Modularity

Jurgen Vinju
January 13th 2013

X

X

X

UNIVERSITEIT VAN AMSTERDAM




Plan

@ Moftivation
@ Conceptual exploration

@ A story of three designs of the same system

® Discussion




ineering

Software Eng

(T
N
O
2
P
c
O
Q
3
v

2oL

L2

O
Q

£

e

W

i
O

2
@

tdy e
(@)) C
£ S
= S
£ sanrE
& Loyeo
(@)) ol O
O 7y i
b \V o
aQ () O
@ ] ®

® Goals:

o Efficiency

& Quality

@ Conftinuity

™
~—
(]
—
>
S
(4]
>
C
(1)
-
>
©
©
N
()
C
e
=



3894 lines
367 ifs

174 cases

Wednesday, January 16, 13



Software Engineering is a immensely complex,
intferesting and above all multi-dimensional domain

(once you open your mind to all of it)

Wednesday, January 16, 13



Name three solutions to the
software engineering puzzle




n
!

o Its called “"modularity
@ High-level programming languages
@ Abstraction

@ Information hiding

@ Reuse
@ Separation of concerns
@ Aspects

@ Functions

@ Objects

Components



What is modularity?

@ What is modularity?

@ What is modular?

@ What is not modular?
® What is a module?

@ What is not a module?

@ What is a good module?

@ What is a bad module?




Examples of modules,

@ Java class @ C header file

@ Function @ HTML file

@ Jar file @ Haskell function
o Dll @ Prolog clause

@ Object ® Haskell module
@ Eclipse project @ BNF grammar

@ GNU project @ ANTLR grammar

Wednesday, January 16, 13



Original Modularity

@ David Parnas "On the criteria being used in decomposing
systems into modules” (1972)

@ Gauthier & Pont "Designing Systems Programs” (1970)
@ Motivations

@ Portability

@ Reuse

@ Scaling to more programmers

@ Key concept: information hiding

Wednesday, January 16, 13



A module is...

@ An encapsulation of software artifacts
@ With certain properties
@ separate

@ independent

@ (re)usable like lego, or
yet..maybe not quite
@ composable (ergo, dependent) like lego.

@ At a certain stage in the life-cycle, or more, or all
(build, release, deploy, test, run)

Wednesday, January 16, 13



Home grown modularity

@ "Module Algebra”, Bergstra, Heering & Klint
@ Modules for algebras
@ Algebra for modules

@ BTW, algebra in itself is about orthogonality,
compositionality

Wednesday, January 16, 13




Modules are separate

@ Function

@ Method they have

@ Class Identity (q name)
@ Clause

@ Dl

@ Jar




Modules are independent

they hide things

@ The body of function can change
@ The private parts of a class can change

@ The internals of a library can change

Wednesday, January 16, 13



Modules are usable

@ Function calling

@ Class importing, inheritance, referencing
@ Clause application

@ DIl loading

@ Jar loading

d ..

Wednesday, January 16, 13




Modules are composable

closed under one or more

s j composition operations
® Functions can call other functions

@ Classes can use, inherit from other classes
@ Jar files can be composed of other jar files

@ Yet there are so many software artifacts that
are separate, usable, but not easily
composable...

® Example: frameworks are not modules themselves




Who said there's a silver bullet?

The dark side

® Composition (a.k.a. “integration”) is hard!

@ Making actually composable modules is hard

@ Making actually independent modules is hard
@ Finding the right module in a large collection is hard
@ Understanding an existing module is hard

@ Testing a module in isolation is hard

@ Predicting the quality of a composition is hard

o Does modularity solve a problem, or just shift it? or does it even
make life harder than it used to be?

Wednesday, January 16, 13



/
on fails..

Andreas Zeller

Wednesday, January 16, 13



Think about the trade-off(s)
that modularity is involved in




Recap

@ Module = identity, encapsulation, hiding, composition
@ Modules at build-time, run-time, deployment-time, ...
@ One thing I skipped about modules... what?

@ Modules are the only solution

® Modules are hard and inftfroduce cost

@ Now, a story about 3 systems that do the same thing.




Part 2: Three Modular Designs




198*  Generating Interactive
Programming Environments

@ Take a language definition
® Generate a full blown IDE

@ Which includes everything a programmer may need to
program in this language (domain specific, general purpose,
whtvr)

@ Solution space:
@ Generating components

@ Generic (parametric) components

® Grammars and algebra and tferm rewriting




Wednesday, January 16, 13

i o Mudef
i) Lre=d

EI ASF+SDF M!ld-t'llvlﬂll‘lllll-.'lll
{Stz-us: |idl=

i ‘pecctimaticon lel=te Il t=Madnle Iclit-term  years
‘ iM} .!.'

e
=k
CCE

l\ #iiﬁ@M@iﬁiﬁ%ﬁiﬁ@%@ﬁi@iﬁ@ﬁ@iﬁ@%@iﬁ@%ﬁiﬁ@%ﬁ .

mi ll mnn |_| BOEI|93I‘IS JIIUMOIHJGM'SCDHSEGﬂBWIOMS MTI m

e CCL im| -ree taxt expand Aelp

'::azz;mmm;mwmmmmm&mmmjEfs% e 0_vrug | True

REYISE LTS B B BT,

B2a1l <I Tru> |» Bool2 = Zccli=
Baall < talsz 1> Boold = -coj

Dooll | Dool2 - True <| Dcclig
BEooll & BuulZ = Fuull <1 Zudlf

~ = Fals> 2| Bool 1y Trud




Version 1: Sparc & Lisp

@ Centaur Lelisp: great GUI programming (for those days)
@ SUN Sparc only, 16Mhz, IMb (perhaps even 4!)
@ Lisp is the beginning and end of programming

@ Lisp has macros

@ Lisp has functions

@ Lisp has side-effects

@ The Lisp language is simple and elegant

@ Yet, Lisp programs do not necessarily inherit those
qualifications...

Wednesday, January 16, 13



Version 1: result

@ A bunch of PhD theses
® A usable system
& > 100.000 LOC

@ A big ball of infer-dependent, incremental, state-full, highly optimized,
LeLisp programs

@ Incomprehensible

@ Not portable

& Really fast

@ Not modularly deployable

® The end of a road

Wednesday, January 16, 13



1997 Version 2: Generic, Language
Independent, Service-Oriented

@ Separation of concerns
@ coordination from computation
@ programming language independent
@ small tools connected to a generic bus
@ C, Java, TCL, Perl, Python, ASF+SDF, you name it

@ Release of parts (sum of the parts more than the
whole)

@ Bootstrapped on previous system

Wednesday, January 16, 13



Ko Cane Tosls
Son

® ) e

W e
-

R

| ext
editor

]

STtructure
editor

L

ﬂ e‘cke’r r__

operations

ToolBus

manader

_onfiguration Viodule

manader

lerm
store

Kernel

|Prettyprinter E

= component

=ToolBus

Wednesday, January 16, 13

= component with multiple instances

= interacts with




Version 2: modularity
everywhere

@ Tools connected to bus: build-fime and run-time modules
® Processes: composable coordination scripts

@ Packages: GNU build, test and deployment interfaces
(automake, autoconf)

@ GUI plugins (via Java reflection and jars)
@ Libraries, libraries, libraries

@ Code generators for C, Java, etc..

@ > 65 packages, > 150 tools, > 300.000 LOC (200.000
generated)

Wednesday, January 16, 13



Version 2: results

o (Re)use!! libraries, parser generator, rewriting engines, generic
IDE,

@ A usable system, no wait: a family of usable systems

@ Overhead. M4, autoconf, automake, gcc, shell scripts, ant, you
name if!

® Home grown incremental continuous integration system (sisyphus)
® Home grown source code package composition system (autobundle)
@ Too much modularity for our own good

@ Source code releases only (limited binary support)

Wednesday, January 16, 13



2007 : :
Version 3: back to basic

@ Everything on the JVM
@ Bootstrapped on previous system
@ Then Java
@ Then Bootstrapped on itself
@ Eclipse and IDE meta-tooling platform (IMP)

@ Only 3 components: run-time, language, IDE

Wednesday, January 16, 13



Rascal - RascalStandardLibeary /Benchmark rsc - Eclipse Platform

S0 senchmarkrse

Wl 101Companies
» B tlpselnrary
& mglad

-y

Bwcll
P> php 36237 [y essh //swn owinl,
» ot rascal-msr 36202 [swn + ssho//swn.ov
¥ % > RascalStandardUibeary 37683 [sve
> Gy box 37683
yGemo 37524

Ly oxperiments 37679
wylang 37680

>
» Lk echpse
>
v

»
»
»
»
»
»
»
»
»
»
v

»
»
»
»
»

Ly amerm 37584

LAt 3Ter0

Gy box 37647

Ly 90 37250

LNy Cav 37662

oy don 37581

Gy htmil 37470

Chjava 374N

oy ivm 37436

oy logic 35614

ke 35621

> Oy symax 35621

¥ oy uil 34723
’lo-'orm! nc J472)

Ly rascal 37680

Ly st 37582

Ly 372%0

2y wmd 37470

(e
v 5> util 37679

»

Oy imegration 37034
Ly tashs 37440
1, Benchmark jove 37488
ﬁlﬂxhﬂyl ryc 37488
I Eval jva 37638
Y Evalrsc 37659
B rormatrnc
Y LabeledGraph.ric 37354
J UnearProgramming java 3767¢
h UnearProgrammsing rac 37498
ﬂlu.navﬁog-m'm ngec 37 M
£} Math jrva 37661
Y varh ese 37658
£ Manbe lawe I7ATS

Wednesday, January 16, 13

-

»

n ™ Boxformat ric ™ reemanrsc

L

Abaves
Ascotazons
¥ Functons
benchmark
Benchmark
cpuTime
cpuTime
redTime
reaTime
wmlemTime
tystemTime
userTime
userTime
Y imports

.

module Benchmark

import 10;

public jove int cpuTime();

public int cpuTimelvolid () bdlock)
int now « cpulime();
bleck();
return cpuTime() - mow;

T Ambiguity repoets

Pacie cutput

s# Ble "¢ Store Nstory Terminate aterrupt Trace = O ’o,w bx Preslems

S5 Progress |5

Rascal [RascalSundardlibrary)
rascal>{ <i, i*i> | 1 < [1..108]}
rel[int, int): {
<78 ,6084>,
<16,256>,
<47,220%>,
«83,688%
<4,16>,
<30, 900>,
<89,7921>,
‘3-9>|
<43,184%
<S55, 325>,
<58,3364>,
«71 441

L50M of 244m

¢

=] =

Clear cutput




Version 3: results (2011)

@ 100.000 LOC

® more features than before, more users, more uses

@ Faster and simpler implementation (per feature)
® Completely documented
@ Many automated tests

@ internal libraries no longer sold/exposed so much...

@ Success factors:
@ Uses reflection to decouple front-end from back-end (!)
® Uses in-memory on-the-fly Java compilation instead of files
@ Uses simple abstract syntax classes and dynamic dispatch
@ Java JIT and GC deal well with the code we write

@ Long live Eclipse (yes really!)

Wednesday, January 16, 13



Discussions?

® Modularity at different levels

@ Modularity at different times

@ Modularity for different purposes
® Cost/Benefit of modularity

@ Styles and Standards

Wednesday, January 16, 13



