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Plan

@ Moftivation
@ Conceptual exploration

@ A story of three designs of the same system

® Discussion
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® Goals:

o Efficiency

& Quality

@ Conftinuity
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3894 lines
367 ifs

174 cases
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Software Engineering is a immensely complex,
intferesting and above all multi-dimensional domain

(once you open your mind to all of it)
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Name three solutions to the
software engineering puzzle




n
!

o Its called “"modularity
@ High-level programming languages
@ Abstraction

@ Information hiding

@ Reuse
@ Separation of concerns
@ Aspects

@ Functions

@ Objects

Components



What is modularity?

@ What is modularity?

@ What is modular?

@ What is not modular?
® What is a module?

@ What is not a module?

@ What is a good module?

@ What is a bad module?




Examples of modules,

@ Java class @ C header file

@ Function @ HTML file

@ Jar file @ Haskell function
o Dll @ Prolog clause

@ Object ® Haskell module
@ Eclipse project @ BNF grammar

@ GNU project @ ANTLR grammar
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Original Modularity

@ David Parnas "On the criteria being used in decomposing
systems into modules” (1972)

@ Gauthier & Pont "Designing Systems Programs” (1970)
@ Motivations

@ Portability

@ Reuse

@ Scaling to more programmers

@ Key concept: information hiding
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A module is...

@ An encapsulation of software artifacts
@ With certain properties
@ separate

@ independent

@ (re)usable like lego, or
yet..maybe not quite
@ composable (ergo, dependent) like lego.

@ At a certain stage in the life-cycle, or more, or all
(build, release, deploy, test, run)
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Home grown modularity

@ "Module Algebra”, Bergstra, Heering & Klint
@ Modules for algebras
@ Algebra for modules

@ BTW, algebra in itself is about orthogonality,
compositionality
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Modules are separate

@ Function

@ Method they have

@ Class Identity (q name)
@ Clause

@ Dl

@ Jar




Modules are independent

they hide things

@ The body of function can change
@ The private parts of a class can change

@ The internals of a library can change
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Modules are usable

@ Function calling

@ Class importing, inheritance, referencing
@ Clause application

@ DIl loading

@ Jar loading

d ..
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Modules are composable

closed under one or more

s j composition operations
® Functions can call other functions

@ Classes can use, inherit from other classes
@ Jar files can be composed of other jar files

@ Yet there are so many software artifacts that
are separate, usable, but not easily
composable...

® Example: frameworks are not modules themselves




Who said there's a silver bullet?

The dark side

® Composition (a.k.a. “integration”) is hard!

@ Making actually composable modules is hard

@ Making actually independent modules is hard
@ Finding the right module in a large collection is hard
@ Understanding an existing module is hard

@ Testing a module in isolation is hard

@ Predicting the quality of a composition is hard

o Does modularity solve a problem, or just shift it? or does it even
make life harder than it used to be?
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/
on fails..

Andreas Zeller
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Think about the trade-off(s)
that modularity is involved in




Recap

@ Module = identity, encapsulation, hiding, composition
@ Modules at build-time, run-time, deployment-time, ...
@ One thing I skipped about modules... what?

@ Modules are the only solution

® Modules are hard and inftfroduce cost

@ Now, a story about 3 systems that do the same thing.




Part 2: Three Modular Designs




198*  Generating Interactive
Programming Environments

@ Take a language definition
® Generate a full blown IDE

@ Which includes everything a programmer may need to
program in this language (domain specific, general purpose,
whtvr)

@ Solution space:
@ Generating components

@ Generic (parametric) components

® Grammars and algebra and tferm rewriting




Wednesday, January 16, 13

i o Mudef
i) Lre=d

EI ASF+SDF M!ld-t'llvlﬂll‘lllll-.'lll
{Stz-us: |idl=

i ‘pecctimaticon lel=te Il t=Madnle Iclit-term  years
‘ iM} .!.'

e
=k
CCE

l\ #iiﬁ@M@iﬁiﬁ%ﬁiﬁ@%@ﬁi@iﬁ@ﬁ@iﬁ@%@iﬁ@%ﬁiﬁ@%ﬁ .

mi ll mnn |_| BOEI|93I‘IS JIIUMOIHJGM'SCDHSEGﬂBWIOMS MTI m

e CCL im| -ree taxt expand Aelp

'::azz;mmm;mwmmmmm&mmmjEfs% e 0_vrug | True

REYISE LTS B B BT,

B2a1l <I Tru> |» Bool2 = Zccli=
Baall < talsz 1> Boold = -coj

Dooll | Dool2 - True <| Dcclig
BEooll & BuulZ = Fuull <1 Zudlf

~ = Fals> 2| Bool 1y Trud




Version 1: Sparc & Lisp

@ Centaur Lelisp: great GUI programming (for those days)
@ SUN Sparc only, 16Mhz, IMb (perhaps even 4!)
@ Lisp is the beginning and end of programming

@ Lisp has macros

@ Lisp has functions

@ Lisp has side-effects

@ The Lisp language is simple and elegant

@ Yet, Lisp programs do not necessarily inherit those
qualifications...
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Version 1: result

@ A bunch of PhD theses
® A usable system
& > 100.000 LOC

@ A big ball of infer-dependent, incremental, state-full, highly optimized,
LeLisp programs

@ Incomprehensible

@ Not portable

& Really fast

@ Not modularly deployable

® The end of a road
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1997 Version 2: Generic, Language
Independent, Service-Oriented

@ Separation of concerns
@ coordination from computation
@ programming language independent
@ small tools connected to a generic bus
@ C, Java, TCL, Perl, Python, ASF+SDF, you name it

@ Release of parts (sum of the parts more than the
whole)

@ Bootstrapped on previous system
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= component with multiple instances

= interacts with




Version 2: modularity
everywhere

@ Tools connected to bus: build-fime and run-time modules
® Processes: composable coordination scripts

@ Packages: GNU build, test and deployment interfaces
(automake, autoconf)

@ GUI plugins (via Java reflection and jars)
@ Libraries, libraries, libraries

@ Code generators for C, Java, etc..

@ > 65 packages, > 150 tools, > 300.000 LOC (200.000
generated)
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Version 2: results

o (Re)use!! libraries, parser generator, rewriting engines, generic
IDE,

@ A usable system, no wait: a family of usable systems

@ Overhead. M4, autoconf, automake, gcc, shell scripts, ant, you
name if!

® Home grown incremental continuous integration system (sisyphus)
® Home grown source code package composition system (autobundle)
@ Too much modularity for our own good

@ Source code releases only (limited binary support)

Wednesday, January 16, 13



2007 : :
Version 3: back to basic

@ Everything on the JVM
@ Bootstrapped on previous system
@ Then Java
@ Then Bootstrapped on itself
@ Eclipse and IDE meta-tooling platform (IMP)

@ Only 3 components: run-time, language, IDE
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Version 3: results (2011)

@ 100.000 LOC

® more features than before, more users, more uses

@ Faster and simpler implementation (per feature)
® Completely documented
@ Many automated tests

@ internal libraries no longer sold/exposed so much...

@ Success factors:
@ Uses reflection to decouple front-end from back-end (!)
® Uses in-memory on-the-fly Java compilation instead of files
@ Uses simple abstract syntax classes and dynamic dispatch
@ Java JIT and GC deal well with the code we write

@ Long live Eclipse (yes really!)
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Discussions?

® Modularity at different levels

@ Modularity at different times

@ Modularity for different purposes
® Cost/Benefit of modularity

@ Styles and Standards
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