is that it be representable as a URI.

Access to resources is statically typed: As already discussed, the Rascal
type system provides ways to introduce type-checked identifiers, such as names
of abstract datatypes and their fields (data Person = person(str name, int
age)) and relations with named columns (rel[AST class, int NCLOC]). Types
not only provide safety, they also provide access via meaningful identifiers to
project, select and update parts of datatypes.

Without the resources feature we could already (easily) provide general access
to external data. In that case, all imported data is of type value. To analyze and
manipulate such data, pattern matching is needed extensively, as well as indexing
into containers using anonymous “magic” constants. The next best thing is to
use type literals (described above). If the client code of a library that imports
external data provides a specification of the expected type, then at least the
client code can be made type correct and use the appropriate API. For example,
we can write: readCSV(#rel[str name, int age], |home:///people.csv|) to
obtain a typed API to a person/age database stored in a CSV file. The first

2 See http://cm.bell-labs.com/plan9/.

http://cm.bell-labs.com/plan9/

step in providing a Rascal resource is to create such a generic library with read
functions that are parameterized with the expected return type.

Type literals may solve the type safety issue with external data sources, but
the heavy-lifting is in the client code that provides a complete type specification
for the external data. For a CSV file with twenty columns, one needs to manually
infer a type literal from the CSV file that reflects their types. For an SQL database,
one needs to come up with corresponding relation types for every table (imagine
a relatively simple situation with 20 tables with 5 columns each). For an external
grammar formalism, one needs to port each non-terminal into a Rascal syntax
definition. Moreover, all these schemas are subject to evolution and maintenance,
leading to cumbersome co-evolution between a data source and its reflection in
the Rascal type system. Finally, the semantics of the mapping from one type
system to another may require a sizable intellectual effort—recall the “impedance
mismatch” between object-oriented (OO) and E/R representations of data.

Our solution to this remaining problem is to apply code generation at module
import time. One code generator is needed for each kind of foreign data, e.g.,
CSV or JDBC. Such a code generator is needed in the standard library for each
common kind of foreign data, and is reusable for every external data source of this
kind. The generated code typically makes use of generic library code accepting
type literals as arguments. A designated user-defined code generator generates
all required type definitions and interface functions automatically. Since what is
generated is standard Rascal code, like a a user would themselves write, the code
can then be type checked by the Rascal type checker when the module is loaded,
before execution. Public definitions in the generated module provide the module
signature used during type checking inside the importing module, ensuring the
resource is used safely. Since resources are treated as standard Rascal values, the
type checker has the same limitations as with other Rascal code: most type errors
are caught statically, while a few (e.g., missing fields on constructor values) are
caught using dynamic checks that throw exceptions in error cases.

The reuse of code generators solves the problem of inferring complex type
definitions for every new data source as well as their co-evolution. Type-safety
is provided as well as an appropriate API. What remains is the specialized,
one-time design of a code generator for every new kind of external data. This
design influences how many static guarantees can be made and which kinds of
co-evolution will go detected. For example, if a CSV resource generator does not
support column names, then swapping two columns with the same inferred types
in a file will go undetected by Rascal’s type system.

Resource types are transparent: The types of external resources can be
provided implicitly by way of type-inspection APIs, or explicitly by providing
them as complete type definitions. We opt for the latter, since we believe that this
is easier to understand for the programmer. By design, the resource generators
produce the source code of full Rascal modules, containing all type definitions
and access functions. The user can read the generated code like any other Rascal
module, debug it if necessary, and use the same IDE support for browsing and
querying Rascal modules, yet does not need to maintain it manually. Because of

module MyApp
import MySchema;

import S = |myschema+...://...|;

X myX = readX();

module MyApp
import MySchema;

import S = |myschema+...://...|;

X myX = readX();

module MySchema
import LibMySchema;
@resource{myschema}
str generate(str S, loc L){
...
}

module MySchema
import LibMySchema;
@resource{myschema}
str generate(str S, loc L){
...
}

module S
import LibMySchema;
data X = ...;
syntax Y = ...;
X readX() { ... }

module S
import LibMySchema;
data X = ...;
syntax Y = ...;
X readX() { ... }

❶ imports

❷ calls

❹ imports❸ generates

module LibMySchema
&T read(type[&T] t, loc src) {
 ...
}

module LibMySchema
&T read(type[&T] t, loc src) {
 ...
}

❹ imports

❶ imports

Fig. 1. Processing the import of an external resource using a URI scheme.

the complexity of the mapping between external and internal types and values, we
believe that the ability to interact with the generated source code is an essential
engineering prerequisite.

3.2 Syntax and Semantics of Resources

As depicted in Figure 1, to extend Rascal with a new resource type (say myschema)
the following ingredients are needed:

– A library, e.g. LibMySchema, that handles the basic access to and communi-
cation with the external resource, using type literals.

– A Rascal module, e.g. MySchema, that contains the code generator for the
myschema resource. The code generator function takes two arguments and is
declared to work for a specific schema using a tag: @resource{myschema}.

– Rascal client code, e.g. MyApp, which imports a to-be-generated resource
module using this notation: import S = |myschema+...://...|; Since it
is a myschema resource, it starts with myschema. This schema name connects
the use of a resource with the proper generator that has been defined for
that resource.

Given these ingredients, the following steps are executed when the MyApp appli-
cation is loaded (Figure 1):

Ê First all non-resource module dependencies are loaded. This means the
MySchema module that implements the myschema resource is loaded and its
declarations are executed. When the declaration of the generate function
is evaluated, the @resource tag triggers the binding of myschema to this
function. Typically the generator depends on a LibMySchema module to get
access to the external type information, which is imported now transitively.

Ë Then the resource modules are loaded. For every specific schema used, in
this case only myschema, its associated generator function is called providing
the name of the module to be generated (S) and the user-provided URI (L)

as arguments. Resource modules are loaded after non-resource modules to
ensure that the generator functions have been registered; this restriction
could be relaxed, but only at the cost of a more detailed analysis to ensure
that all needed generator functions are imported before the resources that
use them.

Ì As a result of the call, the code generator uses the information provided in the
URI to acquire and manipulate external data sources, eventually generating
the source code of a statically correct module with the given name.

Í Finally, the generated module S is imported, like any normal module, by the
client application, which may trigger more imports if the generated module
imports library modules. Note that generated modules may contain resource
imports themselves, which may be useful in cases of importing resources that
are themselves structured modularly.

After these steps module MyApp can use the freshly created API of module S.

4 Sample Resources for Software Language Engineers

When a software language engineer is studying a large software system he/she
wants to tap into as many relevant information sources as possible and wants
to integrate their contents into a unified result. Examples are bug reports that
are stored in a relational database, metrics stored in a spreadsheet, a call graph
stored in some textual format, or a complete grammar stored in an external
grammar file. In the following sections we demonstrate that all these needs can
be addressed by Rascal’s resources concept.

4.1 Rigi Standard Format (RSF)

Rigi Standard Format3 is the main file exchange format for the Rigi system [13]
and is used to describe binary relations. Although RSF has been superseded by
richer formats such as GXL4 and GraphML5 we use it here for its simplicity. An
RSF file contains triples of the form verb subject object and can simultane-
ously define several binary relations. The verb part of a triple determines the
relation to which the triple contributes. Here is an example:

call main printf

call main listcreate

data main FILE

data listcreate List

file listcreate list.c

lineno listcreate 10

lineno main 150

...

3 See http://www.rigi.cs.uvic.ca/downloads/rigi/doc/node52.html.
4 See http://www.gupro.de/GXL/.
5 See http://graphml.graphdrawing.org/.

http://www.rigi.cs.uvic.ca/downloads/rigi/doc/node52.html
http://www.gupro.de/GXL/
http://graphml.graphdrawing.org/

@resource{rsf}
public str generate(str moduleName, loc src) {

map[str, type[value]] rels = getRSFTypes(src);

return "module <moduleName>
’import lang::rsf::IO;
’<for(rname <- rels) {>
’public <rels[rname]> <rname>() {
’ return readRSFRelation(#<rels[rname]>, \"<rname>\", <src>);
’}<}>"’;

}

Fig. 2. Resource generator for RSF.

These triples define the relations call, data, file and lineno. The first three will
correspond to Rascal relations of type rel[str,str], while lineno will get type
rel[str,int]. In order to create support for RSF resources, two steps are needed.
First, basic I/O functionality is needed to support the resource format itself. In
the case of RSF, we have extended the existing RSF library lang::rsf::IO to
support resources. There are two essential functions:

– map[str, type[value]] getRSFTypes(loc src) returns a map of relation
names and their inferred types. By default, all elements in the relations have
type str, but consistent use of bool, int, or real values at fixed positions in
the triples will lead to more precise typing (for instance, with lineno above).

– &T readRSFRelation(type[&T] result, str name, loc src)6, given an
expected type and a relation name, returns the typed relation with the given
name for the RSF resource at location src.

Using this, we can create a generator that supports RSF. A simplified version
is shown in Figure 2. It essentially processes the given location, extracts the
relation names and types from the RSF triples at that location, and uses string
templates to generate a Rascal module with declarations for typed functions to
extract the various relations from the RSF triples.

Next, we illustrate RSF resources using extracted facts from JHotDraw7:

CALL AbstractConnector_2354 Figure_1715

CALL AbstractConnector_2354 Geom_3544

INHERITANCE AbstractConnector_2354 Connector_1478

CONTAINMENT AbstractConnector_2354 Figure_1715

CALL AbstractFigure_2788 ChopBoxConnector_2286

...

An RSF resource for this data is created by:

import RSF;

import JHotDraw52 = |rsf+file:///Users/.../JHotDraw52.rsf|;

6 &T could be replaced with rel[&T1,&T2] to enforce that the return type is a relation;
this change will be made in a future version of the code.

7 See http://code.google.com/p/crocopat/source/browse/tags/crocopat-2.1.4/

examples/projects/JHotDraw52.rsf.

http://code.google.com/p/crocopat/source/browse/tags/crocopat-2.1.4/examples/projects/JHotDraw52.rsf
http://code.google.com/p/crocopat/source/browse/tags/crocopat-2.1.4/examples/projects/JHotDraw52.rsf

module JHotDraw52
import lang::rsf::IO;

public rel[str, str] CALL() =
readRSFRelation(#rel[str, str], "CALL", |file:///Users/.../JHotDraw52.rsf|);

public rel[str, str] INHERITANCE() =
readRSFRelation(#rel[str, str], "INHERITANCE", |file:///Users/.../JHotDraw52.rsf|);

public rel[str, str] CONTAINMENT() =
readRSFRelation(#rel[str, str], "CONTAINMENT", |file:///Users/.../JHotDraw52.rsf|);

Fig. 3. Generated module JHotDraw52.

This will generate the module JHotDraw52 shown in Figure 3. Finally, one can
use this resource, for instance, by defining a function that reads the CALL relation
from it (accessible using function CALL) and computes its transitive closure:

rel[str, str] indirectCalls() = CALL()+;

The bottom-line is that Rascal can handle the untyped data in an RSF file in a
fully type-safe manner.

4.2 Comma-Separated Values (CSV)

The CSV format was originally intended for exchanging information between
spreadsheets and databases but is today used as an exchange format in many
other application domains as well. A CSV file has the following structure:

– a header line consisting of field names separated by commas;
– one or more lines consisting of values separated by commas.

The CSV format differs in various respects from the RSF format:

– RSF can define several relations at once; CSV can define only one relation.
– RSF only supports binary relations; CSV supports relations of arbitrary arity.
– The RSF format is fixed; in a CSV file, the header line is optional and the

default separator (comma) can be redefined.

The Rascal lang::csv::IO library supports the standard CSV format8 and has
been extended to support CSV resources.

The major challenge compared to RSF resources is to handle the variability
mentioned above. Our solution is to use the standard query parameters in the
URI that describes the location of the CSV data. In the following example we
want to process the metrics collected by the Eclipse Metrics Plugin9. The relevant
data are collected in the file methods.csv (a run of the metrics plugin on the
source code of the Rascal system itself) in the user’s home directory, and we
want the function for reading the metrics resource to be named METHOD METRICS:

import CSV;

import METHODS = |csv+home:///methods.csv?funname=METHOD_METRICS|;

module METHODS
import lang::csv::IO;

alias METHOD_METRICSType = rel[str PACKAGE, str TYPE, str METHOD, int LINE, int NOL, int NOS,
int FE, int NLS, int NOP, int CC, int LOCm];

public METHOD_METRICSType METHOD_METRICS() =
return readCSV(#METHOD_METRICSType, |home:///methods.csv|, ());

Fig. 4. Generated module METHODS.

This will generate the METHODS module shown in Figure 4. For convenience, the
alias METHOD METRICSType is created as an abbreviation for the actual relation
type. The functions in the generated module METHOD can, for instance, be used in
the following comprehension to compute the methods with the largest cyclomatic
complexities (field CC):

{ <m.PACKAGE, m.METHOD, m.CC> | m <- METHOD_METRICS(), m.CC > 50 };

In this particular example, four methods were found, two of which are shown:

rel[str, str, int]: {
<"org.rascalmpl.interpreter","reify",53>, ...

<"org.rascalmpl.library.vis.util","unPrintableKeyName",59>

}

The full power of the relational calculus that is embedded in Rascal can now be
used to further explore these metrics data in a type-safe manner.

4.3 Java Database Connectivity (JDBC)

Column Type Nullable
userid mediumint(9) N

login name varchar(255) N
cryptpassword varchar(128) Y

realname varchar(255) N
disabledtext mediumtext N
mybugslink tinyint(4) N
extern id varchar(64) Y

disable mail tinyint(4) N

Fig. 5. Schema for table profiles.

A number of systems, such as Bugzilla,
use relational databases to store infor-
mation useful in language engineering
tasks. For instance, information about
bug reporters is stored in Bugzilla in
a table named profiles, which con-
tains data that conforms to the schema
shown in Figure 5.

One popular way to gain access
to this information in Java is to use
JDBC, a standard Java API for query-
ing, updating, and exploring the meta-
data of databases. Using Rascal’s ability to call Java functions, we have written
a JDBC library that allows JDBC calls to be made from within Rascal code. For
instance, to connect to a Bugzilla database, select all the records from profiles,
and then close the connection, the following code would be run:

8 See http://tools.ietf.org/html/rfc4180.
9 See http://eclipse-metrics.sourceforge.net/.

http://tools.ietf.org/html/rfc4180
http://eclipse-metrics.sourceforge.net/

module Profiles
import JDBC;

alias profilesType = rel[int userid, str login_name,
Nullable[str] cryptpassword, str realname, str disabledtext,
int mybugslink, Nullable[str] extern_id, int disable_mail];

public profilesType resourceValue() {
registerJDBCClass("com.mysql.jdbc.Driver");
con = createConnection("jdbc:mysql://host/bugs?user=usr&password=pass");
profilesType res = loadTable(#profilesType, con, "profiles");
closeConnection(con);
return res;

}

Fig. 6. Generated JDBC resource for the profiles table.

registerJDBCClass(mysqlDriver);

con = createConnection("jdbc:mysql://host/bugs?user=usr&password=pass");

res = loadTable(con,"profiles");

closeConnection(con);

The first line registers the proper JDBC driver, in this case for MySQL. The
second line then actually creates the connection, using a JDBC connect string
formatted according to the requirements of the MySQL JDBC driver. The third
line loads the data in the table into res; since no type information is provided,
the data is loaded as a set of values, which can then be de-constructed using
pattern matching. Finally, the fourth line closes the connection.

It is possible to instead load a typed representation of the data with loadTable,
which returns the data in a relation with named fields of the proper type.
However, this requires computing the type manually. As was discussed in Section 3,
determining the correct type literal is a non-trivial task, here made more difficult
by the need to map from native MySQL types, to JDBC types, and then to
Rascal types, along with the need to properly account for null values (Rascal
has no equivalent of null, so a datatype Nullable, parameterized by the actual
column type, is used instead). For this simple table, this process would derive
the following type literal representing a row in the table:

#tuple[int userid,str login_name,Nullable[str] cryptpassword,str realname,

str disabledtext,int mybugslink,Nullable[str] extern_id,int disable_mail]

Two JDBC Resources are currently defined to provide type safe access to
JDBC tables. The first, jdbctable, provides access to a specific table, while
the second, jdbctables, provides access to all tables in a database. The follow-
ing two import statements import the profiles table and all Bugzilla tables,
respectively:

import Profiles=|jdbctable+mysql://host/bugs/profiles?user=u&password=p|;

import AllTables=|jdbctables+mysql://host/bugs?user=u&password=p|;

The first of the resource imports generates a module, Profiles, containing the
code shown in Figure 6. The second import creates similar code for each table

P = profiles(); B = bugs(); S = bug_status();

deltaDurations = { < p.login_name, b.bug_id,
createDuration(ts, b.delta_ts).days > | s <- S, s.id==5, p <- P, b <- B,
b.assigned_to==p.userid, b.bug_status==s.value,
notnull(ts) := b.creation_ts };

perPerson = { < p,
(0 | it + d | <_,d> <- deltaDurations[p]) / size(deltaDurations[p]) > |
p <- deltaDurations<0> };

rel[str, int]: { <"person1",1>, <"person2",17>, <"person3",7>, ... , <"personN",8> }

Fig. 7. Compute average days/person to resolve a bug, using the JDBC resource.

in the database, with the table name used to give a name to the function used
to retrieve the resource (e.g., resourceValue in Figure 6). Using the imported
tables, one can then perform queries over the data. For instance, one may want
to find the average number of days, per person, it takes from when a bug is
assigned to when it is resolved10. This is done using the code shown in Figure 7.

The first line in Figure 7 extracts the relations stored in tables profiles, bugs,
and bug status into variables P, B, and S, respectively. Relation deltaDurations

is then created using a comprehension, which enumerates all bug statuses; filters
these to only include tuples with id 5 (status “resolved” in this Bugzilla database);
enumerates all profiles; enumerates all bugs; and filters the bugs to include only
those bugs assigned to the user represented by the profile, with a status the
same as the current status, and with a non-null creation timestamp (checked
using pattern matching, with a non-null timestamp represented as timestamp ts

wrapped in the notnull constructor). For each matching combination of status,
profile, and bug (after accounting for all the conditions just mentioned), a tuple
is added to the computed relation containing the login name of the profile, the
id of the bug, and the number of days between the creation timestamp and the
timestamp of the last change to the bug information, which we assume here
represents the date when the bug was resolved – i.e., a relation between logins,
bug ids, and days to resolve the bug. perPerson is built in a similar way: for
each login name p, the days related to p are summed, with the result divided by
the number of records to compute the average. The resulting relation is shown,
in part, in Figure 7 below the code, with login names made anonymous.

4.4 Syntax Definition Formalism

The Syntax Definition Formalism (SDF) [7,16] is an EBNF-like grammar for-
malism extended with disambiguation constructs. It is generally used to define
both the concrete and the abstract syntax of software languages in the same

10 Technically, this shows the average from the creation date to the delta date, which is
the date of the last change to the bug information.

@resource{sdf}
public str generate(str name, loc at) {

def = loadSDF2Module(at.host, [|rascal:///|]);
gr = fuse(sdf2grammar(name, def));
return "module <name>

’
’<grammar2rascal(gr)>
";

}

Fig. 8. Resource generator for SDF.

definition. There are many open-source grammars available written in SDF11.
These grammars are complex engineering artifacts [9], especially if they are
written with the intention to generate a syntactically and semantically correct
parser. Since it is appealing to reuse such SDF grammars, we have implemented
an SDF resource that can, for instance, import an SDF syntax definition of Java5
into a Rascal module as follows:

import lang::sdf2::utils::Resource;

import Java5 = |sdf://languages/java/syntax/Java5|;

The resource generator is implemented as shown in Figure 8. This implementation
deserves some explanation:

– We use the search path for Rascal modules to search for SDF files. The URI
|rascal:///| represents the root of the entire Rascal search path which is
passed to a function that will traverse all the imports of a modular SDF
specification and produce a single syntax tree listing all relevant modules.
Adding an SDF grammar to any Rascal project in the Eclipse workspace will
make it available for use.

– Since SDF’s module system has an entirely different semantics from Rascal’s
module system, modules in SDF can not map to modules in Rascal. The fuse
function flattens the internal grammar such that SDF’s module semantics
are implemented12.

– The sdf2grammar function (800 LOC in Rascal), in particular, attempts to
maintain the semantics of SDF’s disambiguation features. Bouwers et al. have
described some of the intricacies of the semantics of disambiguation [3]. Some
disambiguation features in SDF are more powerful than their counterparts
in Rascal. Their semantics have been limited in the design of Rascal to
make them easier to understand and debug. At the same time, Rascal has
additional disambiguation features that can replace the earlier “mis-uses” of
the power of SDF. The translation is intentionally not complete, such that
features that do not map are documented in the resulting Rascal grammar.
sdf2grammar is not fast, it was written for brevity and clarity first, with
optimization as a later goal.

11 See http://www.syntax-definition.org.
12 SDF’s renaming and module parameter features are not yet implemented.

http://www.syntax-definition.org

The complexity of such a translation from one EBNF-based formalism to
another may be daunting, but being able to reuse it transparently via the resource
feature adds all the more value. It is particularly useful to be able to read the
source code of the resulting Rascal module like any normal module. We also
expect that further maintenance may take place in the generated Rascal modules.
This can be achieved by replacing the above import of the Java5 resource by a
direct import of the generated module Java5.

5 Related Work

Rascal resources fit in the field of interfacing data sources and programming
languages. A large amount of related work exists on interfaces (libraries, code
transformations, language extensions) for accessing external (especially database)
resources. Because of space, we only discuss the most directly related work.

5.1 Scripting Languages

Scripting languages, like Rascal, often serve as “glue” between systems that need
to be combined. Rascal has a static type system, while most other scripting
languages (Python, Ruby, Perl) have dynamic type systems. Such languages
have the advantage that data conversion between two systems can be limited
to the shape of the data and not much time has to be spent on bridging type
systems. Dynamically typed languages serve well as glue because they pose no a
priori, static, limitations on the kind of data that can be processed. Our resources
concept is unnecessary for dynamically typed languages, since there is no static
type system to use in the first place.

One can use Rascal as a mostly dynamically typed language when no optional
type declarations are used and all data is simply of type value, list[value],
set[value] or node. XML documents can, for instance, be represented in this
way. In this style, one has to use pattern matching to analyze and transform these
untyped data structures, effectively encoding the type system into the program.

Compared to this dynamically typed programming model using pattern
matching, Rascal resources are at the other end of the spectrum and use external
datatype definitions, bringing the external data into the typed world. Note that
the generated code should be type-safe unless the underlying schema has changed
since the last generation of the interface. In this unusual case, Rascal produces a
run-time type error if the schema change results in a type change.

5.2 Object/Relational Mapping

There have been many attempts, in many language paradigms, at solving the
impedance mismatch [11] between the representation of data in a relational
database and in program values. This includes PLAIN [15], a Pascal-like program-
ming language extended with statements to query a database, and the Microsoft
ADO.Net Entity Framework [12], a data access framework for Microsoft’s .Net

platform. [5] provides a comprehensive overview of the problems involved in
integrating programming languages and databases.

In our work on Rascal resources we have not focused specifically on access to
databases, and we have not yet attempted to optimize access, instead working
with a model where all data of interest is loaded into Rascal and then manipulated
using Rascal expressions (see Figure 7 for an example). However, there is nothing
inherent to our solution that would prevent this optimization. Since we are most
interested in working with existing data, we also do not yet support writing to
databases, and would need a stateful interaction library, such as that developed
for working with Maude-based analysis tools [8], to do so efficiently.

5.3 XML Binding and AST Generators

The problem of being able to use typed interfaces on data that is serialized in
an untyped or otherwise foreign notation can be found in many places. In the
XML domain, this is called binding’ and generation of typed interfaces from
XSD or DTD schemas is common practice [2,4,1]. In the (compiler) front-end
domain we, and many others, have generated APIs for abstract syntax trees from
grammars [6]. This is also a kind of data-binding.

5.4 LINQ

LINQ provides language support for type-safe SQL-like query syntax on external
data-sources. By implementing a Provider, library authors can relatively easily
add support for foreign data representations. A LINQ provider may even examine
the syntax tree of a query and decide how to implement it.

Rascal resources share a similar goal, but the design is quite different. Instead
of enabling an adapter to access the remote data, Rascal resources are about
transforming external data into local data representations. LINQ provides, like
Rascal, guarantees for type safety of the client code.

5.5 F#3.0 Type Providers

Rascal’s resources also resemble the feature of Type Providers in F#3.013. We
briefly discuss commonalities and some significant differences.

Type Providers in F#provide a hook into the type system. The user may declare,
using source code annotations, certain extensions to the type system, which may
manipulate the set of declared types. Implementing a Type Provider entails the
implementation of an interface to produce literal representations of new types,
new properties and new methods. The net effect is that after a programmer has
declared the intention to use a certain kind of type provider, at every use site of
the generated types the provider mechanism will query external data sources for
type information and bind new type names “dynamically” at type-checking time
to the relevant scope in the F#program.

13 See http://msdn.microsoft.com/en-us/library/hh156509(v=vs.110).aspx.

http://msdn.microsoft.com/en-us/library/hh156509(v=vs.110).aspx

Granularity. A Type Provider is a module (dll) which provides functions to add
types to a relevant scope. These functions may be parameterized, for example
by a location URI, such that the generated types are specific for the call site.
Rascal’s resources are generators of modules, which statically contain all the
type information that is present via a statically known URI. They are “module
providers” rather than type providers and thus have a larger granularity. They
will bind the new type names for the entire module that imports the resource.

Dynamic & Lazy versus Static & Eager By design, Type Providers make every
change in external definitions of schemas immediately visible, and by using
dynamic and lazy retrieval of type information exploratory programming13 can be
supported. Still, if a schema changes the user does need to rebuild the F#project13.
Rascal’s design requires a regeneration of the type definitions, which it does
every time an importing module is (re)loaded. It does so eagerly—a resource
must produce a complete set of type definitions for the data that will later be
loaded dynamically. For large database schemas the Rascal programmer would
have to wait until an entire E/R schema is translated or individually select which
tables to import, while in F#the schema can be explored on a table-by-table
basis. However, the Rascal programmer always gets a complete overview of the
available types as a literal Rascal program, while the F#programmer would need
to exercise the generated structure to discover these types, using IDE features
such as auto-completion.

Definition. F#’s type providers are written in F#. A new type provider consists
of functions that return lists of type literals. To implement a type provider,
the programmer needs access to and understanding of F#’s reflection API. The
construction of the types is type safe, calls to the reflection API are type-checked
and the type-correctness of the generated type definitions can be guaranteed.

For Rascal resources, we currently use string templates to generate a new Ras-
cal module. The generating program thus has no static guarantees of correctness
regarding the generated program, while the generated program is fully type-
checked before execution. Note that both Rascal and F#use type parameterized
type literals to link generic data to specific types.

Example. For comparison, Figure 9 shows Rascal code for a resource generator
that produces a set of 100 datatypes, each with three kinds of constructors of
which one has 100 fields and 2 functions defined on each type. This example mimics
precisely the example F#type provider called HelloWorldTypeProvider.14

Rascal’s and F#’s type declarations are not entirely compatible, but the two
example snippets generate definitions of the same size and complexity. The size
of the F#example is much larger (67 non-commented non-empty lines), compared
to Rascal (14). F#also needs 5 library modules to access the reflection API and
the Type Provider API, while Rascal needs no API. The benefit of F#’s added
explicitness is the type-safety that Rascal does not guarantee at generation time,
while Rascal’s solution is simpler to understand (we claim).

14 See http://msdn.microsoft.com/en-us/library/hh361034(v=vs.110).

http://msdn.microsoft.com/en-us/library/hh361034(v=vs.110)

module HelloWorldResource
@resource{helloworld}
str generate(loc uri, str name)

= "module <name>
’<for (i <- [1..100]) {>
’@doc{This is an example generated type definition}
’data Type<i> = unit_<i>()
’ | data_<i>(str x)
’ | nested_<i>(str sp_1, <for (j <- [2..100]) {>, str sp_<j><}>)
’ ;
’@doc{This computes some property}
’int property(Type<i> arg) = ...;
’@doc{This computes some function}
’str method(Type<i> arg, int i) = ..."
’<}>";

Fig. 9. The Rascal Resource generator to mimic F#’s HelloWorldTypeProvider.

Rascal does, however, support the construction of statically syntax correct
modules using its concrete syntax feature. For example:

@resource{hello}
Module generator(loc uri, str name) = ‘module <[Name] name> ...‘;

5.6 OData

Rascal resources share some of the same goals as the Open Data Protocol15, or
OData. OData also uses URIs to identify resources, and is focused on providing
a standard interface to resource data, but is a protocol, not a programming
language mechanism. In the future, an OData Rascal resource would provide a
clean way for Rascal to access information shared using the OData standard.

6 Discussion

We have presented the design and implementation of typed, uniform access to
external resources in Rascal. This brings the flexibility of managing external
datatypes in dynamically typed languages to the world of statically typed lan-
guages. Although we believe that the examples in Section 4 demonstrate that
we have made good progress towards satisfying the requirements listed earlier in
Section 3, some comments are in order.

First, it could be beneficial to check the static safety of the generated code
at generation time, instead of as part of the module load process. Currently,
generation can (if using concrete syntax) only guarantee that the generated code
is syntactically correct. This would require invoking the checker as part of the
generation process. Second, we have focused so far on resources that can easily be
read fully into Rascal and manipulated using Rascal code. For larger resources,
this is not practical, and we instead would need a method of gradually reading in
resource data. Along with this, it would be useful to leverage the optimization and

15 See http://www.odata.org/.

http://www.odata.org/

search capabilities of external systems. For instance, the not-null check shown in
the JDBC example in Section 4 is currently performed using pattern matching in
Rascal, but could also be done directly by the database. Third, we have focused
mainly on reading resources, and would like to provide better support for writing
data back to external data sources after making changes within Rascal.

We intend to further explore and extend the possibilities of resources for other
resource types that are relevant for the software language engineer.

Acknowledgments: We would like to thank the anonymous reviewers, whose
helpful feedback has assisted us in improving the quality of this paper.

References

1. The Enhydra Project: The Zeus Java-to-XML Data Binding tool. Available at
http://zeus.ow2.org/, 2002.

2. The ExoLab Group: Castor. Available at http://www.castor.org, 2002.
3. E. Bouwers, M. Bravenboer, and E. Visser. Grammar Engineering Support for

Precedence Rule Recovery and Compatibility Checking. In Proceedings of LDTA’07,
volume 203 of ENTCS, pages 85–101. Elsevier, 2008.

4. XML/Java Data Binding and Breeze XML Binder. Technical report, The Breeze
Factor, 2002. available at http://www.breezefactor.com/whitepapers.html.

5. W. Cook and A. Ibrahim. Integrating Programming Languages and Databases:
What is the Problem? ODBMS.ORG, Sept 2006. Expert Article.

6. H. de Jong and P. Olivier. Generation of abstract programming interfaces from
syntax definitions. Journal of Logic and Algebraic Programming, 59:35–61, April
2004.

7. J. Heering, P. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism
SDF - reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

8. M. Hills, P. Klint, and J. J. Vinju. RLSRunner: Linking Rascal with K for Program
Analysis. In Proceedings of SLE’11, volume 6940 of LNCS, pages 344–353. Springer,
2011.

9. P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering discipline for Gram-
marware. ACM TOSEM, 14(3):331–380, 2005.

10. P. Klint, T. van der Storm, and J. Vinju. EASY Meta-programming with Rascal.
In Post-Proceedings of GTTSE’09, volume 6491 of LNCS, pages 222–289. Springer,
2011.

11. D. Maier. Representing Database Programs as Objects. In Advances in Database
Programming Languages, Papers from DBPL-1, September 1987, Roscoff, France,
pages 377–386, 1987.

12. S. Melnik, A. Adya, and P. A. Bernstein. Compiling Mappings to Bridge Applications
and Databases. In Proceedings of SIGMOD’07, pages 461–472. ACM, 2007.

13. H. Müller and K. Klashinsky. Rigi - A System for Programming-in-the-Large. In
Proceedings of ICSE 10 (1988), pages 80–86, April 1988.

14. D. Ritchie and K. Thompson. The UNIX Time-Sharing System. The Bell System
Technical Journal, 57(6), July–August 1978.

15. R. P. van de Riet, A. I. Wasserman, M. L. Kersten, and W. de Jonge. High-
Level Programming Features for Improving the Efficiency of a Relational Database
System. ACM Trans. Database Syst., 6(3):464–485, 1981.

16. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

http://zeus.ow2.org/
http://www.castor.org
http://www.breezefactor.com/whitepapers.html

	Meta-Language Support for Type-Safe Access to External Resources

