Safe Specification of Operator Precedence Rules

Ali Afroozeh!, Mark van den Brand3, Adrian Johnstone?, Elizabeth Scott?,
and Jurgen Vinju!-?

! /Centrum Wiskunde & Informatica, 1098 XG Amsterdam, The Netherlands
2 INRIA Lille Nord Europel France
ali.afroozeh@cwi.nl, jurgen.vinju@cwi.nl
3 Eindhoven University of Technology, NL-5612 AZ Eindhoven, The Netherlands
m.g.j.v.d.brand@tue.nl
4 Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
a.johnstone@rhul.ac.uk, e.scott@rhul.ac.uk

Abstract. In this paper we present an approach to specifying opera-
tor precedence based on declarative disambiguation constructs and an
implementation mechanism based on grammar rewriting. We identify a
problem with existing generalized context-free parsing and disambigua-
tion technology: generating a correct parser for a language such as OCaml
using declarative precedence specification is not possible without resort-
ing to some manual grammar transformation. Our approach provides a
fully declarative solution to operator precedence specification for context-
free grammars, is independent of any parsing technology, and is safe in
that it guarantees that the language of the resulting grammar will be the
same as the language of the specification grammar. We evaluate our new
approach by specifying the precedence rules from the OCaml reference
manual against the highly ambiguous reference grammar and validate
the output of our generated parser.

1 Introduction

There is an increasing demand for front-ends for programming and domain-
specific languages. We are interested in parser generation technology that can
cover a wide range of programming languages, their dialects and embeddings.
These front-ends are used for example to implement reverse engineering tools,
to build quality assessment tools, to execute research in mining software reposi-
tories, or to build (embedded) domain specific languages. In these contexts the
creation of the parser is a necessary and important step, but it is also an overhead
cost that would preferably be mitigated. In such language engineering applica-
tions, as opposed to compiler construction, we may expect frequent updates and
maintenance to deal with changes in the grammar.

Expression grammars are an important part of virtually every programming
language. The natural specification of expressions is usually ambiguous. In pro-
gramming languages books and reference manuals, the semantic definition of
expressions usually includes a table of binary and unary operators accompa-
nied with their priority and associativity relationships. This approach feels very

http://www.cwi.nl/sen1
http://www.inria.fr/centre-de-recherche-inria/lille-nord-europe

natural, probably because this is the way we learn basic arithmetic expressions
at school. Virtually all disambiguation techniques for expression grammars are
driven by such precedence rules. However, the implementation of such rules varies
considerably.

The implementation of operator precedence in grammars may considerably
deviate from the initial design the language engineer had in mind. In manual
rewriting approaches, grammars are factored to remove ambiguities. These ap-
proaches are not attractive for us because the resulting grammars are usually
large, and hard to read and understand. For example, programming languages
such as OCaml, C# and Java have many operators with a considerable num-
ber of priority levels and associativity relations. Manually transforming such
expression grammars, to encode precedence rules, is a significant undertaking.
To make matters worse, we expect changes and evolution of grammars [1]. Every
time a new operator is introduced we have to re-think or even re-do this com-
plex and error-prone transformation process. Therefore, we consider declarative
approaches in which the parser is generated from the set of precedence rules.

Generalized context-free parsing algorithms provide the opportunity to write
any context-free grammar, and allow for language compositions, which helps in
modeling embeddings and dialects. This makes generalized context-free parsing
a good starting point for our purpose: satisfying the demand for powerful and
maintainable front-ends. This is particularly important in the fields of domain-
specific languages and reverse engineering, where grammars should be easy to
understand, evolvable, and maintainable. Therefore, the focus of this paper is
mainly on providing a declarative framework for specification of precedence rules
in generalized context-free parsing algorithms, such as Earley [2], GLR [3/4/5/6]
and GLL [7].

1.1 From Yacc to SDF

In this section, we discuss two disambiguation techniques that influenced our
work the most, and are related to generating parsers from ambiguous grammars
using a set of precedence rules. Aho, Johnson, and Ullman [§] (AJU) present
an approach in which the LR(1) [0 parsing tables are modified to eliminate
shift /reduce conflicts based on the precedence of operator tokens, as specified by
the user. The AJU method is not only a disambiguation mechanism, it is also
a nondeterminism reducer, meaning that it has to resolve all shift/reduce and
reduce/reduce conflicts, even when there is no ambiguity, to make the parser
deterministic. This implies that the approach cannot predictably deal with ex-
pression grammars that are not inherently LR(1), unless the language engi-
neer understands how additional shift/reduce and reduce/reduce actions, used
for making the parser deterministic, affect the language. More importantly, the
AJU precedence semantics is defined in terms of the deterministic LR parsers:
to understand the semantics of the precedence rules, one must understand what
an LR(1) conflict is and why it happens. Finally, this method is not directly
applicable to non-LR parsers.

The AJU approach is implemented in Yac<£| and is very popular. For exam-
ple, the OCaml parser uses ocamlyaccﬂ which is a variant of Yacc . However,
the OCaml grammar used in ocamlyacc is heavily factored and is considerably
different from the nice, concise reference manual grammar of OCaml.

Although the AJU method is fast and effective when used in the context of
arithmetic expressions, because it is bound to LR(1) parsing, it does not fit into
our definition of declarative operator precedence techniques. We require that a
mechanism for declarative specification of operator precedence rules (1) be inde-
pendent of the underlying parsing technology, so that we can reason about the
precedence semantics or use the mechanism in other parsing technologies, (2) be
safe, meaning that the disambiguation mechanism derived from precedence rules
should not change the underlying sentences of the language, and (3) be complete,
i.e., be able to resolve all the ambiguities resulting from different precedence of
operators.

There has been a number of efforts to formalize a parser-independent se-
mantics for operator precedence, and to provide a declarative disambiguation
mechanism. The most notable one is SDFJ| in which the semantics of operator
precedence is defined as a filter on derivation trees. SDF precedence filters are
implemented by removing transitions corresponding to filtered productions from
adapted SLR(1) tables [I0]. Although we believe that SDF was in the right di-
rection in defining a declarative precedence mechanism, its filters lack the safety
and completeness requirements. For example, precedence rules in SDF fail to dis-
ambiguate a left-associative binary operator having higher priority than a unary
prefix operator. The limitations of SDF are discussed in detail in Section

1.2 Contributions and Roadmap

In this paper we present a new semantics for the declarative specification of
precedence rules for context-free grammars. The key enablers of our technique
are the safety and support for resolving deeply nested precedence conflicts. We
also support indirect precedence conflicts when expression grammars are not
expressed using a single recursive nonterminal but rather more. The new al-
gorithms proposed in this paper are part of the implementation of the parser
generator for Rascal [I1]. Using this implementation, we show that our approach
is powerful enough to allow declarative specification of operator precedence in
OCaml. More importantly, the semantics of our technique is implemented as
a grammar transformation, making it independent of the underlying parsing
technology. We also guarantee that the parsers we generate produce the ex-
act same parse trees (as if the original grammar was used). The completeness
proof —whether our technique resolves all precedence style ambiguities— and
the soundness proof of the transformation —whether the transformation exactly
implements the semantics— are future work.

!http://dinosaur.compilertools.net/yacc/
2 http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
3 http://www.syntax-definition.org

http://dinosaur.compilertools.net/yacc/
http://caml.inria.fr/pub/docs/manual-ocaml/manual026.html
http://www.syntax-definition.org

The rest of this paper is organized as follows. After this introduction, we give
formal definitions which we need in the rest of this paper. Then, we explain the
problems with SDF in detail in Section After that, the formal semantics
of precedence rules and its implementation as a grammar transformation are
presented in sections [3] and [4f We present the results of parsing the OCaml test
suite in Section [5} Finally, a discussion of related work and a conclusion of this
work are given in sections [6] and [7] respectively.

2 Motivation

A grammar is a 4-tuple (N, T, P,S) where N is a set of nonterminals, T a set
of terminals, P a set of production rules of the form A ::= a where A, the head
of the production rule, is a nonterminal and «, the body of the production rule,
is a string in (7T"U N)*. We shall assume that there are no repeated rules, so
we can identify a production rule by writing its head and body. S € N is the
start symbol of the grammar. By convention, in this paper, nonterminals and
terminals start with uppercase and lowercase letters, respectively. In addition,
symbols, such as + or * are terminals. We use lowercase letters u, v, w to denote
non-empty sequences of terminal symbols. A group of production rules that have
the same head can be grouped as A ::= aj|az|...|a, where each A = «; is a
production. In this representation, each «; is called an alternate of A.

A derivation step is of the form aAf=avy8 where o, € (T'UN)* and
A ::= ~ is a production rule. In a derivation step a nonterminal A is replaced
with the body of its production rule. A derivation of o from 7 is a possibly
empty sequence of derivation steps of the form r=-a;=as=...= 0, which is also
written as 7=>0. A derivation is left-most if at each step its left most nonterminal
is rewritten. A derivation from the start symbol is called a sentential form which
is a sequence of terminals or nonterminals. A sentential form consisting only of
terminal symbols is called a sentence.

A sentence is ambiguous if it has more than one left-most derivation. Dis-
ambiguation is a process which eliminates derivations. A disambiguation is said
to be safe if it does not remove all derivations. Therefore, a safe disambiguation
mechanism does not change the underlying language generated by a grammar.

2.1 Limitations of SDF

SDF features three meta notations >, left, and right, which specify the prece-
dence, left and right associativity of operators, respectively [12]. Having A ::=
v > B == OEI disallows the derivation steps of B := « from all B’s in ~.
A = A« {left} means that the A in Aa should not derive A ::= A« itself.
Right associativity is the same as the left, but applied on the right-most A.
There are three problems with the semantics of SDFf’| disambiguation filters:

4 SDF adheres to algebraic notations and writes A ::= v as v — A. In this paper we
use the more common ::= notation.
® We describe here SDF version 2 [I2] but we simply call it SDF.

— It is unsafe: A filter is applied even when there is no ambiguity. For example,
having (£ == E "E > E := —E) rejects the string 1 " - 1, even
though this string is not ambiguous. This is because, based on the semantics
of SDF, —F cannot appear under any of the E’s in the body of the rule.
SDF also allows the user to specify under which nonterminal the filtering
should be carried out. For example, the user can specify that the filtering
should only be carried out under the first £ in the body of the rule, written
as (E :== F "E <0>> F == —F) in SDF. This solves the problem for
these two operators, but this explicit selection of the filtered nonterminal is
transitively applied to all levels below, even where it should not be applied,
producing wrong results.

— It is incomplete: The precedence relationship in SDF is defined as a one-
level relationship. As a result, it cannot resolve ambiguities in some cases
that require deeper than one level searching in the derivation trees. For ex-
ample, a left-associative binary operator having higher priority than a prefix
unary operator remains ambiguous. The problem with one-level filtering is
explained in Section

— It is limited to directly recursive rules. Although SDF has some extensions
to filter priority modulo chain rules, general indirect recursion is not sup-
ported. Rules such as E ::= E A, where the right-most nonterminal, A, can
eventually produce an F at the right-most position cannot be filtered using
SDF priorities.

These limitations are encountered in practice. For example, the if-then-else
operator in functional programming languages such as OCaml and Haskell acts
as a unary operator with lower priority than left-associative binary operators.
Indirect recursion also happens, for example, in the reference grammar of OCaml.

2.2 Problem with one-level filtering

To illustrate the problem with one-level filtering, we consider the if-then-else
construct in OCaml, which has lower priority than +. For example, the expression
1 + if x then 2 else 3 + 4isinterpretedas1 + (if x then 2 else (3 +
4)) rather than (1 + (if x then 2 else 3)) + 4. For notational simplicity,
the if...then..else part is replaced with if .

EFE:=F+ F
|if E
| Num
Fig. 1| shows the parse trees resulting from parsing the input 1 + if 2 + 3. For
a more compact presentation the terminals (1, 2 , 3) are removed.
In SDF, the precedence and associativity rules for disambiguating this case
will be:
E:=F + E {left} (Rule 1)
E:=FE+E>F ::=if E (Rule 2)

ﬁ{ (&) (£)

Ol0]O (£)) @) &)@ ()
(e) () () W%Q @) ()
@ @ @ @ ®H®E

(a) (E+((f BE)+ E) (b) (E(E+ (if E)) + E) (c) (E+ (if (E+ E)))

Fig. 1: Parse trees from parsing 1 + if 2 + 3

The disambiguation is not safe in this case: when Rule 2 is applied, E ::=
if F is removed under both E’s, which rejects a sentence such as 1 + if 2 + 3.
We can make it safe by changing Rule 2 into (E := F+ F <0>> E == if F).
Now if we examine the effect of the definitions on the shown parse trees in Fig.
we can observe that the left-associativity removes the derivation in Fig. 2a
However, none of the definitions affect the remaining two parse trees, and thus
the disambiguation fails. The reason that SDF definitions fail to disambiguate
this grammar is that patterns of depth greater than two are required. The first
FE in the body of E ::= F + E can first derive E ::= F + E and then the second
FE in the body of the newly derived rule derives E ::=if E. In other words, the
following derivation

E=F+F=>FE+E+E=FE+if E+FE

remains, which is not rejected by any of the defined patterns, but it is seman-
tically incorrect. The derivation in Fig. is correct and is the only one that
should remain after disambiguation.

For this grammar, a two level filtering can solve the problem, but in gen-
eral, we may need filters of arbitrary depth. For example, consider the following
grammar which has an additional expression rule E ::= E " E, where " is
right associative and has the highest priority.

E:=E"E
|E + FE
|if E
| Num

To illustrate why filters of arbitrary depth may be needed, consider the fol-
lowing derivation:

E=2E+E=FE+F+E=E+E "E+E=>=FE+E""E".."E+E

As can be seen, after deriving E+ F, the second E may unboundedly produce
E " E, leading to derivation trees with wrong precedence levels. Fig. [2] shows

®E
e
®O® (®) %
@%\@ (®) @

@ @ @) @
(a) (B(E+E(E " (if E))) + E) (b) (E(E + E(E" (E"E(if E)))) + E)

Fig. 2: For some expression grammars filters of arbitrary depth may be required.

two of such derivations. For disambiguating such cases, either an infinite number
of filters or a mechanism to define filters with variable length is needed. It is not
trivial to implement a variable length filter during parsing and it is very likely
that the performance of such an implementation will suffer.

We have now established the gap in resolving ambiguities in expression gram-
mars. In the following we propose a general solution that solves the aforemen-
tioned limitation, and at the same time improves other quality aspects.

3 Syntax and Semantics for operator-style disambiguation

Expression-style grammar rules display a specific kind of ambiguity, which we
call operator-style ambiguity. We characterize and define two complementary
and safe ambiguity removal schemes for exactly this kind of ambiguity: priority
and associativity. Note that this does not imply that our mechanisms completely
disambiguate any expression grammar. There may be other ambiguity hidden
in the same rules with different causes. This other ambiguity should be left
untouched for safety.

3.1 Definitions

Definition 1 (Operator-style ambiguity) An operator-style-ambiguity exists
if for some grammar nonterminal E there exist two leftmost derivations

cFEu = xBEn l:*> zwEp = zvEap (1)
m
cFEu = xFEap = x8Eau l:*> xvEapu (2)
m

which contain identical sub-derivations Bl:*w.
m

The first derivation in the above definition effectively corresponds to the bind-
ing x(SE)apu and the second derivation corresponds to binding x8(E«)u. Both
derivations correspond to the same sentential form, but between them the order
of applying Fa and BE as been inverted. Note that it may happen that a = 3,
but only for binary recursive rules, such as F ::= EvFE.

The benefit of the above characterization of operator-style ambiguity is that
we use pairs of derivations that specifically allow an arbitrary distance (:*>)
between application of SE and Fa. This creates the potential for supporting
deeper ambiguities, and indirectly recursive expression grammars. In addition,
we now have defined clearly what it means for operator-style ambiguity removal
to be safe: never both derivations (1) and (2) may be removed at the same time.

Given a grammar which contains operator-style ambiguity, the engineer has
to specify, somehow, which derivation should be removed. There are many situ-
ations in which the engineer wishes always (i.e., for all sentences) to choose one
derivation over the other. We first describe priority-based ambiguity remouval.

Definition 2 (Priority-based ambiguity removal via >) The user speci-
fies a strict partial order > (irreflexive, antisymmetric and transitive) between
the alternates of E. For all BE > Fa, derivations which contain derivations of
the form (2) are always removed. Vice versa, for all Eae > BE, we choose to
remove (1). Note that we do not intend to apply the partial order on other cases
of ambiguity, only in the case of the (1) and (2) pair it serves to choose one over
the other.

This definition correlates with the common use of operator priority to specify
disambiguation, for example choosing the first derivation gives the 8 “operator”
priority over the a “operator”. Since all derivations f=uv are available for both
choices, priority disambiguation does not put constraints on other disambigua-
tion choices.

The fact that > is asserted to define a strict partial order is an important
detail for satisfying the safety requirement. If there would be both a > g and 8 >
« for example, then the above definitions would together remove all derivations
for both some or all sentences that a and 3 generate. Similarly o > « is not
allowed. The fact that > is allowed to be partial implies that under-specified
orderings may leave some operator ambiguity intact. This means it is up to the
language engineer to fully declare what the relative precedence of operator is,
and also that the priority relation can safely be developed incrementally.

There are, however, common situations in which we do not want to use
or cannot enforce a strict partial order as required by >. In particular, if an
expression-style rule has an alternate with both immediate left and right recur-
sion, ' ::= E~E, then it is not possible to specify priority with itself, since
> must be irreflexive and antisymmetric. More generally, there may be two al-
ternates F = E+E | EJF where v and § are required to have a symmetric
relation (such as + and — in arithmetic expressions), which also contradicts a
strict partial order.

Definition 3 (Symmetric Operator-style Ambiguity) Instantiating o and
B from derivations (1) and (2) above as 5 = E§ and o = vE both rules are now
binary recursive. We can instantiate derivations (1) and (2) above like:

cEu = cESEp l:*> zwEp = xvEyEp (1)
m

zEu = zEyEu = xE0EvER l:*> zvEyEp (2))
m
Also, taking 8 = Ev and o = §F we can write deriations (1) and (2) above as

zEu = cEvEu l:*> xvEp = xvESEp (1)

zEu = cESEu = xEvESEn l:*> zvESEu (27)

Symmetric operator-style ambiguity is a special case of operator-style ambigu-
ity in which both rules are binary. Often we have § = ~, although this is not
necessary. To see why we call the ambiguity symmetric, consider the example
where v = + and § = —, (1') and (2') both derive y + y — y and, (1”) and (2")
both derive y — y +y. Then, (1') and (1”) represent (y +y) —y and (y —y) + v,
respectively.

Definition 4 (Associativity-based ambiguity removal via left and right)
We define two binary relations “left” and “right” between binary alternates, for
which holds that

(left N right =0) A (left N '>'=0) A (right N '>'=0)

In other words, >, left and right are mutually exclusive relations.

When (a, B) € left, associativity based ambiguity removal removes the deriva-
tions of the form (2'), corresponding to grouping v and § to the left, i.e. to
choosing x(wOE)yEu over wé(EvE)u. This correlates with left associativity.
Similarly, when («, §) € right, removing derivations with derivations of the form
(1") corresponds to right associativity.

The restriction of >, left and right being mutually exclusive is a sufficient
restriction for guaranteeing safety since now only one relation is allowed to be
active at the same time and each of the relations is safe in itself.

Since >, left and right need to define an order between all alternates of ex-
pression languages with dozens of rules, we cannot expect the language engineer
to specify each combination manually. This problem is dealt with in our formal-
ism, which is described later, by providing automatic transitive closure for >
and a computation akin to Cartesian product for left and right groups of rules.

In summary, the three relations >, left and right allow a language engineer
to remove all operator-style ambiguity of the form in Definition 1, either using
an anti-symmetric, irreflexive, transitive relation >, or using one of the possibly
reflexive, possibly symmetric and possibly non-transitive left and right relations

as long as the three relations exclude each other. Note that in theory all operator-
style ambiguity can be removed by simply asserting a full ordering among all
recursive alternates using > or by putting all rules in a single left or right group,
but this has no practical value. Instead, complete disambiguation of the operator-
style ambiguity in a language definition needs to be considered language-by-
language (see Section [5).

3.2 Pattern notation for illegal derivations

As an intermediate step we now introduce a short notation for the derivations
(1),(2),(1") and (2'), called “patterns”. Each pattern is specific for a given gram-
mar and combination of two alternate rules. In the next section, we demonstrate
how to compute a unified set of patterns from a context-free grammar augmented
with (>, left, right) relations, and how to use this set of patterns to compute a
grammar transformation that implements the above semantics.

Definition 5 (Operator ambiguity removal pattern) An operator ambi-
guity removal pattern (pattern for short) is a 4-tuple of the form
(head, parent, i, child), where head is the nonterminal head of the expression
grammar for which the precedence rules are defined, parent is an alternate of
head, i is the index of a nonterminal in the body of parent, and child is the al-
ternate that should be filtered from the monterminal at position i of parent. The
nonterminal at position i is called the filtered nonterminal.

In this paper we write a pattern as (E,a- 3,) where E is the head, and
a- B and vy are the parent and the child alternates, respectively, and the filtered
nonterminal is identified by a dot before it.

The semantics of patterns are the same as derivations discussed above. For exam-
ple, the derivations (1) and (2) can be expressed as the patterns (E,a*E, Ef)
and (F,+ Ea, EB), respectively. Note that patterns are not implementation
mechanisms. In Section [we show a grammar rewriting algorithm to implement
patterns.

We now explain informally how to arrive at a set of patterns starting from
a context-free grammar augmented with (>, left, right). Table [1| documents the
semantics of priority in terms of patterns that are generated for each combination
of left, right and binary recursive expression rules. Note that for binary rules
sometimes two patterns are generated for the same combination of rules. The
semantics of left in terms of the patterns is expressed similarly in Table 2] We
leave the table for right associativity to the reader.

As can be seen, not all combinations of expression rules generate patterns.
Exactly when the combination of rules would not be ambiguous and filtering
would be unsafe no pattern is generated. This corresponds to the derivations
(1),(2), (1), (2") using specific combinations of left and right recursive rules. In
Section [d] we implement these tables.

10

Table 1: The semantics of the > operator in terms of patterns.
> FE ::= FasFE FE = Fas FE ::=aF
E:=FaE|((E,*EanE, E:E)|(E,Ear*E, Ea)|(E,*EanE, aoF)
(E,Eai1*E, EazF)

E:=FEua | (E,*Eay, EasFE) — (E,*Eai, Eas)
E:=aE | (B,a1*E, EwsFE) | (E,au*E, Eaz) —

Table 2: The semantics of left associativity
left FE:=FouFE F = FaxF

E:=FawiE|((E,Eai1*E, EaiE)|(E,Eai*E, EaxE)

E :=FEwE|(E,Eas*E, Ea1E)|(E,Eaz*E, EazE)

3.3 Defining >, left and right in practice

The following three features, which are taken from the design of SDF [I3], are
described here for the sake of completeness. They are essential for having concise
expression grammars, as mentioned above.

Firstly, our formalism automatically transitively (but not reflexively) closes
the > relation precedence operator. As a result, when the language engineer
defines p; > p2 and ps > ps we automatically derive p; > ps. Furthermore,
when they accidentally define p; > pi1, or both p; > ps and py > pj, either
directly, or indirectly via the closure, an error message must be produced. Now
we can allow the short-hand p; > ps > p3 to obtain elegant definitions. Note that
the transitive closure step is carried out before generating the actual patterns.
The actual patterns are generated from the calculated priority pairs only when
is there is an operator-style ambiguity, as defined in Section and documented
in Table [

Secondly, many programming languages have groups of binary operators that
have the same precedence level. For example, in F := E + E | E — E both
operators have the same precedence level but should be left associative with
respect to each other. We define a left associative group containing a set of rules
(p1] - - - |pn)(left) to generate a set of associativity declarations:

U »i left pj, when (pi,p;) ¢ right A (pi,p;) & "> Alpj.pi) ¢ />
1<ij<n

We do similarly for right associative groups. The groups simply compute the
Cartesian product, but do not add tuples that would contradict a relation defined
elsewhere. Finally, associativity groups may occur in the middle of a priority
chain, as in (p1]...|pn)(A) > (q1]-.-|gs)(B). In this case > will be extended
by combining each element of the two groups pairwise (and before closure). An

11

Eu=FE Arg+ //function application Operator Associativity

|- E //unary minus function application -
|E xx FE
E+E unary minus -
|E — FE o right
| if E then E else E +, - left
|1d if-then-else -

Arg o= FE
| ~label : E

Fig. 3: Excerpt from OCaml’s grammar with “challenging” operator precedence.

E :=F Arg+ (non—assoc)
>—F
>FE xxE (right)
>(E+ E|E - FE) (left)
> if Ethen Eelse E
|1d
Arg == FE
| ~label: E

Fig. 4: Example definition of challenging operator precedence rules.

additional safety feature (which is novel) is to simply statically check for >, left
and right to be non-overlapping, as required.

Finally, some expression languages disallow certain direct nesting while indi-
rect nesting is allowed. For example 1 == 2 == 3 should not be allowed while
true == (2 == 2) is allowed. Normally we have to introduce a new expression
nonterminal just to disallow this direct nesting. So, in order to be able to write
concise grammars we add non—assoc declarations with the following semantics.
If p1 non—assoc p, then (p1 left pa) A (p1 right p2). Notice that non—assoc dec-
larations are not safe: they intentionally and explicitly remove sentences from
the language as generated by the grammar. We extend the associativity group
semantics with non—assoc as well. Necessarily, any static safety checks on left
and right need to be done before the tuples from non—assoc have been added.

To illustrate the syntax of our approach we use the example grammar in
Fig. [3| and its priority and associativity properties, which both are taken from
the OCaml reference manuaﬂ The grammar and the precedence rules can now
be written as in Fig. 4l We use ::=, >, left, right and non—assoc meta notation
to encode both the syntax and the precedence table in one go.

Shttp://caml.inria.fr/pub/docs/manual-ocaml-4.00/expr.html

12

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/expr.html

4 Grammar rewriting to exclude illegal derivations

In this section we present an algorithm for transforming a grammar accompanied
with a set of priority and associativity rules to a grammar that prevents the
generation of illegal derivations (see figures [5| and @

1. We translate the definitions to a set of patterns (GENERATEPATTERNS).
2. We apply these patterns to transform the grammar (REWRITEGRAMMAR)

The generation of patterns in Fig. |5| follows exactly the semantics as defined
earlier in tables [I] and [2| EXTRACTDEFINITIONS produces a set of binary tuples
which represent the associativity and priority declarations in a grammar. This
set is an over-approximation of the patterns that will be generated later, since
they are not specific for positions in the parents yet and may be ignored entirely
if no ambiguity may arise. For a specific nonterminal, RIGHTRECURSIVE and
LEFTRECURSIVE compute which other nonterminals contribute to an eventual
left /right recursion of that nonterminal. The GENERATEPATTERN function then
filters the extracted definitions making sure to introduce a pattern only where
left recursion tangles with right recursion and vice versa, i.e., simulating exactly
the priority and associativity semantics of Section [3}

Given the set of patterns generated by GENERATEPATTERNS, we can now
transform the grammar using the REWRITEGRAMMAR function as shown in
Fig. [6} It is important to note that we use indexed nonterminals names, such
that when building parse trees, no new names for nonterminals are generated
(indices can be removed easily). As each rewrite action can only remove some
alternates, no new shapes of rules are created by the algorithm (no additional
chain rules). This preserves the shape of the parse forest as the language engineer
specified in the original grammar.

The algorithm first deterministically generates a set of nonterminals to im-
plement single-level filtering. Lines 14-20 reserve fresh nonterminal names. Lines
21-23 change existing rules to use the new nonterminals at the right positions.
Lines 24-28 generate definitions for the new nonterminals by cloning the origi-
nal while leaving out the filtered alternate. Then, in a fixed point computation
(lines 29-46) we treat each level of newly generated nonterminals to a procedure
for eliminating deeply nested cases. For left recursive positions (lines 40-46), we
make sure that a nonterminal is generated which cannot derive a given postfix op-
erator at arbitrary depth at the right-most position which has lower priority. For
right recursive positions we do the opposite (lines 33-39). The APPLYPATTERN
helper function does the same as lines 21-46 for the first level, but it includes an
explicit check for the existence of generated nonterminals to reuse. This check
is necessary for termination as well as efficiency. The fixed point computation
will terminate because a new nonterminal is only created in APPLYPATTERN if a
nonterminal which defines the same subset of alternates does not already exist.
Since every step removes an alternate, eventually —in a worst case scenario—
all singleton sets will have been generated and the algorithm terminates.

We can illustrate the algorithm using the following example: Grammar G:

E:=FE+E (left) > iE | g

13

function EXTRACTDEFINITIONS(G)
> > U{(pi, ¢)l(p1---pi)(A) > (q1-..q;)(B) € G} > expand the groups
P« {(p1,p2) | pr > p2 € G}+ > note the transitive closure
L+ {(p,p)|pleftp € G}, L' + L
R« {(p,p) | p right p € G}
L+ LU Upcijenti®isps) | (01]. . |pn)(left) € G, (pi,p;) ¢ R}

R <+ RU U< jcnl(pispi) | (p1].. . |pn)(right) € G, (pi,p;) ¢ L'}
return PULUR

function RIGHTRECURSIVE(G, N) > LEFTRECURSIVE is elided for brevity
R + {N}
while R changes do R+~ RU{X|X =:=aY € G,Y € R}
return R

function PLAIN(z) = z in which all N; are replaced by N.
function RULES(G, N) = {B|N == € G}
function FRESH(NN) = N; where the integer index ¢ has not been used before.

function GENERATEPATTERNS(G)
D <+ EXTRACTDEFINITIONS(G)
R« {}
for all (A::=Xa,A:=8Y) e Ddo
if X € LEFTRECURSIVE(G, A) A'Y € RIGHTRECURSIVE(G, A) then
R+ RU{(A,eXa,BY)}
for all (A:=aX,A:=YB) e D do
if X € RIGHTRECURSIVE(G, A) AY € LEFTRECURSIVE(G, A) then
R+ RU{(A,ae X, Yp)}

return R

Fig. 5: Translating priority and associativity definitions to safe patterns

generates patterns P (see Fig. : {(E, -E+E, iE), (E, E4+-E, E+E)}. Now
the algorithm in Fig. [6] can start. Lines 14-23 create the following grammar rule
in (G1, having found two patterns to apply and allocating two fresh nonterminals:
EZI:E1+E2 |2E|a

Then, at lines 24-28 we define the two new nonterminals and extend G; with
their definition:

E:= FEi1+Ey|iF]|a
E1 IZ:E1+E2|Q
Ey::=4E | a

Finally we search for nested cases in lines 30-46. The outer loop executes twice.
The first time, F; results in a new nonterminal F3 and F5 does nothing. The

14

1: function APPLYPATTERN(G, W, §, V = p/'W'7’))
2: Yauus = 0

3 for all p € RULES(G, W) do

4: if PLAIN(p) # PLAIN(J) then add p to Yaus

5: if 3Z € G: (PLAIN(Z) = PLAIN(W)) V (RULES(G, Z) = Yait5) then
6: Y «~Z

7 else

8: Y’ « FrRESH(W)

9: for all B € Yy4s doadd Y/ := B to G

10: remove V = p'W’'r’ from G

11: add V = p'Y'7" to G

12: return (G,Y”)

13: function REWRITEGRAMMAR((G, P))

14: New «

15: Slots[| + @ > an empty map from indexed nonterminal names to dotted rules
16: for all patterns (Y,3-Y~,d) in P do > Stage 1, reserve nonterminal names
17: Y; < FRESH(Y)

18: Slots[Y;] «+ 8- Yy

19: add Y; to New

20: G+ G

21: for all patterns (Y,3-Y~,0) in P do

22: if Slots[Y;] = - Yy then > Stage 2, update use sites
23: replace Y ::= Yy in G; with Y 1= Yy

24: for all Y; in New do > Stage 3, add definitions for new nonterminals
25: if Slots[Y;] = 8- Yy then

26: for all Y ::= a in G; do

27: if A a pattern (Y,5-Y~,6) € P with PLAIN(a) = § then

28: add Y; = a to G4

29: (G",G") + (G1,QG) > Stage 4, look for nested ambiguity
30: while G’ # G do

31: (G',New') «+ (G”,New)

32: for all Y; € New’ do

33: if Slots[Y;] = -Y then

34: for all grammar rules Y; := uW € G’ do

35: if PLAIN(W) =Y A3JZ(PLAIN(Z) =Y then

36: A W € RIGHTRECURSIVE(G1, Z)) then

37: for all patterns (Y,-Y~,d) do

38: (G",U) + APPLYPATTERN(G", W, ¢, Y; == uW)

39: (Slots[U], New) < (Slots[W],New U {U})

40: if Slots[Y;] = 8-Y then

41: for all grammar rules Y; ::= Wy in G” do

42: if PLAIN(W) =Y A3Z: (PLAIN(Z) =Y

43: AW € LEFTRECURSIVE(G1, Z)) then

44: for all patterns (Y,3-Y,6) do

45: (G",U) < APPLYPATTERN(G", W, 6, Y; = W)

46: (Slots[U], NT') < (Slots[W],New U{U})

47: return G”

Fig.6: Core algorithm that rewrites a grammar, applying patterns to remove
alternates from indexed nonterminals.

15

second time nothing changes and we terminate with the final grammar:

E:=FEi+E|iE|a
E,:=F1+E3]|a
E;:=iF|a

Es3:=a

5 Validation using the OCaml case

We have conducted an extensive validating experiment. The goal is to show that
our approach is indeed more powerful than SDF, and to provide evidence that
the algorithm works for complicated, real-world examples.

5.1 Method

For this case study, we selected the OCaml (.ml) files in the test suite directory
of the source release of OCaml 4.00.1. OCaml features the kind of ambiguity that
SDF filtering semantics cannot solve and our method should be able to solve. The
test suite contains numerous examples of different sizes and complexity, testing
the language features. We believe the test suite is a good choice for testing
our parser on safety and completeness, as the suite rigorously tests the language
itself. The suite contains 387 files of which 158 (in the tool-ocaml folder) contain
only source code comments that document expected output (assembler code) of
the compiler. The other 229 files are examples of OCaml code that exercise all
features of the language in different combinations to test the compiler.

We performed the experiments in Rascal [I1], which is a meta-programming
DSL, supporting embedded syntax definitions. The parsing mechanism of Rascal
is based on GLL [7].

Our goal is to provide solid evidence of the complete equivalence between the
original OCaml parser and the parser generated from our approach. This means
that no parse error should be produced by the Rascal parser if no parse error was
produced by the original OCaml parser, and the generated parser should produce
single parse trees (no ambiguities), and that the structure of the abstract syntax
trees should be exactly the same.

To compare parse trees we adapted both the parser from the OCaml compiler
and the output of our generated parser to produce exactly the same bracketed
forms. The resulting files are then compared with diff, ignoring whitespace,
to check for equivalence. It should be noted that the ASTs from the OCaml
compiler were normalized, for example flat lists were converted to cons list. We
performed the same transformation steps on our ASTs.

OCaml programs are basically composed of groups of expressions. The AST
produced by the OCaml parser is complex and contains many features. However,
because of the expression-like nature of the language, most of the unnecessary

16

http://www.rascal-mpl.org

Ptop_def (
[+

structure_item ([1,0+0]..[1,0+5]) ghost (
Pstr_eval 1
expression ([1,0+0]..[1,0+5]) *
Pexp_apply (
expression ([1,0+1]..[1,0+2]) 2
Pexp_ident "+" 3
[)
<label> "")
expression ([1,0+0]..[1,0+1]))
Pexp_constant Const_int 1
<label> ""
expression ([1,0+2]..[1,0+5])
Pexp_apply

expression ([1,0+3]..[1,0+4])
Pexp_ident "x"
[
<label> ""
expression ([1,0+2]..[1,0+3])
Pexp_constant Const_int 2
<label> ""
expression ([1,0+4]..[1,0+5])
Pexp_constant Const_int 3

111

Fig. 7: The original AST print from the OCaml parser (left) and the stripped
version containing only the structure and the labels (right).

information can be removed, resulting in a bracketed form. We modified the
default AST printer[] to produce the bracketed form. For example, the original
AST and its bracketed form, resulting from parsing the string 1+2#3 is shown in
Fig. [} The bracketed forms of all the examples we examined are on GitHuH]

For conducting the experiments we wrote a Rascal grammar definition using
the notations defined in this paper. The grammar is obtained from the OCaml
reference manual’} We tried to be as faithful as possible to the grammar in the
reference manual, avoiding changes as much as possible.

5.2 Results

The priority and associativity properties, retrieved from the precedence tables
in the language manual, resulted in a grammar that uses > and left, right and
non—assoc declarations. These declarations result in 830 ambiguity removal pat-
terns. The rewriting was performed as explained in Section [4]

The rewritten grammar provided us with a very close over-approximation
of what the OCaml language designers had in mind. Only a handful of ambi-
guities, such as the dangling-else ambiguity and identifier conflicts with key-
words, remained, which were resolved using other ambiguity resolution fea-

" The parsing/printast.ml file in the OCaml source release.

8 https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment
9 http://caml.inria.fr/pub/docs/manual-ocaml-400/language . html

17

https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment
http://caml.inria.fr/pub/docs/manual-ocaml-400/language.html

tures of Rascal. The OCaml grammar written in Rascal is available at: https:
//github.com/cwi-swat/ocaml-operator-ambiguity-experiment/

We have performed the parsing and comparison process for the given 229
number of files in the case study. 215 files parse correctly and without ambiguity,
of which, 182 files (84%) generate ASTs that are identical in both versions. This
means that our parser produces the same grouping as the original OCaml parser,
providing evidence for the correctness of our algorithms. For the rest (16%), our
manual examination of the diff files shows that the differences are minor and
are caused by AST de-sugaring and normalization steps in the OCaml compiler,
and are not related to the operator precedence.

5.3 Discussion and threats to validity

One of the difficulties in this study was how to compare ASTs. The AST from the
OCaml parser, in some places, is significantly different from the grammar written
in the reference manual. The reason is that the parse trees have been normalized
by the front-end for easier processing later in the compiler. For example, flat
argument lists are converted to cons lists, presumably to simplify currying and
partial function features in OCaml. These changes are not documented in the
reference manual. We resolved them by observing the original AST output to
deduce the normalization step. We then mimicked these normalization steps as
rewrite rules in Rascal before outputting the final bracketed form.

Moreover, OCaml has some language extension and syntax varieties that are
not documented in the main language reference document. The use of semicolon
was particularly confusing. Semicolon is used in OCaml to separate expressions,
defined by the rule E := E; E which is right associative. However, in the
inputs we parsed, we observed several occasions in which semicolon can end an
expression regardless of being preceded by another expression. We resolved this
issue by allowing optional semicolons at the end of expressions.

6 Related work

Besides the AJU and SDF methods which have been described so far, there are a
number of work which present similar ideas. Aasa [I4] proposes a framework for
the specification of precedences for implementing programming language. To the
best of our knowledge, this is the only declarative model that supports deeper
patterns. In this work, a parse tree is considered precedence correct based on the
weights given to operators in its sub-trees. This work correctly recognizes that,
for example, a unary operator can be placed under the right most operand of a
binary rule, regardless of their precedence. Our approach in defining precedence
semantics is different in that instead of focusing on parse trees, we defined the
semantics of precedence as derivations, which is closer to our implementation
technique. The main shortcoming of this work is that operators must be unique.
They are considered separately from their context, e.g., there cannot be a unary
minus and a binary minus at the same time. In addition, there is no discussion

18

https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment/
https://github.com/cwi-swat/ocaml-operator-ambiguity-experiment/

of indirect recursions. Similar to us, the disambiguation technique in this work
is implemented as a grammar rewriting.

Thorup [15] presents an algorithm for transforming an ambiguous grammar
with a set of partial illegal parse trees to a grammar excluding those deriva-
tions. On the surface, the approach looks very similar to our technique shown
in Section [d but the inner working is very different. The rewriting technique in
this work expects a set of illegal parse trees, and in case the set is unbounded,
as in Section a set of parse forests with cycles. Then, the algorithm works
bottom up, generating all production rules which do not produce any of those
illegal parse trees. The resulting grammar of this step should go through an-
other transformation to be simplified. The problem of how to find sufficient
illegal parse trees is addressed in another work by the same author [16]. The
rewriting presented by Thorup is not directly aiming at providing a declarative
disambiguation mechanism, rather it is more an implementation mechanism. It
also covers a wider range of rewriting provided that enough illegal parse trees
are given, but the overall procedure is complicated. We are not aware of any
practical parser generator that uses this technique.

Visser presents “From context-free grammars with priorities to character
class grammars” [I7], which describes a grammar transformation to give seman-
tics to the SDF2 priority relation similar to our transformation. In a first step, a
grammar’s nonterminals are replaced by explicit sets of identities (integers) of its
alternates. Then, elements are removed from these sets based on the precedence
relations. Since every rule is identified, the resulting parse trees do not show the
signs of grammar transformation. Character class grammars do not guarantee to
preserve the language and do not support indirect recursion, like our semantics
do. Although character class grammars are formalized quite differently from our
approach that directly manipulates grammars using indexed nonterminals, both
methods use grammar transformation to implement the precedence relations.

7 Conclusions

Constructing a parser that correctly implements precedence rules, for a language
such as OCaml, using its ambiguous reference manual and the set of precedence
rules is not possible without resorting to some manual grammar transformation.
In this paper, we defined a parser-independent semantics for operator-style am-
biguities that is safe and is able to deal with deeper level and indirect precedence
ambiguities. We evaluated our approach using an extensive experiment by com-
paring the output of the standard OCaml compiler front-end with the output of
our own parser, generated from Rascal. The result is promising and shows that
our approach is powerful enough to parse OCaml.

For other languages such as Haskell, F#, and Lua, which offer similar ex-
pression languages, our approach is expected to be equally beneficial. Although
the focus of this paper is mainly on generalized parsing algorithms, we should
also emphasize that our approach can be used by any parser generator that

19

supports left recursion.

Acknowledgments. We would like to thank Peter Mosses who has originally
identified the problem in OCaml. Also many thanks to Davy Landman and Mark
Hills from CWI who assisted us in performing the validation experiments.

References

1. Klint, P., Lammel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3) (July 2005) 331-380

2. Earley, J.: An efficient context-free parsing algorithm. Commun. ACM 13(2)
(February 1970) 94-102

3. Tomita, M., ed.: Generalized LR parsing. Kluwer Academic Publishers (1991)

4. Rekers, J.: Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam, The Netherlands (1992)

5. McPeak, S., Necula, G.C.: Elkhound: A fast, practical glr parser generator. In:
CC. (2004) 73-88

6. Baxter, I.D., Pidgeon, C., Mehlich, M.: DMS®): Program transformations for prac-
tical scalable software evolution. In: Proceedings of the 26th International Confer-
ence on Software Engineering. ICSE 04, Washington, DC, USA, IEEE Computer
Society (2004) 625-634

7. Scott, E., Johnstone, A.: GLL parse-tree generation. Science of Computer Pro-
gramming (2012) to appear ISSN:0167-6423.

8. Aho, A.V., Johnson, S.C., Ullman, J.D.: Deterministic parsing of ambiguous gram-
mars. In: Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. POPL 73, ACM (1973) 1-21

9. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2006)

10. Visser, E.: Scannerless generalized-LR parsing. Technical Report P9707, Program-
ming Research Group, University of Amsterdam (July 1997)

11. Klint, P., van der Storm, T., Vinju, J.J.: EASY meta-programming with Rascal.
leveraging the extract-analyze-synthesize paradigm for meta-programming. In:
Proceedings of the 3rd International Summer School on Generative and Transfor-
mational Techniques in Software Engineering (GTTSE’09). LNCS, Springer (2010)

12. Klint, P., Visser, E.: Using filters for the disambiguation of context-free grammars.
In Pighizzini, G., San Pietro, P., eds.: Proc. ASMICS Workshop on Parsing Theory,
Milano, Italy, Tech. Rep. 126-1994, Dipartimento di Scienze dell’Informazione,
Universita di Milano (October 1994) 1-20

13. Visser, E.: Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam (1997)

14. Aasa, A.: Precedences in specifications and implementations of programming lan-
guages. Theor. Comput. Sci. 142(1) (May 1995) 3-26

15. Thorup, M.: Disambiguating grammars by exclusion of sub-parse trees. Acta
Informatica 33(5) (1996) 511-522

16. Thorup, M.: Controlled grammatic ambiguity. ACM Trans. Program. Lang. Syst.
16(3) (May 1994) 1024-1050

17. Visser, E.: From context-free grammars with priorities to character class grammars.
In van Deursen, A., Brune, M., Heering, J., eds.: Dat Is Dus Heel Interessant, Liber
Amicorum dedicated to Paul Klint. CWI (1997) 217-230

20

http://www.rascal-mpl.org

	Safe Specification of Operator Precedence Rules

