
OSSMETER: Automated Measurement and Analysis of
Open Source Software

Bruno Almeida1, Sophia Ananiadou2, Alessandra Bagnato3, Alberto Berreteaga
Barbero4, Juri Di Rocco5, Davide Di Ruscio5, Dimitrios S. Kolovos6, Ioannis

Korkontzelos2, Scott Hansen7, Pedro Maló8, Nicholas Matragkas6, Richard F. Paige6,
and Jurgen Vinju8

1 UNPARALLEL, Portugal
bruno.almeida@unparallel.pt

2 National Centre for Text Mining (NaCTeM)
University of Manchester, United Kingdom

sophia.ananiadou,ioannis.korkontzelos@manchester.ac.uk
3 SOFTEAM, France

alessandra.bagnato@softeam.fr
4 TECNALIA, Spain

Alberto.Berreteaga@tecnalia.com
5 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

University of L’Aquila, Italy
{juri.diruscio,davide.diruscio}@univaq.it

6 Department of Computer Science
University of York, United Kingdom

{dimitris.kolovos,nicholas.matragkas,richard.paige}@york.ac.uk
7 The Open Group, Belgium

s.hansen@opengroup.org
8 UNINOVA, Portugal
pmm@uninova.pt

9 Centrum Wiskunde & Informatica, The Netherlands
Jurgen.Vinju@cwi.nl

Abstract. Deciding whether an open source software (OSS) meets the required
standards for adoption in terms of quality, maturity, activity of development and
user support is not a straightforward process. It involves analysing various sources
of information, including the project’s source code repositories, communication
channels, and bug tracking systems. OSSMETER extends state-of-the-art tech-
niques in the field of automated analysis and measurement of open-source soft-
ware (OSS), and develops a platform that supports decision makers in the pro-
cess of discovering, comparing, assessing and monitoring the health, quality, im-
pact and activity of opensource software. To achieve this, OSSMETER computes
trustworthy quality indicators by performing advanced analysis and integration
of information from diverse sources including the project metadata, source code
repositories, communication channels and bug tracking systems of OSS projects.

1 Project data
– Acronym: OSSMETER
– Title: Automated Measurement and Analysis of Open Source Software



– Partners: The Open Group - Project Coordinator (Belgium), University of York
- Technical Coordinator (UK), University of L’Aquila (IT), Centrum Wiskunde &
Informatica (NL), University of Manchester (UK), Tecnalia Research and Innova-
tion (ES), UNINOVA (PT), SOFTEAM (FR), Unparallel Innovation (PT)

– Start date: 1 October 2012, Duration: 30 months
– Website: http://www.ossmeter.eu

2 Introduction

Deciding whether an open source software (OSS) project meets the required standards
for adoption in terms of quality, maturity, activity of development and user support is
not a straightforward process; it involves analysing various sources of information –
including its source code repositories – to identify how actively the code is developed,
which programming languages are used, how well the code is commented, whether
there are unit tests etc. Additional information may be pertitent to the analysis, including
that from communication channels such as newsgroups, forums and mailing lists to
identify whether user questions are answered in a timely and satisfactory manner, to
estimate the number of experts and users of the software, its bug tracking system to
identify whether the software has many open bugs and at which rate bugs are fixed, and
other relevant metadata such as the number of downloads, the license(s) under which
it is made available, its release history etc. This task becomes even more challenging
when one needs to discover and compare several OSS projects that offer software of
similar functionality (e.g., there are more than 20 open source XML parsers for the Java
programming language), and make an evidence-based decision on which one should
be selected for the task at hand. Moreover, even when a decision has been made for
the adoption of a particular OSS product, decision makers need to be able to monitor
whether the OSS project continues to be healthy, actively developed and adequately
supported throughout the lifecycle of the software development project in which it is
used, in order to identify and mitigate any risks emerging from a decline in the quality
indicators of the project in a timely manner. Previous work in the field of OSS analysis
and measurement has mainly concentrated on analysing the source code behind OSS
software to calculate quality indicators and metrics.

OSSMETER extends the scope and effectiveness of OSS analysis and measure-
ment with novel contributions on language-agnostic and language-specific methods for
source code analysis, but also proposes using state-of-the-art Natural Language Pro-
cessing (NLP) and text mining techniques such as question/answer extraction, senti-
ment analysis and thread clustering to analyse and integrate relevant information ex-
tracted from communication channels (newsgroups, forums, mailing lists), and bug
tracking systems supporting OSS projects, in order to provide a more comprehensive
picture of the quality indicators of OSS projects, and facilitate better evidence-based de-
cision making and monitoring. OSSMETER also provides metamodels for capturing the
meta-information relevant to OSS projects, and effective quality indicators, in a rigor-
ous and consistent manner that enable direct comparison between OSS projects. These
contributions are integrated in the form of an extensible cloud-based platform through
which users can register, discover and compare OSS projects, but which can also be

http://www.ossmeter.eu


extended in order to support quality analysis and monitoring of proprietary software de-
velopment projects. To summarize the scientific and technological objectives achieved
by OSSMETER are:

– comprehensive domain modelling for the domain of open source software develop-
ment; identification and formal representation of the meta-information that needs
to be captured in order to extract meaningful quality indicators for OSS projects;

– extraction of quality metrics by analysing aspects related to the source code and
the development team behind an OSS project;

– extraction of quality metrics related to the communication channels, and bug track-
ing facilities of OSS projects using Natural Language Processing and text mining
techniques;

– development of an extensible cloud-based platform that can monitor and incremen-
tally analyse a large number of OSS projects, and a web-application to present their
related quality metrics in an intuitive manner that aids decision making.
In the next sections such objectives are described. For each of them the progress

beyond the state of the art is also discussed.

3 Domain Modeling and OSS project Lifecycle Analysis

State of the art: Modeling and abstracting open source software and its management
have been the focus of a number of projects and research activities aiming at understand-
ing the current practice in OSS projects e.g., for information and documentation pur-
poses. The Qualipso project10 analysed many OSS projects in order to identify typical
roles (e.g., user, maintainer, and developer), information sources (e.g., help documents,
release notes, and source code repositories), and their relations. Qualipso analysed also
widely used forges (e.g., SourceForge, and Google Code) in order to identify services,
which are typically provided to forge users, and the metadata which is used to describe
and support OSS projects. This has been done since there is not a common agreement
about the formats and metadata, which have to be used in the whole lifecycle of OSS
projects. This hampers the definition of homogeneous treatments of projects maintained
in different forges.

Other works (e.g., [9,10]) created abstract models of OSS projects in order to under-
stand their architecture, and their evolution over time. In particular, [9] addresses the
structural characteristics of OSS projects, explicitly the organization of the software’s
constituent components. In [10] the authors, by leveraging the “4+1” view model [17],
and the four architectural views of software systems defined in [14], focus on the views
which are closer to the work of OSS software developers, such as, for instance, the
directory and the file level. The work in [8] proposes models and metrics to support
the defect prediction for OSS projects. In particular, in addition to static code attributes
for modeling software data in defect prediction, the authors introduce alternative metric
sets, such as history and organizational metrics.

To improve both the quality and the trustworthiness perception of OSS products, [20]
introduces the idea of certifying the testing process of an OSS system. In this respect,
10 Qualipso: Leveraging Open Source for Boosting Industry Growth. http://www.
qualipso.org/

http://www.qualipso.org/
http://www.qualipso.org/


the authors identify peculiar characteristics of OSS projects, that might influence the
testing process. The work defines also a certification model that companies, developers,
and final users can follow to evaluate the maturity level of an OSS testing process.
Innovation: According to the works previously outlined, the whole life-cycle of OSS
projects can be analyzed by means of ad-hoc techniques specifically defined to retrieve
heterogeneous information available from different sources in different formats. OSS-
METER advances state-of-the-art techniques by providing the means to create models
representing in a homogeneous manner different aspects of OSS projects in order to en-
able objective comparisons of OSS alternatives with respect to user needs, and quality
requirements [22]. In particular, OSSMETER has developed:

– Metamodels for the specification of models representing the whole lifecycle of
OSS projects. By considering and enhancing existing domain models, a set of EM-
F/Ecore11 based metamodels and supporting tools have been conceived in order to
enable the representations of OSS projects;

– Metamodels for OSS project metrics to enable automated measurement of open
source software.

4 Source Code Quality and Activity Analysis
State of the art: Software metrics are a widely studied subject and are used in practice,
for instance in the form of Function Points (FP) to measure the size of software (see In-
ternational Function Point User Group, IFPUG12). Software metrics are widely used for
the global analysis of productivity and quality of software [12,15]. All work on activity
analysis is ultimately based on the original work of Lehman [18] who also coined the
term software evolution. There is a wide range of tools available for performing specific
analyses on source code as well as for computing various metrics. Regarding analyses,
it is not easy to combine the results of different analyses and for metrics the same holds:
the results produced by different tools are incomparable since they use different defi-
nitions for the underlying metrics. In addition, most of these tools are hand-coded and
have to be reimplemented for different languages.
Innovation: OSSMETER provides an integrated view and corresponding tooling to
do analyses, metrics calculations and activity analysis on several implementation lan-
guages. The main innovation are:

– Definition and of a coherent set of indicators for code quality and activity analy-
sis. These indicators are usable across different implementation languages, different
implementation platforms, and different version repository systems;

– Generation of the required tooling from declarative metrics descriptions using in-
novative model-driven/ generation-based techniques.

5 Communication Channel and Bug Tracking System Analysis
State of the art: Structuring and analysing textual data in forum, newsgroup and com-
munity-based question and answer threads is a newly emerging and complex problem

11 Eclipse EMF: https://www.eclipse.org/modeling/emf/
12 http://www.ifpug.org/



in text mining. Peer users are the cornerstone of managing software defects in OSS,
due to their involvement in online forums [5]. Nevertheless, empirical studies regarding
open source quality assurance activities and quality claims are rare [11]. OSS forums
and bug-tracking systems concentrate vast amounts of knowledge generated daily about
problems and their solutions as well as feedback to requests for OSS improvement.

Mining this textual data can match solutions to problems, evaluate solutions quality
and impressively enhance user access to solutions and support [7,21,13]. Due to the size
of this textual information, extracting, managing and evaluating it without manual inter-
vention is a demanding, costly, impractical and probably impossible task. Text mining
tools that automatically analyse, extract, summarise and assess information found in
the threads of discussions on online forums are valuable for supporting OSS. Although
text mining techniques have been used extensively in domains such as biomedicine [6],
finance [19,16], competitive intelligence [23], very little work has been accomplished
on applying text mining techniques for analysing threads of online forums.
Innovation: The target of this analysis is to extract from OSS forums and bug-tracking
systems as many indicators about the characteristics and the quality of the communi-
cation that takes place as possible. Due to the complexity of the problem, a number
of text mining technologies have been combined and structured in levels: after collect-
ing online forum threads, the first level consists of identifying the types of each post
as question, answer or supplementary text (context). In succession, posts are classified
into more fine-grained categories and similarity-based methods are employed to iden-
tify chains of questions, contexts and answers within each thread, i.e. identify which
answers and context correspond to which question. Thirdly, posts are analysed as far as
sentiment and attitude is concerned. The output of this stage is a fundamental source
of evidence useful for quality assessments. Finally, clustering together semantically
similar threads and labelling the resulting clusters provides hints about the error-prone
aspects of each OSS or its parts that need to be improved. The output of each level is
two-fold: a number of indicators about the input posts quality that concerns the specific
aspect that the corresponding component exploits; and also, supplementary output use-
ful for the following components, but not necessarily part of the overall system output.

6 OSSMETER platform
State of the art: In the last decade several projects have provided platforms that sup-
port automated measurement of open source software including FLOSSMETRICS [1],
Qualoss [3], SQO-OSS (Alitheia Core) [4] and Ohloh [2]. Also, many OSS forges such
as SourceForge, Google Code and GitHub provide built-in annotation and measurement
facilities for the OSS projects they host.

The aim of the FLOSS 13 project was to develop indicators of non-monetary/trans-
monetary economic activity through a case study of OSS, and to assess OSS business
models and best practices, and policy/regulatory impact. Its successor FLOSSMET-
RICS project [1] integrated a number of source code and bug tracking and mailing list
extraction tools into a web-based platform which monitors a selection of open source
projects and provides the extracted data in the form of SQL files which then need to be
injected into a local database in order to be further analysed.

13 http://www.flossproject.org/



Qualoss [3] aimed at automating the quality measurement of open source software.
The Qualoss platform has been conceived to analyse two types of data: source code and
project-repository information and does not appear to be measuring aspects related to
communication channels or bug tracking systems of OSS projects.

Alitheia-Core [4] is a platform which aims at enabling software engineering re-
search targeting OSS projects. Alitheia-Core provides support for processing source
code repositories, emails from mailing lists and bug tracking systems through an API
that developers can use in order to implement metrics and experiments. The design of
Alitheia-Core is similar to the envisioned design of the OSSMETER platform, but
the platform itself does not appear to be providing any implemented metrics related to
mailing list and bug tracking systems.

Ohloh [2] is a free but proprietary and closed source system, only provided as a
hosted service. Ohloh only analyses information related to the source code of OSS
projects and does not take communication channels or bug tracking systems into consid-
eration. However, it provides OSS project classification facilities (through user-defined
tags), enables OSS project discovery and comparison, and presents source-code and
activity-related metrics in an intuitive and understandable manner. On the downside, be-
yond not taking communication channels and bug tracking systems into consideration,

Persistence

Database Filesystem

OSSMETER Platform

Metric Providers Fact Providers

OSSMETER Web Application

REST API

consumes

Fig. 1. OSSMETER system architecture

being closed source means that or-
ganisations cannot run their own lo-
cal instance of Ohloh through which
they could monitor only the open
source projects they are interested
in, or their own proprietary projects.
Also, as the system is proprietary,
developers cannot extend it with fea-
tures such as support for new met-
rics, access to additional sources
of information, or integration with
custom version control management
systems.

As mentioned above, OSS forges such as SourceForge, Google Code and GitHub
provide built-in facilities for capturing additional information (metadata) about projects
such as the category they belong to, the languages they are implemented in, relevant
news feeds, and activity indicators such as user reviews, number of developers, and
number of downloads. However, each OSS forge captures a different set of metadata
and as such, projects hosted in different forges are not directly comparable. Moreover,
none of these forges provides advanced source code, communication channel, and bug
tracking system content analysis features such as those proposed by OSSMETER .
Innovation: The OSSMETER platform integrates and extends components and results
produced by the projects discussed above in order to provide the comprehensive system
shown in Fig. 1 for analysing and monitoring OSS projects. The novel features of the
OSSMETER system are:
. a scalable and efficient data storage, which is responsible for storing and retrieving
project specific metadata, and metric measurements. The use of local disk storage is



Projects LOC Age of Code (days) # Developers # Commits Repository URL

odoo 2,016,254 2,955 315 93,180 GitHub https://github.com/odoo/odoo
Joomla 865,282 3,465 561 21,831 GitHub https://github.com/joomla/joomla-cms
Drupal 609,987 4,680 107 16,450 GitHub https://github.com/drupal/drupal
Ossmeter 537,343 349 7 1,796 GitHub https://github.com/ossmeter/ossmeter
Assimp 310,235 2,555 77 2,610 GitHub https://github.com/assimp/assimp
Libreplan 291,744 1,251 35 9,346 GitHub https://github.com/Igalia/libreplan
BIMServer 224,000 1,716 15 2,775 GitHub https://github.com/opensourceBIM/BIMserver
Hudson 223,033 3,345 73 1,476 Eclipse https://projects.eclipse.org/projects/technology.hudson
Alitheia-Core 53,874 2,675 11 4,815 GitHub https://github.com/istlab/Alitheia-Core
Epsilon 5,483,784 2,920 6 5,122 Eclipse https://projects.eclipse.org/projects/modeling.epsilon
ATL 563,439 1,684 8 3,661 Eclipse https://projects.eclipse.org/projects/modeling.mmt.atl

Table 1. List of projects used in the evaluation

also enabled to store temporary data required for the analysis, such as clones of source
repositories.
. support for automated classification of OSS projects and discovery of related projects
based on source code, communication channel and bug tracking system analysis through
the use of advanced NLP and text mining techniques. To this end different kinds of
measure components are provided, namely fact providers, metric providers, and fac-
toids. Fact providers perform utility measurements and store factual data that can be
consumed by other fact/metric providers. Metric providers optionally use computed
facts to measure one or more project aspects and store the result in the database. Fi-
nally, factoids can aggregate heterogeneous metric providers into a four-star system.
. an extensible platform implemented using a plug-in based approach (OSGi), which
is responsible for the integration of the various OSSMETER components, as well as
for their scheduling, execution, and orchestration. The OSSMETER platform is also
responsible of mining the OSS data, which are then passed to the various metrics
providers for analysis.
. a REST API that enables software engineering researchers to access calculated quality
indicators in order to perform additional analysis, and developers of 3rd party software
to provide added-value services on top of the OSSMETER platform.
. a usable web-application developed on top of the platform that enables end-users
to explore and compare OSS software in an intuitive manner. The presentation of the
information about software projects can be fully customised at the user level and it is
based on custom quality models.

7 Conclusion

OSSMETER is officially ended on March 31, 2015. When writing this document, the
use case providers were performing the evaluation of the OSSMETER technologies
by considering real OSS projects from different application domains. Some of the
projects considered during the evaluation are shown in Table 1. These projects were
chosen based on their characteristics, such as size, age, number of developers, and num-
ber of commits. The code of the OSSMETER platform is publicly available online at
https://github.com/ossmeter/ossmeter. It is possible to download a locally-
deployable version of the OSSMETER system that users can install locally – and if
needed extend – in order to monitor a custom selection of OSS projects of interest
and/or internal software development projects. By mentioning some facts updated at
June 2015, the OSSMETER GitHub repository counted more than 650K lines of code,
1,800 commits, 3 branches, 8 releases, and 8 contributors. More than 30 technical de-
liverables were produced to present the technologies developed during the project. The
official installation of OSSMETER is available at www.ossmeter.com.

https://github.com/odoo/odoo 
https://github.com/joomla/joomla-cms
https://github.com/drupal/drupal
https://github.com/ossmeter/ossmeter
https://github.com/assimp/assimp
https://github.com/Igalia/libreplan
https://github.com/opensourceBIM/BIMserver
https://projects.eclipse.org/projects/technology.hudson
https://github.com/istlab/Alitheia-Core
https://projects.eclipse.org/projects/modeling.epsilon
https://projects.eclipse.org/projects/modeling.mmt.atl
https://github.com/ossmeter/ossmeter
www.ossmeter.com


References
1. FLOSSMETRICS: Free/Libre/Open Source Software Metrics. http://www.flossmetrics.org/.
2. Ohloh Project. http://www.sqo-oss.org/.
3. QUALOSS: Quality in Open Source Software. http://www.qualoss.org/.
4. SQO-OSS: Alitheia Core. http://www.sqo-oss.org/.
5. Faheem Ahmed, Piers Campbell, Ahmad Jaffar, and Luiz Fernando Capretz. Managing

support requests in open source software project: The role of online forums. In ICCSIT
2009, pages 590–594. IEEE, August 2009.

6. Sophia Ananiadou and John Mcnaught. Text Mining for Biology And Biomedicine. Artech
House, Inc., Norwood, MA, USA, 2005.

7. Timothy Baldwin, David Martinez, Richard B. Penman, Su N. Kim, Marco Lui, Li Wang, and
Andrew MacKinlay. Intelligent linux information access by data mining: the ILIAD project.
In Procs. NAACL HLT 2010, pages 15–16. Association for Computational Linguistics, 2010.

8. Bora Caglayan, Ayse Bener, and Stefan Koch. Merits of using repository metrics in defect
prediction for open source projects. In Procs. of FLOSS’09, pages 31–36. IEEE Computer
Society, 2009.

9. Andrea Capiluppi and Karl Beecher. Structural complexity and decay in floss systems: An
inter-repository study. In Procs. of CSMR ’09, pages 169–178, 2009.

10. Andrea Capiluppi, Cornelia Boldyreff, and Klaas-Jan Stol. Successful reuse of software
components: A report from the open source perspective. In Open Source Systems: Grounding
Research - 7th IFIP WG 2.13 International Conference, OSS 2011, pages 159–176, 2011.

11. Robert Glass. Is open source software more reliable? an elusive answer. The Software
Practitioner, 11(6), 2001.

12. R. Grady. Effective Software Measurements. Prentice Hall, 1992.
13. Ahmed Hassan, Vahed Qazvinian, and Dragomir Radev. What’s with the attitude?: identify-

ing sentences with attitude in online discussions. In Procs. EMNLP’10, pages 1245–1255,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

14. Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture. Addison-
Wesley, 2000.

15. Capers Jones. Applied Software Measurement: Global Analysis of Productivity and Quality,
Third Edition. McGraw Hill, 2008.

16. A. Kloptchenko, T. Eklund, J. Karlsson, B. Back, H. Vanharanta, and A. Visa. Combining
data and text mining techniques for analysing financial reports: Research articles. Int. Journ.
of Intelligent Systems in Accounting, Finance and Management, 12:29–41, January 2004.

17. Philippe Kruchten. The 4+1 view model of architecture. IEEE Software, 12(5):88–93, 1995.
18. M.M. Lehman. Programs, life cycles, and laws of software evolution. In Proceedings IEEE,

volume 68, pages 1060–1976, 1980.
19. Hsin-Min Lu, Hsinchun Chen, Tsai-Jyh Chen, Mao-Wei Hung, and Shu-Hsing Li. Financial

text mining: Supporting decision making using web 2.0 content. IEEE Intelligent Systems,
pages 78–82, 2010.

20. Sandro Morasca, Davide Taibi, and Davide Tosi. Towards certifying the testing process of
open-source software: New challenges or old methodologies? In Procs. FLOSS’09, pages
25–30, Washington, DC, USA, 2009. IEEE Computer Society.

21. Li Wang, Su N. Kim, and Timothy Baldwin. Thread-level analysis over technical user forum
data. In Procs. of the Australasian Language Technology Association Workshop 2010, pages
27–31, Melbourne, Australia, December 2010.

22. James R. Williams, Davide Di Ruscio, Juri Di Rocco, and Dimitrios S. Kolovos. Models of
OSS Project Meta-Information: A Dataset of Three Forges. In MSR2014 at ICSE2014, 2014.

23. Alessandro Zanasi. Text Mining and its Applications to Intelligence, CRM and Knowledge
Management. WIT Press, 2007.


	OSSMETER: Automated Measurement and Analysis of Open Source Software

