X
erum Wish . § ATEAMS
NIVERSITEIT V. ISTERDAM
SEN1: SWAT

Controlled Experiments
In
Software Engineering

Jurgen Vinju

TCSA Day, October 28th 2011

This talk is about improving software research

@ What is software engineering?
@ What is software?
® What are the research questions?
® What are the research methods?
@ A new empirical research method
@ That can isolate causes of soffware quality

@ That motivates theoretical research in program
semantics

4@ VYV IV IIIIFIA4 UNDER CONSTRUCTION SV IV I I I PP 4 6}

Software engineering:

"The application of a
systematic, disciplined,
quantifiable approach to
the development, operation,
and maintenance of
software, and the study of
these approaches.” [swesok]

What we have proven and/or have evidence of:

@ people trump technology and methodology

@ Size matters

@ many t

0 not know what matters about these
recipes

@ We do not know which design choices are better

Vik Muniz

"The application of a

T & >
systematic, disciplined, < NTior
quantifiable approach to N >
the development, operation,
and maintenance of
software, and the study of
these approaches.” . -)
PP - Reality
& \/ J
Q%Zjﬂ COmpl3x17y
A" iy

rLiTiE - Problem

"Beware of bugs in the above code; I have only
proved it correct, not tried it." —
Donald E. Knuth to Peter van Emde Boas (1977)

@ Theoretical and empirical methods are
two sides of the same medal

@ Internal & external validity

® Idea & tfruth

® Elegance & relevance

o Qm@ & COmpl3x17y

Raphael - School of Athens

Kafkaesque

We study “software” - large and complex
structures of computer instructions, written
and read by man, executed by computers

"marked by a senseless, disorienting, often menacing
complexity...” (Infoplease.com)

Size do

@ A normal Dutch compan
- 750,000,000 single cc

@ It goes a few times c

@ At 1 minute per pag
approximately 1427

@ Ergo, nobody has
understand it.

3894 lines

v.‘ .
- £ is)
o ' - » N
4 o1 . X ;
> b . é ;
o b ' > - " - -
g : . . < % s 4
. ~ - s A P -y
l S & o Y e
p Y 3
. 2

174 cases

Research
methods

@ Prototype an

@ Study prog

@ Measure s
; 1 e . .

Example: structured programming
theory: go’ros are not needed

praci'lce gotos are harmFul some’rlmes
truth: 2222 o

%// ‘%/ // Z - Ay
Stalemate? 3 4{/

7
=

@ We need to prove that our ideas work
on a relevant scale, but precisely scale
IS what prevents us from proving
anything.

@ The challenges are:
@ volume

@ heterogeneity

@ plurality of factors

AST AST Source AST Builder build-time flow
Generator Code Source Code E—
Grammar run-time flow
Source Code Compiler .
Parser Parser Interpreter
a S e ® Generator Source Code Source Code
o

Rascal Rascal Parse AST AST Rascal Input
Programs Parser Tree Builder Interpreter Output

build-time
run-time

@ Abstract syntax trees (ASTS)

@ Operations on ASTS

@ 400 concrete classes, 140 abstract classes
@ AST classes are generated from a grammar
@ Dispatch, dispatch, dispatch

@ Evolution of the + 100 KLOC java code

We compare design (patterns) to
learn which is best in which situations

AST
instance

while return

compar
op: #

variable constan
b branch
name: value: 0
compars
op: >

variable variable B variable bin op variable bin op
name: a name: bEB name: : op: — name: b op: —
variable variable variable variable
name: a name: b name: b name: a

image from wikipedia.org

Composite Pattern

Les

" operation() + operation()
+ add()
+ remove() i

+ getChild() ﬂ(

Fig. 2. The Composite Pattern’

image from wikipedia.org

Interpreter Pattern

— <=
AbstractExpression

Interpret(Context)

Composite

o™
<=~ | TerminalExpression NonterminalExpression

Interpret(Context!

ptuirer

Y

Interpret(Context)

pdditio?

image from wikipedia.org

Visitor Pattern

. <<interface>> "
[
| visit(ConcreteElement : C \‘-\S'\-\-'U\’(

/ \ —

itero\

<<realize>>

Element

, reter
sion ConcreteVisitor 'U*erp __
EXPre®

o accept(Visitor : Object) COITI'QX'I' J

/\ visit(ConcreteElement : Ok* d'\-\"\of\
g
ireral

ConcreteElement ‘ /

g1 ac~ept(Visitor : Object)
‘ﬁd\ﬂon : ‘
Fig. 3. The Visitor Pattern*

image from wikipedia.org

Visitor design pattern and the
Interpreter design pattern are
functionally inter-changeable

But, they are different
in non-functional
properties

And, these emergent properties
tend to be difficult to predict

Harder 1o mal

@ Interpreier Is only a small extension of composite

@ Visitor

@ Visitor's ynamic Indirection

@ Interpreter has less dynamic dispatch

In theory, we could argue for

either pattern being more

maintainable than the other in
different maintenance scenarios

Aristotle

Plato

In theory, visitor might be twice as slow

Raphael - School. of Athens

Empirical Observations.

@ Visitor-based interpreter is complex
@ Many visitors classes
@ Main interpreter is a "God class”

@ Interpreter should run faster than this

Why this experiment?

Is the difference between Interpreter and

Visitor causing a part of these two problems,
or not at all?

How does one answer such a question?

Why this lab setup?

Observing

software
“in the wild”

@ In reality, there exist no two different

versions of the same infterpreter

@ In reality, there are many other factors
influencing maintenance and efficiency
other than this design choice

@ Reality is perhaps easy to see, but it is
very hard to understand

Lab
Experiment

@ In a lab we may isolate a factor
@ In the lab we may focus on the effect

@ In the lab we can observe causality more directly

Possible lab
experiments

@ Source code metrics for maintainability
@ Construction of Cognitive Models

@ New method based on “"Evolution complexity”

Source Co.de Metrics are (perhaps) good
FFor obser\.nng reality statistically, but not
or observing implications of design choices

SIG maintainability model

Computing and aggregating metrics values,

ln::lependem‘ of maintenance scenario, predicting
ong-term expectations on maintenance costs

C— - g
——

The

hese make sense on huge long-lived

If validated and calibrated t
maintenance

systems, but they say nothing about the next
scenario applied fo the system

! Problem

-_— e
- -

What about using Cognitive Models of
understanding the source code then?

Programmer

e

~ Scenario

abstract

Source

Cognitive
;MOd el

measure

Unfor’runm‘e\y,
and nor trust thes

N

conclude

IDE + source code + human =>
very complex models of cognition

Our Lab Setup

@ Refactoring to get two versions
@ Applying realistic maintenance scenarios

@ Measuring the optimal “effort” of'"doing
maintenance

@ Analyzing differences by tracing back to code

Intfermezzo

A “refactoring” is an automated
source-to-source program

transformation that guarantees run-
time semantics to be preserved.

The application of a refactorings is intended
to improve quality of source code without
too much manual labor.

Refactorings are a way to mitigate complexity

Isolating the variable

Rascal & JDT to implement Visitor
to Interpreter refactoring

"Complexity of
Maintenance”

Precise definitions in [TOOLSZOII]

@ Maintainability = Understandability + Modifiability

@ Complexity of a maintenance scenario is =
@ #steps to learn facts about a Program +

@ #steps to modify the Program

@ Reify steps as a "Meta Program” that operates the
IDE

Inspired by "Measuring Software Flexibility”

by Mens & Eden, IEE Software 2006

Java - rascal/src/org/rascalmpl/interpreter/Evaluator.java - Eclipse -~ /Users/jurgenv/Wo

| S| BEC OGP I &SI F o
rchy Ju JUnit = 0O || 1) AEndOftineRequirement.java |J] ArColumnRequirement. java |4] AtStantOfLineRequirement java £ ParserCenerator. java) Meta
-

-] G P g rascal » Jf src P [org.rascalmplinterpreter b Q Cvaluator b
110 public class Evaluator extends NullASTVisitor<Result<IValue>> implements IEvaluator<Result<IValu

dOfLineRequirement jJava 351
fFollowRequirement. java
FollowRestriction java
WCharfoliowRequirement java

. S W

private IValueFactory vf;

private static final TypeFoctory tf « TypeFactory.getInstance();
protected Environment currentEnvt;

private StrategyContextStack strategyContextStock;

private final GlobalEnvironment heap;

A —

iCharfollowRestriction java 3 N) X «
of ollowRequirement Java 154 17 private boolean interrupt « false; !
gFollowRestriction java 35414 118 '

19 private final JavaBridge javaBridge; ;
3 '
lumnRequirement.java 35138] private AbstractAST currentAST; // used in runtime errormessoges '
artOfLineRequirement java 122 g
Precedefequirement jiva 351 . private static boolean doProfiling = false; !
PrecedeRestricuon jJava w ; g . X [
KCharPrecedeRequirement javi 124 private Profiler profiler; :
WCharPrecedeRestriction java ’
oPrecedeRequirementjava 35 L private final TypeDeclarationEvaluator typeDeclarator; 3
gPrecedeRestriction java 35)7 protected IEvaluator<IMatchingResult> patternEvaluator;)
etionfilter. java 35137 5/12/1 I
Rter java 9 private final List<Classloaoder> classloaders; f
ackNode java 35381 /10 0 private final ModuleEnvironment rootScope; \
StackNode. java ‘ ' private boolean concretelistsShouldBeSpliced; L
sitiveliteraiStackNode java
Node. java 315365 : " 2 . . I
KNode java 15369 ¢ ; pr?vate f?nal Pr?ntWr}ter stderr;
cNode Java 3! 34 private final PrintWriter stdout; p
beStackNode Java 147; 5 ’
StackNode. java 3 private ITestResultlistener testReporter; P
ode.Java 35369 6/1 7 /** '
kNode java 35369 ¢ 138 * To avoid null pointer exceptions, avoid passing this directly to other classes, = .
cterStackNode java 3 139 * the result of gctMonito"() instead. ¥ @ " Bvaluator(iV
nalStackNode Java 15369 6 140 ./ » Q new 1Ras
ackNode java 353 . . N . i © __getAccum
stStackiNodeave 35369 6/1 private IRascalMonitor monitor; & _suConch
tackNode java 35369 6/1° @ __getHeap(

} @ __getintern
derjava 35381 6/16/11 12.0 144 private Stack<Accumulator> accumulators = new Stack<Accumulator>(); © __gevavals
326 6/7/11 11:38 AM lankar private Stack<Integer> indentStock = new Stack<Integer>(): © __getPatten
2 Problems (2, Declaration @) Error Log 4 Search %3 Debug Y Merge Results & Progress @ Javadoc = Call Hierarchy ga Cor -
- Rascal IDE (boot 1) [Eclipse Application) /System/Library/Frameworks /JavaVM. framework /Versions / 1.6.0/Home /bin/java (Jun 27, 2011 4.3)
JAva 35446 6/27/11 429 PN
S — T——

steps to steps fo add |
add N N constructs

constructs to

to Visitor Interpreter

14 + 2N 3N

break-even at
N =14

2

&€ | Why trust this?

other factors may still
dominate, but that is

why we compare two
@ Construct validity: are all aspects ELIICEUED R

maintainability observable in this experiment?

% : there is no proof of
@ Internal validity: did you really doeyumsimwy

Job POSSibIe In all scenarios? to reproduce or
invalidate the results

@ External validity: does this say anything
about the next interprefer I writ

e inLc
‘ . t know
The next maintenance? What if I

Eclipse? What if <blablabla>?

Summary of case

@ We used Rascal to build a refactoring tool

@ to isolate the difference between Visitor &
Interpreter

@ and using the "Complexity of Maintenance” method

@ we found that Visitor is better*

*given the scope of the experiment

From threats to questions

@ Theoretical: how to prove semantics
preservation for these types of
transformations for real programming
languages?

@ Empirical: how to validate that our
maintainability complexity measure makes
sense?

Semantics preserving

@ Problems:
@ Programming languages are ridiculously complex
@ There are ridiculously many languages

@ Possible answers:
@ Abstract semantics [Veerman (CFG), Vu (PGA)]

@ Formal specification of refactorings [Tip, DeMoor]

The future

@ Do many more of such “isolation” experiments
@ Study theory of refactoring
@ Prototype relevant (lab) tools

@ Find out what matters in software
engineering

@ Cases: exceptions, parallelism, dynamic dispatch,
immutability, ... ad infinitum

e v :‘ //
S

b’f”f”’ﬁi’ >

oo http: //www.rascal-mpl.org

http://www.rascal-mpl.org

