
Introducing Rascal for meta programming
and 

Eyeballing the Cyclomatic Complexity Metric

Jurgen Vinju
@RMOD, INRIA Lille

May 11th 2012

SEN1:SWAT ATEAMS

Saturday, May 12, 12

http://blog.inria.fr/se-seminars/fr/introducing-rascal-for-meta-programming/
http://blog.inria.fr/se-seminars/fr/introducing-rascal-for-meta-programming/


CWI SWAT   INRIA ATEAMS 
SoftWare Analysis and Transformation

Meta programming & DSLs

Parsing, Term Rewriting

ASF+SDF, Rascal, ToolBus, ATerm

Analysis and Transformation based on rEliAble tool coMpositionS

RScript, Rascal

Eclipse IMP

⌘

Saturday, May 12, 12



Rascals
Paul
Klint

Jurgen
Vinju

Tijs
v/d Storm

Bob
Fuhrer

IMP

Saturday, May 12, 12



Credits

Esprit: GIPE I & GIPE II (90’s)

ASF+SDF Meta-Environment (00’s)

Eclipse

IDE Meta Tooling Platform (IMP)

Rascal is a part of IMP now

Rascal draws inspiration from 
countless other projects (see 
SCAM 2009 paper for references)

“Generation of Interactive Programming Environments”
How Tijs & I were drafted...
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Why does CWI:SEN1 invest in a meta-
programming language?

Why does UvA, OU, et al. teach it?

Why?

What?
What is it from a bird’s eye view

What is it used for? (one example)

(¬How)
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We study software systems: 
their design, their construction 
and their inevitable evolution. 

 learning to understand software systems 
 learning to improve them 
 focusing on complexity as the primary quality attribute
 studying the causes of software complexity
 studying solutions to get simpler software

(NASA mission control, apollo 13)
Saturday, May 12, 12



Software is not so difficult to understand, 
but it is extremely complex

(Cari Buziak, Celtic Knot)
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Software - large and complex structures of 
computer instructions, written and read by 

man, executed by computers

“marked by a senseless, disorienting, often menacing 
complexity...” (Infoplease.com)

Kafkaesque
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Size does matter

A normal company may own 3x1010 lines of code - 
750,000,000 single column pages. 

It goes a few times around the globe, if printed. 

At 1 minute per page (?) that might take 
approximately 1427 years to read.

Ergo, nobody has ever understood it, or will ever fully 
understand it.
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Research

Tools

Application

Meta Tool     

Why we 
need Rascal 
@CWInl

Every week 
a new tool
a new DSL
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Rascal 
is 
a 

DSL 
for
meta

programming

Code

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation

Conversion

Analysis

Execution

Rendering

(Brueghel, Tower of Babel)
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Rascal 
is 
a 

DSL 
for
meta

programming

Code

Model

Picture

GenerationExtraction

FormalizationVisualization

Transformation

Conversion

Analysis

Execution

Rendering

=
moving
between

representations
of 

source code
(Brueghel, Tower of Babel)
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Rascal is/will be
a “ONE-STOP-SHOP”

for

analysis
transformation

generation
visualization

IDE construction
etc.

(meta programming)
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3 Meta Software Challenges

Code

Model

Picture

1: Diversity
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3 Meta Software Challenges

Code

Model

Picture
2:Multi-disciplinary

(Raphael, Parnassus)
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3 Meta Software Challenges

Code

Model

Picture

3: Precision 

vs. 
Efficiency
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Ingredients
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Ingredients

Familiar 
notation

IDE 
integration

Interactive 
Documentation

Key 
enablers
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Ingredients

Syntax 
definition

Term 
Rewriting

Relational 
Calculus

Integration to tackle multi-
disciplinary nature

Familiar 
notation

IDE 
integration

Interactive 
Documentation

Key 
enablers
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Ingredients

Syntax 
definition

Term 
Rewriting

Relational 
Calculus

Integration to tackle multi-
disciplinary nature

Generic 
programming

Language 
parametric

Programming techniques 
for dealing with diversity 
and scale

Modularity

Familiar 
notation

IDE 
integration

Interactive 
Documentation

Key 
enablers
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Get more detail
http://www.rascal-mpl.org 

http://tutor.rascal-mpl.org

http://ask.rascal-mpl.org

GTTSE 2009; SCAM 2009; FTFJP 2010; 
TOOLS 2011; SLE 2011; ICSE 2011;

Rascal is a domain specific 

programming language for 

software research

(Daily Painting: Seascape, Message in a Bottle?
painting by artist Nancy Pouche)
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Eyeballing Cyclomatic 
Complexity Metric

Ongoing work with Mike Godfrey

Typical application of Rascal

Submitted to SCAM (Very cool Working 
Conference on Source Code Analysis and 
Manipulation, http://www.ieee-scam.org
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Cyclomatic Complexity

Simple metric

More and more popular

Finding “complex” code

It is a metric!

But what does it measure?
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McCabe Cyclomatic 
Complexity

Is defined on the control flow graph of a 
procedure/method/unit of code

Measures the number of linear independent 
paths through the code

Upperbound for the number of tests at least 
needed

Indicate understandability because ...

[wikipedia]
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i = 0;

goto body;

loop:

if (i == 10)

goto done;

i++;

body:

print(i);

goto loop;

done:

i = 0;

do

print(i);

while (i++ != 10);

Figure 1. These two C-language snippets

have the same functionality and the same CC

value, yet the structured version on the right

seems much simpler to understand.

tionally equivalent procedure using GOTOs and “spaghetti”
logic, yet with the same CC value (Figure 1 shows a some-
what contrived example in the C language). The procedural
code is usually considered to be easier to understand — and
harder to misunderstand — than its unstructured equivalent,
yet the CC metric does not distinguish between them.

At the same time, there exist control flow idioms that
lead to high CC, yet would seem to be fairly easy to un-
derstand. For example, a large state machine that is imple-
mented as a number of switch statements with a case for
each outgoing edge of each state will result in high CC. Yet
this design pattern seems easy to grasp conceptually, since
it conforms to our mental model of a state-machine, and
each of the case statements has the same general shape:
test a condition, then activate the next state. So, a high CC
value may predict low understandability where the code is
in fact fairly easy to understand; that is, CC may have false
positives.

The case for CC in-the-large — i.e., aggregated over a
large software system — is that systems that have many
methods with high CC generally exhibit more bugs and
higher maintenance costs [4]. For example, the SIG main-
tainability model aggregates CC by counting the percentage
of LOC that contribute to methods with a high CC (> 10)
as compared to the total LOC of a system [5]. Their model
is applied on a daily basis to rapidly identify the “suspect”
parts of large software systems.

Although the correlation of high aggregated CC with
higher-than-expected maintenance problems has intuitive
appeal, they may be several underlying factors at play (Fig-
ure 2 ). For example, the CC metric has been shown to
correlate strongly with method size [3]. So, if a large sys-
tem has many methods with high CC, then these are prob-
ably also the longer methods; in turn, this may indicate an
inability of the programmers to form coherent abstractions
and build robust, reusable units of code. So, is it this in-

Bad Programmer

Methods with many branches Large Methods

Many control flow paths Misunderstanding

High CC Metric Failure

creates

implies

creates

measured-by
leads to

leads to

correlation

correlation
leads to

Figure 2. Two comparable explanations for

correlation of high CC with failure.

ability for high quality design that is causing poor under-
standability in many different ways, or is it just the high CC
values?

To the best of our knowledge, there has been no analysis
yet published that isolates the CC metric from other factors
concerning software understanding and explicitly addresses
the influence of CC on the effectiveness of programmers
while doing maintenance. This paper aims to shed light in
this area by studying the varieties of code control flow pat-
terns across a set of large open source Java systems.

Contributions. In this paper we investigate the relation
between the shape of control flow patterns observed in Java
methods to their CC metric values. We introduce the no-
tions of abstract control flow patterns and compressed con-
trol flow patterns, which allow us to produce statistical evi-
dence that the CC metric indeed does not adequately model
the likely complexity of control flow in Java methods.

2 Observing control flow patterns

The control flow graph of a method is constructed from
statements such as if, while, break, and return that
may break the “straight line” flow of execution (Table 1 has
a full list for Java). These statements define the shape of the
control flow graph, each adding nodes and edges.2

The CC metric makes a big conceptual leap in abstract-
ing the shape of a method. It characterizes the control flow
graph as simply the sum of the fan-outs of its nodes, and
in so doing it flattens the dimensionality of the graph into a

2Some definitions of CC model expressions, such as logical AND and
OR, that can cause different branching behaviour due to short circuit eval-
uation. For simplicity, we consider control flow only at the statement level.

2
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But...

i = 0;

goto body;

loop:

if (i == 10)

goto done;

i++;

body:

print(i);

goto loop;

done:

i = 0;

do

print(i);

while (i++ != 10);

Figure 1. These two C-language snippets

have the same functionality and the same CC

value, yet the structured version on the right

seems much simpler to understand.

tionally equivalent procedure using GOTOs and “spaghetti”
logic, yet with the same CC value (Figure 1 shows a some-
what contrived example in the C language). The procedural
code is usually considered to be easier to understand — and
harder to misunderstand — than its unstructured equivalent,
yet the CC metric does not distinguish between them.

At the same time, there exist control flow idioms that
lead to high CC, yet would seem to be fairly easy to un-
derstand. For example, a large state machine that is imple-
mented as a number of switch statements with a case for
each outgoing edge of each state will result in high CC. Yet
this design pattern seems easy to grasp conceptually, since
it conforms to our mental model of a state-machine, and
each of the case statements has the same general shape:
test a condition, then activate the next state. So, a high CC
value may predict low understandability where the code is
in fact fairly easy to understand; that is, CC may have false
positives.

The case for CC in-the-large — i.e., aggregated over a
large software system — is that systems that have many
methods with high CC generally exhibit more bugs and
higher maintenance costs [4]. For example, the SIG main-
tainability model aggregates CC by counting the percentage
of LOC that contribute to methods with a high CC (> 10)
as compared to the total LOC of a system [5]. Their model
is applied on a daily basis to rapidly identify the “suspect”
parts of large software systems.

Although the correlation of high aggregated CC with
higher-than-expected maintenance problems has intuitive
appeal, they may be several underlying factors at play (Fig-
ure 2 ). For example, the CC metric has been shown to
correlate strongly with method size [3]. So, if a large sys-
tem has many methods with high CC, then these are prob-
ably also the longer methods; in turn, this may indicate an
inability of the programmers to form coherent abstractions
and build robust, reusable units of code. So, is it this in-

Bad Programmer

Methods with many branches Large Methods

Many control flow paths Misunderstanding

High CC Metric Failure

creates

implies

creates

measured-by
leads to

leads to

correlation

correlation
leads to

Figure 2. Two comparable explanations for

correlation of high CC with failure.

ability for high quality design that is causing poor under-
standability in many different ways, or is it just the high CC
values?

To the best of our knowledge, there has been no analysis
yet published that isolates the CC metric from other factors
concerning software understanding and explicitly addresses
the influence of CC on the effectiveness of programmers
while doing maintenance. This paper aims to shed light in
this area by studying the varieties of code control flow pat-
terns across a set of large open source Java systems.

Contributions. In this paper we investigate the relation
between the shape of control flow patterns observed in Java
methods to their CC metric values. We introduce the no-
tions of abstract control flow patterns and compressed con-
trol flow patterns, which allow us to produce statistical evi-
dence that the CC metric indeed does not adequately model
the likely complexity of control flow in Java methods.

2 Observing control flow patterns

The control flow graph of a method is constructed from
statements such as if, while, break, and return that
may break the “straight line” flow of execution (Table 1 has
a full list for Java). These statements define the shape of the
control flow graph, each adding nodes and edges.2

The CC metric makes a big conceptual leap in abstract-
ing the shape of a method. It characterizes the control flow
graph as simply the sum of the fan-outs of its nodes, and
in so doing it flattens the dimensionality of the graph into a

2Some definitions of CC model expressions, such as logical AND and
OR, that can cause different branching behaviour due to short circuit eval-
uation. For simplicity, we consider control flow only at the statement level.

2
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And...

we then easily confirm or deny the possible existence of
linear correlation.

2.2.2 Results

Figure 4 depicts the relation between the CFC and CC of
CFPs. The top right scatter plot zooms in on the top left
scatter plot for the first 50 sizes of patterns. We see that
there appears to be linear correlation. Cyclomatic complex-
ity makes up for between 30% and 100% of the size of the
pattern, which is consistent with results observed by Jbara
et al. [8].

Yet, when we look more closely, the smaller pat-
terns cover practically all possible cyclomatic complexities
within the 30% to 100% range. For the larger methods, if
we focus on each size of method in turn (imagine a verti-
cal bar shooting upwards from any position on the x-axis),
then we may observe that cyclomatic complexity is pretty
randomly distributed in this range as well.

The distance to the least-squares linear fit is plotted in
the bottom-right of Figure 4. It shows the error gets pro-
gressively worse for larger methods, as well as errors that
are in the same order of magnitude as the measure itself for
smaller errors.

2.2.3 Analysis

The plots in Figure 4 show how unrelated the CC metric is
to CFC. CC is distributed between 30% and 100% of the
control flow for every specific size. So, there is a rough
linear relation between CFC and CC, but this is probably
caused by the size of the method. Larger methods have both
more control flow and more control flow splits. However,
between control flow splits and control flow in general there
seems no clear cut relation.

We may hypothesize that a linear causal relation exists
between the size of the method and a minimum amount of
branches that will be at least used in most methods; this
would explain the results of Jbara et al. [8], and at the same
time account for the broad spectrum of values that we see
in our results.

From the distribution patterns of CC and CFC we see that
CFC is much flatter and thus has more distinctive capability
then CC does. CC has a tendency of mapping larger set of
methods into the same bucket than CFC does. Specifically
around before threshold of 10, which is commonly used as a
badness threshold for CC [5], we see that CC equates many
different kinds of CFPs. From this we may stipulate that in
the lower regions, CC misses the accuracy to detect prob-
lematic CFPs.

For the really large methods, with CC > 20, one could
argue that the distinction is mostly irrelevant. The meth-
ods become hard to understand and high CC in this cases
indicates poor understandability just as accurately as CFC

or LOC do. Still, in medium-range methods, a relatively
“harmless” CC count easily masks messy control flow full
of breaks, continues and similar (and this can be ob-
served in Figure 4 under the 10 bar for CC which has several
entries above 20 for CFC).

From the above analysis we learn that indeed the other
control flow statements, apart from the ones identified by
CC, are a relevant factor in real open-source Java software
systems. Of course, this analysis is not conclusive, but it
seems clear that CC is not an accurate predictor for CFC.

At least to understand the control flow of a method, one
could argue that you would have to digest all of its control
flow statements. If CC cannot approximate CFC, then this
casts serious doubt on the ability of CC to predict the more
difficult to define “understandability” of a method at all.

2.3 How overzealous is CC?

The previous analysis focused on finding code that may
be more complex than CC indicates, but the other side is
equally interesting. What methods does CC label “com-
plex” that are perhaps quite easy to understand?

2.3.1 Method

We argue that there are CFPs that are easy to understand,
and that these patterns have a certain regularity, or pattern
to them. For example, the following pattern has high CC
(9), but is easy to understand due to its repetitive nature:

switch(?) {
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;

}

If such regularity occurs often, then we may question the
relevance of the CC metric when applied to real software
systems.

We now introduce a way of observing regularity in CFPs
to able to measure later how often regular patterns in control
flow occur.

A compressed control flow pattern (CCFP) is a
control flow pattern where each list e1,e2, . . . ,en
of n > 1 consecutive tree nodes in the pattern that
are structurally equal is replaced by a single node
R (e1). Compression is performed bottom-up re-
cursively, such that nested regularity may emerge
and be compressed again.

5
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Questions

What is the basis of CC measuring understandability?

What does control flow look like in the first place?

Initial questions

how many times does CC make methods look more 
complex than they really are? (false positives)

how many times does CC make methods look simpler 
than they really are? (false negatives)

Saturday, May 12, 12



Problem

There are too many methods in the world to 
study

How can we generalize over something that is so 
utterly diverse?
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Idea: control flow patterns
Use a meta programming solution! (of course!)

case catch do-while

if for foreach

while

block break continue

labeled return switch

synchronized throw try

Table 1. The CC of a Java method is calculated

by adding one for each occurrence of each

keyword in the first list. The CFC is calculated

by adding one for each occurrence of all of the

keywords in both lists.

single number. This flattening makes comparisons and di-
agnoses easier, but at the cost of reduced precision and loss
of information. In this work, we seek a middle ground by
reducing some of the detail of a control flow graph while
retaining its essential shape; this is very much in the spirit
of program dependence graphs (PDG) as used in program
slicing and token-based clone detection tools.

We start by observing that the CC metric represents only
a subset of all control flow statements and their net effect
on the construction of the corresponding graph. One must
ask: If CC is intended to measure understandability of the
control flow of a method, can it afford to ignore important
semantic details, such as fall-through and disruptive jumps
introduced by break, continue, return, and throw
statements? These statements can significantly influence
the control flow semantics of method body, yet because they
do not add linearly independent paths they are ignored by
the CC metric.

2.1 Computing control flow patterns

In order to study a very large number of methods we
introduce the notion of a “control flow pattern”. Instead of
studying each method as it occurs in the wild with full AST-
level information, we map the methods to a normalized for-
mat that removes inessential details. More precisely,

A control flow pattern (CFP) is an abstract syntax
tree of a method from which all nodes that are
not one of the control flow constructs have been
replaced by ?, and list elements that have been
reduced to ? are removed.

Here is an example Java snippet that is reduced to a CFP:
while (x >= 0) {
if (x % 2 == 0)

print("even");

x--;

}
return 1;

while (?) {
if (?)
?

}
return ?;

Project #Meth #Pat #Patcomp #Comp
compendium 7736 1271 (16%) 1234 (15%) 455 (36%)
Tomcat70 16018 2211 (13%) 2158 (13%) 931 (43%)
dsbudget 306 64 (20%) 64 (20%) 18 (28%)
xml-
commons-
external

3346 91 (2%) 89 (2%) 30 (33%)

apache-ant 10278 1391 (13%) 1349 (13%) 555 (41%)
bcel 3076 286 (9%) 268 (8%) 120 (44%)
hsqldb 5326 1013 (19%) 969 (18%) 438 (45%)
smallsql 2556 353 (13%) 332 (12%) 158 (47%)
Merged 48642 5633 (11%) 5434 (11%) 2455 (43%)

Table 2. Control flow pattern statistics.

2.1.1 Method

We have collected CFPs for eight large open source
Java systems: compendium, Tomcat70, dsbudget,
xml-commons-external, apache-ant, bcel,
hsqldb, and smallsql. First, we parsed all source
code for these systems and collected the abstract syntax
trees of each method using the JDT library of Rascal [6].
This library accesses the Java parser of the Eclipse JDT
and produces abstract syntax trees in term format. Then
we applied a tree transformation to reduce each method to
its representative pattern. This transformation performs a
single bottom-up pass of each tree.

While applying this transformation we construct a table
that maps each original method to its reduced pattern. This
table is the basic model from which further metrics and
statistics are computed. It also allows us to trace back to
the set of methods in the source code that a single pattern is
produced by.

2.1.2 Results

Table 2 summarizes the effect of reducing methods to pat-
terns. In our dataset, we found that about 11% of the meth-
ods introduced a new pattern, while the remaining 89%
shared a pattern with at least one other method. Some
patterns had a very high occurrence rate; for example, the
trivial patterns of “null” and “calculate-an-expression-and-
return-it” had more than 2000 occurrences each.

The other frequencies are depicted in Figure 3, showing
the first 500 patterns that have a frequency more than 1 and
less than 2000. Smaller patterns occur more often.

2.1.3 Analysis

In theory the number of possible CFPs increases exponen-
tially with their size. It is in O(ns), where n is the size and s
the amount of types of control flow constructs. In practice,

3
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case catch do-while

if for foreach

while

block break continue

labeled return switch

synchronized throw try

Table 1. The CC of a Java method is calculated

by adding one for each occurrence of each

keyword in the first list. The CFC is calculated

by adding one for each occurrence of all of the

keywords in both lists.

single number. This flattening makes comparisons and di-
agnoses easier, but at the cost of reduced precision and loss
of information. In this work, we seek a middle ground by
reducing some of the detail of a control flow graph while
retaining its essential shape; this is very much in the spirit
of program dependence graphs (PDG) as used in program
slicing and token-based clone detection tools.

We start by observing that the CC metric represents only
a subset of all control flow statements and their net effect
on the construction of the corresponding graph. One must
ask: If CC is intended to measure understandability of the
control flow of a method, can it afford to ignore important
semantic details, such as fall-through and disruptive jumps
introduced by break, continue, return, and throw
statements? These statements can significantly influence
the control flow semantics of method body, yet because they
do not add linearly independent paths they are ignored by
the CC metric.

2.1 Computing control flow patterns

In order to study a very large number of methods we
introduce the notion of a “control flow pattern”. Instead of
studying each method as it occurs in the wild with full AST-
level information, we map the methods to a normalized for-
mat that removes inessential details. More precisely,

A control flow pattern (CFP) is an abstract syntax
tree of a method from which all nodes that are
not one of the control flow constructs have been
replaced by ?, and list elements that have been
reduced to ? are removed.

Here is an example Java snippet that is reduced to a CFP:
while (x >= 0) {
if (x % 2 == 0)

print("even");

x--;

}
return 1;

while (?) {
if (?)
?

}
return ?;

Project #Meth #Pat #Patcomp #Comp
compendium 7736 1271 (16%) 1234 (15%) 455 (36%)
Tomcat70 16018 2211 (13%) 2158 (13%) 931 (43%)
dsbudget 306 64 (20%) 64 (20%) 18 (28%)
xml-
commons-
external

3346 91 (2%) 89 (2%) 30 (33%)

apache-ant 10278 1391 (13%) 1349 (13%) 555 (41%)
bcel 3076 286 (9%) 268 (8%) 120 (44%)
hsqldb 5326 1013 (19%) 969 (18%) 438 (45%)
smallsql 2556 353 (13%) 332 (12%) 158 (47%)
Merged 48642 5633 (11%) 5434 (11%) 2455 (43%)

Table 2. Control flow pattern statistics.

2.1.1 Method

We have collected CFPs for eight large open source
Java systems: compendium, Tomcat70, dsbudget,
xml-commons-external, apache-ant, bcel,
hsqldb, and smallsql. First, we parsed all source
code for these systems and collected the abstract syntax
trees of each method using the JDT library of Rascal [6].
This library accesses the Java parser of the Eclipse JDT
and produces abstract syntax trees in term format. Then
we applied a tree transformation to reduce each method to
its representative pattern. This transformation performs a
single bottom-up pass of each tree.

While applying this transformation we construct a table
that maps each original method to its reduced pattern. This
table is the basic model from which further metrics and
statistics are computed. It also allows us to trace back to
the set of methods in the source code that a single pattern is
produced by.

2.1.2 Results

Table 2 summarizes the effect of reducing methods to pat-
terns. In our dataset, we found that about 11% of the meth-
ods introduced a new pattern, while the remaining 89%
shared a pattern with at least one other method. Some
patterns had a very high occurrence rate; for example, the
trivial patterns of “null” and “calculate-an-expression-and-
return-it” had more than 2000 occurrences each.

The other frequencies are depicted in Figure 3, showing
the first 500 patterns that have a frequency more than 1 and
less than 2000. Smaller patterns occur more often.

2.1.3 Analysis

In theory the number of possible CFPs increases exponen-
tially with their size. It is in O(ns), where n is the size and s
the amount of types of control flow constructs. In practice,

3
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What does CC miss?

CC metric

Patterns

Size of 
patterns

code Reduce

MeasureMeasure
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Figure 4. Comparing control flow complexity to cyclomatic complexity of control flow patterns

The CCFP for the above example would be:

switch (?) {
R (case ? : return ?;)

}

We can trivially extend the CFC metric to CCFPs now:

The compressed control flow complexity (CCFC)
of a method is the number of nodes in the CCFP
of that method.

Note that for any method m, CCFC(m)  CFC(m), but
there is no such inequality for CC. The reason is that CCFC
could be more than CC, as well as less.

Our hypothesis is now that there should be many meth-
ods that are highly compressible. If so, then we deduce that
the CC metric overestimates control flow understandability
often. Using the above definition of a CCFP we have re-
duced all the patterns of the systems in Table 2. This now
allowed us to plot the relation between the sizes of com-
pressed patterns and normal patterns, and their respective
distribution patterns. From this we can see how often there

is repetition and how much repetition there is in the control
flow of real Java methods.

2.3.2 Results

In Table 2 we see that compression occurs in more than 40%
of all the patterns. At the same time, the statistics show that
compression does not collapse many patterns together.

In Figure 5 we can read the compression per CFP. We
see that compression happens often (on all sizes of pat-
terns), and that compression rates can be high for all sizes.
Smaller patterns, if they compress, more often compress a
little than a lot. Larger patterns, of which there are a lot less,
do compress extremely in many cases. We have plotted lin-
ear, quadratic and square root fits (using least squares) such
that it is clearly visible that the data set clearly favors small
compression rates (many dots are printed on top of each
other). The square root fits best for this data set, confirming
that compression is more effective on larger patterns.

We have looked up a number of the larger methods to
see what code would compress. In the systems we found
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The CCFP for the above example would be:

switch (?) {
R (case ? : return ?;)

}

We can trivially extend the CFC metric to CCFPs now:

The compressed control flow complexity (CCFC)
of a method is the number of nodes in the CCFP
of that method.

Note that for any method m, CCFC(m)  CFC(m), but
there is no such inequality for CC. The reason is that CCFC
could be more than CC, as well as less.

Our hypothesis is now that there should be many meth-
ods that are highly compressible. If so, then we deduce that
the CC metric overestimates control flow understandability
often. Using the above definition of a CCFP we have re-
duced all the patterns of the systems in Table 2. This now
allowed us to plot the relation between the sizes of com-
pressed patterns and normal patterns, and their respective
distribution patterns. From this we can see how often there

is repetition and how much repetition there is in the control
flow of real Java methods.

2.3.2 Results

In Table 2 we see that compression occurs in more than 40%
of all the patterns. At the same time, the statistics show that
compression does not collapse many patterns together.

In Figure 5 we can read the compression per CFP. We
see that compression happens often (on all sizes of pat-
terns), and that compression rates can be high for all sizes.
Smaller patterns, if they compress, more often compress a
little than a lot. Larger patterns, of which there are a lot less,
do compress extremely in many cases. We have plotted lin-
ear, quadratic and square root fits (using least squares) such
that it is clearly visible that the data set clearly favors small
compression rates (many dots are printed on top of each
other). The square root fits best for this data set, confirming
that compression is more effective on larger patterns.

We have looked up a number of the larger methods to
see what code would compress. In the systems we found
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The CCFP for the above example would be:

switch (?) {
R (case ? : return ?;)

}

We can trivially extend the CFC metric to CCFPs now:

The compressed control flow complexity (CCFC)
of a method is the number of nodes in the CCFP
of that method.

Note that for any method m, CCFC(m)  CFC(m), but
there is no such inequality for CC. The reason is that CCFC
could be more than CC, as well as less.

Our hypothesis is now that there should be many meth-
ods that are highly compressible. If so, then we deduce that
the CC metric overestimates control flow understandability
often. Using the above definition of a CCFP we have re-
duced all the patterns of the systems in Table 2. This now
allowed us to plot the relation between the sizes of com-
pressed patterns and normal patterns, and their respective
distribution patterns. From this we can see how often there

is repetition and how much repetition there is in the control
flow of real Java methods.

2.3.2 Results

In Table 2 we see that compression occurs in more than 40%
of all the patterns. At the same time, the statistics show that
compression does not collapse many patterns together.

In Figure 5 we can read the compression per CFP. We
see that compression happens often (on all sizes of pat-
terns), and that compression rates can be high for all sizes.
Smaller patterns, if they compress, more often compress a
little than a lot. Larger patterns, of which there are a lot less,
do compress extremely in many cases. We have plotted lin-
ear, quadratic and square root fits (using least squares) such
that it is clearly visible that the data set clearly favors small
compression rates (many dots are printed on top of each
other). The square root fits best for this data set, confirming
that compression is more effective on larger patterns.

We have looked up a number of the larger methods to
see what code would compress. In the systems we found
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So

If we assume that to understand a method 
you have to understand all of its control flow

Then CC in theory does not measure 
accurately enough

And in practise CC indeed does not predict 
the sizes of methods at all

So we have to do more work
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Next idea: compress!

we then easily confirm or deny the possible existence of
linear correlation.

2.2.2 Results

Figure 4 depicts the relation between the CFC and CC of
CFPs. The top right scatter plot zooms in on the top left
scatter plot for the first 50 sizes of patterns. We see that
there appears to be linear correlation. Cyclomatic complex-
ity makes up for between 30% and 100% of the size of the
pattern, which is consistent with results observed by Jbara
et al. [8].

Yet, when we look more closely, the smaller pat-
terns cover practically all possible cyclomatic complexities
within the 30% to 100% range. For the larger methods, if
we focus on each size of method in turn (imagine a verti-
cal bar shooting upwards from any position on the x-axis),
then we may observe that cyclomatic complexity is pretty
randomly distributed in this range as well.

The distance to the least-squares linear fit is plotted in
the bottom-right of Figure 4. It shows the error gets pro-
gressively worse for larger methods, as well as errors that
are in the same order of magnitude as the measure itself for
smaller errors.

2.2.3 Analysis

The plots in Figure 4 show how unrelated the CC metric is
to CFC. CC is distributed between 30% and 100% of the
control flow for every specific size. So, there is a rough
linear relation between CFC and CC, but this is probably
caused by the size of the method. Larger methods have both
more control flow and more control flow splits. However,
between control flow splits and control flow in general there
seems no clear cut relation.

We may hypothesize that a linear causal relation exists
between the size of the method and a minimum amount of
branches that will be at least used in most methods; this
would explain the results of Jbara et al. [8], and at the same
time account for the broad spectrum of values that we see
in our results.

From the distribution patterns of CC and CFC we see that
CFC is much flatter and thus has more distinctive capability
then CC does. CC has a tendency of mapping larger set of
methods into the same bucket than CFC does. Specifically
around before threshold of 10, which is commonly used as a
badness threshold for CC [5], we see that CC equates many
different kinds of CFPs. From this we may stipulate that in
the lower regions, CC misses the accuracy to detect prob-
lematic CFPs.

For the really large methods, with CC > 20, one could
argue that the distinction is mostly irrelevant. The meth-
ods become hard to understand and high CC in this cases
indicates poor understandability just as accurately as CFC

or LOC do. Still, in medium-range methods, a relatively
“harmless” CC count easily masks messy control flow full
of breaks, continues and similar (and this can be ob-
served in Figure 4 under the 10 bar for CC which has several
entries above 20 for CFC).

From the above analysis we learn that indeed the other
control flow statements, apart from the ones identified by
CC, are a relevant factor in real open-source Java software
systems. Of course, this analysis is not conclusive, but it
seems clear that CC is not an accurate predictor for CFC.

At least to understand the control flow of a method, one
could argue that you would have to digest all of its control
flow statements. If CC cannot approximate CFC, then this
casts serious doubt on the ability of CC to predict the more
difficult to define “understandability” of a method at all.

2.3 How overzealous is CC?

The previous analysis focused on finding code that may
be more complex than CC indicates, but the other side is
equally interesting. What methods does CC label “com-
plex” that are perhaps quite easy to understand?

2.3.1 Method

We argue that there are CFPs that are easy to understand,
and that these patterns have a certain regularity, or pattern
to them. For example, the following pattern has high CC
(9), but is easy to understand due to its repetitive nature:

switch(?) {
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;
case ? : return ?;

}

If such regularity occurs often, then we may question the
relevance of the CC metric when applied to real software
systems.

We now introduce a way of observing regularity in CFPs
to able to measure later how often regular patterns in control
flow occur.

A compressed control flow pattern (CCFP) is a
control flow pattern where each list e1,e2, . . . ,en
of n > 1 consecutive tree nodes in the pattern that
are structurally equal is replaced by a single node
R (e1). Compression is performed bottom-up re-
cursively, such that nested regularity may emerge
and be compressed again.
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The CCFP for the above example would be:

switch (?) {
R (case ? : return ?;)

}

We can trivially extend the CFC metric to CCFPs now:

The compressed control flow complexity (CCFC)
of a method is the number of nodes in the CCFP
of that method.

Note that for any method m, CCFC(m)  CFC(m), but
there is no such inequality for CC. The reason is that CCFC
could be more than CC, as well as less.

Our hypothesis is now that there should be many meth-
ods that are highly compressible. If so, then we deduce that
the CC metric overestimates control flow understandability
often. Using the above definition of a CCFP we have re-
duced all the patterns of the systems in Table 2. This now
allowed us to plot the relation between the sizes of com-
pressed patterns and normal patterns, and their respective
distribution patterns. From this we can see how often there

is repetition and how much repetition there is in the control
flow of real Java methods.

2.3.2 Results

In Table 2 we see that compression occurs in more than 40%
of all the patterns. At the same time, the statistics show that
compression does not collapse many patterns together.

In Figure 5 we can read the compression per CFP. We
see that compression happens often (on all sizes of pat-
terns), and that compression rates can be high for all sizes.
Smaller patterns, if they compress, more often compress a
little than a lot. Larger patterns, of which there are a lot less,
do compress extremely in many cases. We have plotted lin-
ear, quadratic and square root fits (using least squares) such
that it is clearly visible that the data set clearly favors small
compression rates (many dots are printed on top of each
other). The square root fits best for this data set, confirming
that compression is more effective on larger patterns.

We have looked up a number of the larger methods to
see what code would compress. In the systems we found
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Figure 5. What compression does to the size of CFP.

the most extreme compression would be found in generated
code (by lexer and parser generators). This is not surprising,
but it is interesting to see that such generated patterns are
compressible by simply eliminating repetition.

The following is an example of a nested compressed
CFP, found in the smallsql system.

switch (?) {
R (case ?: switch (?) {

R ( case ?: return ?; )

})
}

We simplified it here for presentation purposes, by leaving
out the context around the switch and removing some irreg-
ular cases. The pattern was associated to a single method
which interprets boolean expressions in SQL with a CC of
126. The CCFC of this method is 75, and the CC of the
compressed pattern is 27 (as opposed to the shown pattern
which has CCFC equal to 7 and CC equal to 3). The method
dispatches on the types of the arguments of an expression
with the outer switch, and then on the operator kind in the
nested switch and computes the result of the expression via
recursion. This is a simple design for an interpreter that is
trivial to understand. In theory, the particular nested pattern
may represent a quadratic amount of methods, depending
on how many repetitions occur at each level. In practice,
we found that it occurs only once in the systems that we
investigated.

The method with the largest compressed size (CCFC)
was found in compendium: 179. It has an original CC
of 141, its CFC is 198 and the CC of the compressed pat-
tern is still 119. This is the worst case compression rate we
found for such larger methods. The code dispatches on key
press events and directly implements the associated actions.

The control flow structure is governed mostly by nested if-
then and if-then-else statements with an occasional nested
switch. Since in many cases single outermost conditional
span multiple pages of source text, it is difficult to see which
parts of the code are mutually exclusive and which are exe-
cuted in order.

What compression does to the distributions of sizes of
patterns and their cyclomatic complexity is shown in Fig-
ure 6. Between compressed and uncompressed the distribu-
tions have the same general shape, but compressed patterns
have a larger peek below the threshold of size 10. This is a
significant observation since 10 is a common threshold with
CC for labeling a method to be “bad”. In other words, many
patterns go from being “bad” to being “good” by eliminat-
ing repetitive structure.

2.3.3 Analysis

Many patterns are reduced by compressing repetition, and
this leads to significant reductions in size of the patterns.

The compression is most evident in the larger patterns,
although there are comparatively few of them. We can con-
clude that compression may be used to filter large methods
that are easy-to-understand patterns and perhaps even gen-
erated. However, there are so few of such larger patterns
that we should not jump to the conclusion that CC is not a
good way of finding hard-to-understand patterns.

For smaller patterns the compression may be less visible,
yet is has significant effect on the interpretation of the met-
rics. Although smaller patterns are usually not compressed
below 50%, the compression does affect the interpretation
of the metrics via the commonly used threshold of 10. From
this perspective we can learn that systems that are easy to
understand because they have repetitive control flow struc-
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Figure 6. Size and CC distributions with and without compression

tured may be judged harshly while they in fact have easy-
to-understand control flow structures.

We conclude that CC indeed often underestimates the
understandability of CFPs; it is most pronounced in larger
methods (which are much less common), but it is still signif-
icant in the shorter methods (which are very common). This
suggests that the CC metric is not very accurate for judg-
ing individual methods on understandability, and that when
used for aggregation over whole systems using a threshold
care must be taken in interpreting the results if there are
many methods whose CFC are in the range of 10 to 20.

3 Related work

There is a large body of work on the generation, inter-
pretation, and experimental validation of software metrics
(i.e., the work by Halstead [9]). We do not have the space
here to enumerate it, so we mention only relevant and more
recent developments.

Herraiz and Hassan argued we do not need complexity
metrics because they correlate very strongly with the num-
ber of lines of code (LOC) [3]. While our results also found
such a correlation, we draw a slightly different conclusion.
The McCabe cyclomatic complexity metric correlates in
general with the size of a method because every method has
at least a few branches scattered over its body. However,
this does not accurately predict the complexity of the rest
of the code that may or may not use more than this mini-
mal number of branches. We distinguish explicitly between
interpretation on a method-by-method basis versus a global
system-to-system aggregated comparison. Herraiz and Has-
san’s conclusion remains valid for the latter perspective, but
on the smaller scale we feel that it is reasonable to assert
that there is still room for better complexity metrics.

Vasilescu et al. [10, 11] have studied the effect of differ-
ent aggregations for software metrics on their interpretation,
which is very noticeable. The SIG maintainability model
also pays attention directly to the effect of aggregation on
their judgement of quality [5]. We have learned this les-
son and steered away in the current paper from computing
aggregates such as averages. Indeed, the statistical distribu-
tions shown in this paper are interpreted directly rather than
framing them in a statistical model.

Jbara et al. have asked the same questions we did, and
studied the Linux kernel source code to answer them. They
to found evidence of code that was labelled as complex by
CC, yet seemed “well structured” enough for understanding
and indeed was maintained actively. Our results corroborate
theirs in that respect. Jbara also concludes, like McCabe
mentioned in the original paper on cyclomatic complex-
ity [2], perhaps large switch cases should not be counted.
We have taken this idea one step further and eliminated all
locally repetitive structures. Our paper also adds another
perspective, namely that cyclomatic complexity may miss
the opportunity of spotting hard-to-understand code next to
mislabelling easy code as complex.

Alves et al. studies the construction of benchmarks from
software metrics [12]. They also notice that software met-
rics like CC are often distributed according to (what seems
to be) a power law 3. They automatically derive threshold
values in an objective and repeatable way. It may very well
be that by replacing CC with CCFM some systems fall in
entire different categories in the benchmarks they produce.
Our work therefore is highly relevant to the industry of soft-
ware quality verification and monitoring.

3Clauset et al. point out how hard it is to verify that a data set is accu-
rately modelled by a power law distribution [13].
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So

Compression affects all method sizes

Compression makes methods drop under 10

Compression affects larger methods most

Compression separates generated/simple code 
from the really hideous parts
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We have found indications that:

CC is not good because it misses 
complexity

CC is not good because it sees complexity 
where there is none

Now what? We’ll see...
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Rascal is
a “ONE-STOP-SHOP”
for meta programming

Control flow patterns are a way 
of studying control flow

http://www.rascal-mpl.org

http://homepages.cwi.nl/~jurgenv
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