
Software Analysis And Transformation

Rascal Lab: Sustainable Research Software
Infrastructure for Software Engineering

Jurgen J. Vinju

TU Eindhoven
NWO-I Centrum Wiskunde & Informatica

Swat.engineering BV

https://www.cwi.nl/research/groups/software-analysis-and-transformation

SWAT - Software Analysis And Transformation

Sustainable Research Software Infrastructure
[something we would all like to have]

[american scientist]

SWAT - Software Analysis And Transformation

Consensus
• Good news: Opportunity

• for sharing hard work on research methods

• for more and better empirical research output

• Bad news: No funding

• for the engineering of a lab

• for the maintenance of a lab

• Challenge: Creating a lab requires highly educated expertise

• Highly educated expertise is hard to find

• Highly educated expertise is hard to keep

SWAT - Software Analysis And Transformation

Aiming farther and higher

excellent research infrastructure is really really really expensive

SWAT - Software Analysis And Transformation

Raw data

Cleanly ordered
linkable

 factual data (safe)

Many adaptors, parsers

Well-defined and well researched
data enhancement algorithms

(threats to validity)

Open innovative research
both “nounal” (field studies) and “verbal” (tool development)

(exploratory, innovative, risky)

trusted
tools

RASCAL-LAB overview

Source Code Quality & Activity AnalysisOSSMETER

Language specific extension
inheritance loc ⨯ loc
invocation loc ⨯ loc
overriding loc ⨯ loc

sig
If,

Add,While

M3 = URI + Relations + ADTs

Language agnostic core
containment loc ⨯ loc
declarations loc ⨯ loc
use loc ⨯ loc sorts

Exp, Stat,
Decl, Type

Locations
java+class://java/util/List

project://myProject/src/java/util/List.java

6

Source Code Quality & Activity AnalysisOSSMETER

 Java

M3 Model

CC
metric

PHP C++ code

Commit
analysis

Call Graph
analysis

…python,
ada,bash

…

Managing variety by uniformity

7

The heavy lifting is in the front-ends
But, no analysis reuse is guaranteed:

analysis is often language specific

Source Code Quality & Activity AnalysisOSSMETER

Versatility, extensibility of “M3”

8

• rel[commitId, loc email] o rel[loc email, loc githubid]

infer committer identity for commit

•rel[loc patchLocation, commitId] o rel[commitId, loc email]

 infer committer spread over files
• rel[loc parent, loc child]<child, parent>+ o rel[loc patch, loc email]

lift syntactic code patches to “semantic patches”

•relations are sets of tuples: closed under composition

•IF the locations are indeed Universal Resource Identifiers

•incremental extraction per file

•compose and query over packages, projects, systems, ecosystems

SWAT - Software Analysis And Transformation

Enough “bragging rights”
• Rascal has been field-tested in research since 2009; some highlights:

• FP7 OSSMETER - OSS project analysis and reporting (code, activity, sentiments)

• H2020 CROSSMINER - Cross-project, cross-language OSS project analysis on the ecosystem level
(L. Ochoa, T. Degueule, et al.)

• SP&E 2022 - Migration of C++ legacy code (M.T. W. Schuts, R.T. A. Aarssen, P. M. Tielemans)

• ICSE 2017 - best paper on reflection in the Java ecosystem (D. Landman, A. Serebrenik)

• EMSE 2021 - breaking changes in Maven grand central (L. Ochoa, T. Degueule, J-R. Falleri)

• JSEP 2016 - on (non-existent) correlation between CC and SLOC (D. Landman, A. Serebrenik, E. Bouwers)

• IEEE SCAM 2019 Most influential paper award

• Rascal has been applied in education, bachelors’, masters’ courses and thesis projects since 2010, for example:

• Universiteit van Amsterdam - Software Evolution, Software Construction

• TU Eindhoven - part of Software Evolution, and Generic Language Technology

• Open Universiteit - Software Quality Management

• Rijksuniversiteit Groningen - Software Language Engineering

• Hundreds of master thesis projects (UvA, TUE, OU, RUG)

• Swat.engineering BV (2017) - industrial software language engineering expertise based on Rascal

SWAT - Software Analysis And Transformation

Ingredients: learned from the best
• “Software Knowledge Base” - centralized, integrated, persistent, makes tacit facts explicit

• Web and Semantic Web - addressable, linkable, compositional

• FAMIX, KDM, Rigi: accurate facts about source code. Clean intermediate formats.

• ASF+SDF: Algebraic Specification of Programming Languages: query syntax trees

• Datalog/RScript/Soul/Doop: relational query for analysis of graph-like data

• Scripting languages (Python, Ruby): versatility for a wide audience

• Functional programming: immutable data, type-safety

Rascal integrates analysis and transformation primitives
with intermediate representations linguistically.

2009 2023

SWAT - Software Analysis And Transformation

Based on open-source
• Open compilers:

• Java M3 (Shahi, Basten), based on Eclipse JDT

• ClAiR (Aarssen), based on Eclipse CDT

• Ada-AiR (Decampos, vd Laar), based on libadalang

• PHP-Analysis (Hills), based on PHP-Parser

• Libraries:

• ASM

• JGit

• JSoup

• Lucene

• Gson

• NanoHttpD

• ICU

• JDBC

• …

• all not [L]GPL

Mapping external data
sources can be optimized using

analysis of the open compiler’s code
(R. Aarssen, vd Storm, PEPM 2020,

<Programming> 2019)

SWAT - Software Analysis And Transformation

RASCAL-LAB

SWAT - Software Analysis And Transformation

false notion:
factor the “generally usable parts”
from existing research methods.

true notion:
use the experience from earlier research,

to design and validate
new reusable tools.

False because, these parts (often) do not exist,
and if they do they’re only “accurate enough”,

or of unknown accuracy…

SWAT - Software Analysis And Transformation

Challenges of a good SE lab

• Diversity of data sources: expertise of everything

• Linking data in unexpected ways: addressing facts

• Accuracy: precision, completeness, noise, bias

• Well-definedness, meaning of quantitative analytics and their aggregation

• Scale to ridiculous amounts of data (ecosystem scale)

• Openness (generality), to any ad-hoc specialized, innovative, measurement, reasoning

Quality attributes are over-
emphasized, now every step must be

high-fidelity and always

Infrastructure = isolating data
acquisition from analysis steps, into

reusable components: profit!

“no rocket science”

SWAT - Software Analysis And Transformation

Diversity
• RASCAL-LAB: 300 proposed components

• Enough for 5 engineers to work for 5 years; almost 2M€

• 25 new programming/scripting languages, dynamic and static

• Dozens of (AI) libraries, {web,rpc} frameworks modelled

• Natural language sources, ownership, authorship, sentiments

• Time: versions, differencing, trends

• Events (merges, commits, issues opened or closed)

• Log and trace data sources

• Cross linkage between languages, frameworks, data sources

• etc. etc. Design of data adapters
simply does not scale…

it has to be done carefully
with attention to detail and validated (tested, tested, tested)

SWAT - Software Analysis And Transformation

Linking

• The URI is a builtin data-type in Rascal: `loc`
• |java+interface:""///java/util/List|

• |file:""///Users/jurgen/.bashrc|

• |mailto:"//l.m.ochoa.venegas@tue.nl|

• Semantic web-style: all identification of artefacts is via URI

• Avoid any and all confusion about identification (not OO instances!)

• Binary relation of URI is the workhorse: rel[loc, loc] “many-to-many”

• Composing and linking data is union and join of binary relations.

• Immutable data means safety/correctness
Design of linkage does not scale either

every link has specific semantics
Java-JNI-C, Makefile-GCC-Python

SWAT - Software Analysis And Transformation

Accuracy: details, details…
• Requires exact syntax, names and types for code

• But, name/type analysis is not always exact

• The C pre-processor… grrrrr, Java’s type inference…

• Almost all data sources have inexact identifcation

• rel[loc, loc] => “many-to-many” to the rescue

• Fact extraction: get every relevant detail (high
resolution), introduce nothing extra (low noise)

• Naming: document it clearly “email” != “author”
No free lunch: we must not “abstract from” the
accuracy issue for any adapter, or any analysis

This is why analysis reuse “in-the-wild” is a threat-to-validity

Simultaneous under and over-approximation
(almost every code analysis)

found

true positive

false positive

true negative

false negative

real method calls

SWAT - Software Analysis And Transformation

The meaning of metrics
• Most analyses of code will be undecidable, e.g. “method call graph”

• We {over, under} approximate the edges

• Then, when we count the edges, right? “at least” and “at most”

• “Extended subset” leads to confused metrics

• Rascal LAB solution:

• document and test over- or under-approximation, of everything

• educate: avoid complex linking and combining of over- and under
approximated data

• Reproducible research methods and benchmarks to the rescue;
this is simply really hairy and a threat-to-validity of many research methods in
our field. [ICSE 2017, Landman]. So we have to re-iterate.

SWAT - Software Analysis And Transformation

Openness
• Rascal is a modular GPL scripting language at core, imperative and

functional at the same time.

• Any algebra, any relational calculus expression, any algorithm

• Experience: textbook algorithms in pseudocode, imperative,
declarative, logical style are translated (almost) 1-to-1 to Rascal

• Fewer internal threats: no marshaling data back-and-forth to a
database, logical language, graph analysis toolkit, term rewriter

• The “LAB” is an open collection of independently developed and
released components. Add your own, and ignore what you wish.

• BSD2 and Eclipse licenses; free to extend and free to use

• Extensive data-export facilities: online (web)server and offline

• all major formats and databases

SWAT - Software Analysis And Transformation

Lots of work to do!

SWAT - Software Analysis And Transformation

State of the proposal
• RASCAL LAB was submitted last year

• 3 excellent reviews, 1 hater

• not invited for a “site visit”

• Expecting final verdict from NWO today

• Next step: double or nothing

• twice as many components

• twice as many consortium partners

• twice as many expert engineers

• The community grew in the meantime, and keeps growing

• ada-air, rascal-git, lua-air revived, salix UIs, …

SWAT - Software Analysis And Transformation

Rascal Lab: Sustainable Research Software
Infrastructure for Software Engineering

it exists
already

it must
grow to make
more sense

something
many of us
could use

become a
consortium

partner!

become a
rascal
user!

become a
rascal

contributor!

Jurgen.Vinju@cwi.nl

