
Controlled Experiments
in

Software Engineering

Jurgen Vinju

TCSA Day, October 28th 2011

SEN1: SWAT

ATEAMS

MSE

What is software engineering?

What is software?

What are the research questions?

What are the research methods?

A new empirical research method

That can isolate causes of software quality

That motivates theoretical research in program
semantics

This talk is about improving software research

“The application of a
systematic, disciplined,
quantifiable approach to
the development, operation,
and maintenance of
software, and the study of
these approaches.”

Software engineering:

[SWEBOK]

people trump technology and methodology

size matters

many technological and methodological recipes

But we do not know what matters about these
recipes

We do not know which design choices are better

What we have proven and/or have evidence of:

Vik Muniz

Unsatisfact
ory

Quality C0mpl3x17y

“The application of a
systematic, disciplined,
quantifiable approach to
the development, operation,
and maintenance of
software, and the study of
these approaches.”

Solution

Problem

Reality

 Theoretical and empirical methods are
two sides of the same medal

 Internal & external validity

 Idea & truth

 Elegance & relevance

 Quality & C0mpl3x17y

“Beware of bugs in the above code; I have only
proved it correct, not tried it.” —

Donald E. Knuth to Peter van Emde Boas (1977)

Raphaël - School of Athens

We study “software” - large and complex
structures of computer instructions, written
and read by man, executed by computers

“marked by a senseless, disorienting, often menacing
complexity...” (Infoplease.com)

Kafkaesque

Size does matter

A normal Dutch company may own 3x1010 lines of code
- 750,000,000 single column pages.

It goes a few times around the globe, if printed.

At 1 minute per page (?) that might take
approximately 1427 years to read.

Ergo, nobody has ever understood it, or will ever fully
understand it.

Research
methods

Prototype and demonstrate it

Study programmers

Measure source code

Time will tell

Example: structured programming

theory: goto’s are not needed

practice: goto’s are harmful, sometimes

truth: ????

not convincing

not convincing

not convincing

toys

muddy

meaningless

annoyingstill annoy
ing

Stalemate?

We need to prove that our ideas work
on a relevant scale, but precisely scale
is what prevents us from proving
anything.

The challenges are:

volume

heterogeneity

plurality of factors

Case:

Abstract syntax trees (ASTs)

Operations on ASTs

400 concrete classes, 140 abstract classes

AST classes are generated from a grammar

Dispatch, dispatch, dispatch

Evolution of the ± 100 kLOC java code

Grammar
Source Code

Rascal
Parser

AST
Builder

Rascal
Interpreter

Interpreter
Source Code

Java
Compiler

Parser
Generator

Rascal
Programs

AST
Generator

AST Source
Code

AST Builder
Source Code

Input
Output

build-time
run-time

Parse
Tree AST

Parser
Source Code

build-time flow

run-time flow

data

operation

legend

Fig. 1. Simplified build-time and run-time architecture of Rascal.

have used Rascal itself to automate an ad-hoc refactoring transforming the visitor-based
design to an interpreter-based design (the details of this refactoring are outside the
scope of the current paper, but we do explain the relevance of the existence of such an
automatic refactoring for our approach). This then allows us to conduct a comparison
between two implementations varying only in the choice of design pattern. In this
comparison we focus on ease of maintenance and runtime performance. We show the
differences between using the Visitor and Interpreter patterns in the Rascal interpreter
by analysis of real maintenance scenarios and some initial performance measurements.
While the results cannot be directly generalized to other software systems, we expect
that other designers of tree-centric object-oriented software—compilers, interpreters,
XML processors, etc.—will benefit.

Roadmap. Section 2 describes the Rascal interpreter, including the transformation
from the Visitor to the Interpreter pattern, at a level of detail necessary to follow the
remainder of the paper. Section 3 then explains the research methods we use to compare
the maintainability and performance between the two different versions. Following
this, Section 4 and Section 5 then apply these methods to analyze the differences in
(respectively) maintainability and performance. Finally, we conclude in Section 6.

2 Design Patterns in the Rascal Interpreter

Rascal is a domain-specific language for meta-programming: to analyze, transform or
generate other programs. While it has primitives for parsing, pattern matching, search,
template instantiation, etc., it is designed to look like well-known languages such as C
and Java. To facilitate integration into Eclipse2, Rascal is implemented in Java and itself.
Figure 1 depicts Rascal’s build-time and run-time architecture. Because Rascal source
code may contain both context-free grammars and concrete fragments of sentences for
these grammars, the run-time and the build-time stages depend on each other.

The interpreter’s core is based on classes representing abstract syntax trees (AST) of
Rascal programs. These classes implement the Composite pattern (Figure 2) and a part
of the Visitor pattern (Figure 3). Each syntactic category is represented by an abstract

2 http://www.eclipse.org

We compare design (patterns) to
learn which is best in which situations

image from wikipedia.org

AST
instance

class, such as Expression or Statement. These contain one or more nested classes
that extend the surrounding class for a particular language construct, such as If, While
(both contained in and extending Statement), and Addition (contained in and
extending Expression). All AST classes also inherit, directly or indirectly, from
AbstractAST. AST classes provide access to children by way of getter methods, e.g.,
If and While have a getConditional() method.

2.1 Creating and Processing Abstract Syntax Trees

Fig. 2. The Composite Pattern3

Rascal has many AST classes (about 140
abstract classes and 400 concrete classes).
To facilitate language evolution the code
for these classes, along with the Rascal
parser, is generated from the Rascal gram-
mar. The AST code generator also cre-
ates a Visitor interface (IASTVisitor),
containing methods for all the node types
in the hierarchy, and a default visitor
that returns null for every node type
(NullASTVisitor). This class pre-
vents us from having to implement a visit
method for all AST node types, especially
useful when certain algorithms focus on a small subset of nodes. Naturally, each AST
node implements the accept(IASTVisitor<T> visitor) method by calling
the appropriate visit method. For example, Statement.If contains:

public <T> accept(IASTVisitor<T> v) {
return v.visitStatementIf(this);

}

Fig. 3. The Visitor Pattern4

The desire to generate this code played a
significant role in initially deciding to use
the Visitor pattern. We wanted to avoid
having to manually edit generated code.
Using the Visitor pattern, all functionality
that operates on the AST nodes can be
separated from the generated code. When
the Rascal grammar changes, the AST
hierarchy is regenerated. Many imple-
mentations of IASTVisitor will con-
tain Java compiler errors and warnings
because the signature of visit methods
will have changed. This is very help-
ful for locating the code that needs to
be changed due to a language change. Most of the visitor classes actually extend

3 Image from http://en.wikipedia.org/wiki/Composite_pattern
4 Image from http://en.wikipedia.org/wiki/Visitor_pattern

image from wikipedia.org

Composite Pattern

Statement

NoOp

Express
ion

IntLiter
al IfThenE

lse
Addition

image from wikipedia.org

Interpreter Pattern

NullASTVisitor though, which is why it is important that each method they over-
ride is tagged with the @Override tag5. Note that the class used to construct ASTs
at runtime, ASTBuilder, uses reflection to map parse tree nodes into the appropriate
AST classes. Hence, this code does not have to change when we change the grammar of
the Rascal language.

2.2 A Comparison with the Interpreter Pattern

Component

Leaf

Composite

Fig. 4. The Interpreter Pattern with references to
Composite (Figure 2).7

Considering that our design al-
ready employs the Composite
pattern, the difference in design
complexity between the Visitor
and Interpreter patterns is strik-
ing (Figure 4). The Composite
pattern contains all the elements
for the Interpreter pattern (ab-
stract classes that are instanti-
ated by concrete ones)—only an
interpret method needs to
be added to all relevant classes.
So rather than having to add new concepts, such as a Visitor interface, the accept
method and NullASTVisitor, the Interpreter pattern builds on the existing infrastruc-
ture of Composite and reuses it. Also, by adding more interpret methods (varying
either the name or the static type) it is possible to reuse the Interpreter design pattern
again and again without having to add additional classes. However, as a consequence,
understanding each algorithm as a whole is now complicated by the fact that the methods
implementing it are scattered over different AST classes. Additionally, there is the risk
that methods contributing to different algorithms get tangled because a single AST
class may have to manage the combined state required for all implemented algorithms.
The experiments discussed in Section 4 help make this tradeoff between separation of
concerns and complexity more concrete.

2.3 Refactoring from Visitor to Interpreter using Rascal

We constructed an automated refactoring tool for transforming Visitor classes to Inter-
preter methods. It is the key to our research method (see Figure 5). However, the details
of constructing the refactoring are out of the scope of the current paper. They can instead
be found online [11]. The benefits of an automated approach are:

Reproducible target code makes it easy to replay the refactoring during experimenta-
tion, while also allowing others to literally replicate the experiment;

5 If a method is tagged with @Override the Java compiler will warn if it does not override any
method anymore.

7 Image from http://en.wikipedia.org/wiki/Interpreter_pattern, created
by Jing Guo Yao and licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

Express
ion

IntLiter
al Addition

class, such as Expression or Statement. These contain one or more nested classes
that extend the surrounding class for a particular language construct, such as If, While
(both contained in and extending Statement), and Addition (contained in and
extending Expression). All AST classes also inherit, directly or indirectly, from
AbstractAST. AST classes provide access to children by way of getter methods, e.g.,
If and While have a getConditional() method.

2.1 Creating and Processing Abstract Syntax Trees

Fig. 2. The Composite Pattern3

Rascal has many AST classes (about 140
abstract classes and 400 concrete classes).
To facilitate language evolution the code
for these classes, along with the Rascal
parser, is generated from the Rascal gram-
mar. The AST code generator also cre-
ates a Visitor interface (IASTVisitor),
containing methods for all the node types
in the hierarchy, and a default visitor
that returns null for every node type
(NullASTVisitor). This class pre-
vents us from having to implement a visit
method for all AST node types, especially
useful when certain algorithms focus on a small subset of nodes. Naturally, each AST
node implements the accept(IASTVisitor<T> visitor) method by calling
the appropriate visit method. For example, Statement.If contains:

public <T> accept(IASTVisitor<T> v) {
return v.visitStatementIf(this);

}
������

�������

���������	��
��
��������

�	�
�����������

���������	��
��
��������

�	�
������
��	�

��	����
��������������
��������

���������
���
��
��	�

��	����
��������������
��������

�����������

Fig. 3. The Visitor Pattern4

The desire to generate this code played a
significant role in initially deciding to use
the Visitor pattern. We wanted to avoid
having to manually edit generated code.
Using the Visitor pattern, all functionality
that operates on the AST nodes can be
separated from the generated code. When
the Rascal grammar changes, the AST
hierarchy is regenerated. Many imple-
mentations of IASTVisitor will con-
tain Java compiler errors and warnings
because the signature of visit methods
will have changed. This is very help-
ful for locating the code that needs to
be changed due to a language change. Most of the visitor classes actually extend

3 Image from http://en.wikipedia.org/wiki/Composite_pattern
4 Image from http://en.wikipedia.org/wiki/Visitor_pattern

Visitor Pattern

image from wikipedia.org

Express
ion

IntLiter
al

Addition

Interpr
eter

visitAddition

visitIntL
iteral

Context

visitAddition

visitIntL
iteral

Visitor design pattern and the
Interpreter design pattern are
functionally inter-changeable

And, these emergent properties
tend to be difficult to predict

But, they are different
in non-functional

properties

Visitor is conceptually more complex

Interpreter is only a small extension of composite

Visitor encapsulates entire algorithms

Interpreter encapsulates language constructs

Visitor’s decoupling implies dynamic indirection

Interpreter has less dynamic dispatch

Theoretical Observations

Harder to maintain, right?

Easy for adding
algorithm, hard for adding

new language constr
uct, right?

Slower, right?

In theory, we could argue for
either pattern being more

maintainable than the other in
different maintenance scenarios

In theory, visitor might be twice as slow

Raphaël - School of Athens

Plato

Aristotle

Empirical Observations

Visitor-based interpreter is complex

Many visitors classes

Main interpreter is a “God class”

Interpreter should run faster than this

Is the difference between Interpreter and
Visitor causing a part of these two problems,

or not at all?

How does one answer such a question?

Why this experiment?

Why this lab setup?

Observing
software
“in the wild”

In reality, there exist no two different
versions of the same interpreter

In reality, there are many other factors
influencing maintenance and efficiency
other than this design choice

Reality is perhaps easy to see, but it is
very hard to understand

Lab
Experiment

In a lab we may isolate a factor

In the lab we may focus on the effect

In the lab we can observe causality more directly

Possible lab
experiments

Source code metrics for maintainability

Construction of Cognitive Models

New method based on “Evolution complexity”

Source Code Metrics are (perhaps) good
for observing reality statistically, but not
for observing implications of design choices

Maintaina
bility In

dex I&II
SIG maintainability modelMaintenance Complexity Metric

Computing and aggregating metrics values,
independent of maintenance scenario, predicting

long-term expectations on maintenance costs

If validated and calibrated these make sense on huge long-lived

systems, but they say nothing about th
e next maintenance

scenario applied to the system

 What about using Cognitive Models of
understanding the source code then?

IDE + source code + human =>
very complex models of cognition

Programmer

Scenario

Source

Cognitive
Model

abstract measure
Analyze

conclude

Unfortunately, we neither

understand nor
trust these models

Our Lab Setup

Refactoring to get two versions

Applying realistic maintenance scenarios

Measuring the optimal “effort” of doing
maintenance

Analyzing differences by tracing back to code

A “refactoring” is an automated
source-to-source program

transformation that guarantees run-
time semantics to be preserved.

The application of a refactorings is intended
to improve quality of source code without

too much manual labor.

Refactorings are a way to mitigate complexity

intermezzo

Isolating the variable

Meta Program B

System Version n System Version m

Meta Program A

System Version n + 1 System Version m + 1

Maintenance
Scenario

Complexity
Analysis

Complexity of A Complexity of BComparison

Cause
Analysis

Refactoring dataflow

data

action

Complexity
Analysis

manual

manual

legend

Fig. 5. Comparative framework for observing differences in maintainability.

version n but may change some non-functional characteristics. In our case study, version
n is the Rascal interpreter based on the Visitor pattern and version m is the version of
the Rascal interpreter based on the Interpreter pattern. The details of this automated
refactoring are not relevant for the present analysis, but it is important to note that
it is semantics preserving. The maintainability of both versions is now compared by
designing a number of maintenance scenarios and applying them to both versions. For
each maintenance scenario we do the following:

– Perform the maintenance scenario manually.
– Create an abstract description of this activity by expressing it as meta-program.
– Compare the computational complexity of the meta-programs needed to carry out

the maintenance scenario for versions n and m.

This allows us to objectively calculate the complexity of the scenarios as applied to the
two versions while at the same time pinpointing exact causes of the differences.

Results produced by this framework can be replicated by anybody given the source
code of the two versions, a precise description of the meta programs and the scenarios,
and a precise description of the complexity analysis. In Section 4.1 we define a “virtual
machine for maintenance” that provides the foundation for our current comparison.

3.3 Alternative Methods to Measure Maintainability

Our framework tries to abstract from the human programmer that actually carries out
the maintenance tasks. This makes it easier to replicate our results. Alternative ways of
studying maintenance do focus on human beings, like programmer observation (e.g., [6])
and using models of cognition (e.g., [19]).

Statistical observation of the efficiency of a group of programmers while doing
maintenance tasks can be done to summarize the effects of differences between design
patterns. However, such an (expensive) study can not explain the causes of these ef-
fects, while our method can. The use of cognitive modeling can also shed light on the
causes of complexity. With this method one explicitly constructs a representation of
the knowledge that a human being is using while analyzing and modifying source code.
Complexity measures for such representations exist as well and have been used to study
understandability of programming in different kinds of languages [19]. We have not
opted for this approach because such detailed cognitive models are difficult to construct

Rascal & JDT to implement Visitor
to Interpreter refactoring

Key enabler

Manual laborTraceability

“Complexity of
Maintenance”

Maintainability = Understandability + Modifiability

Complexity of a maintenance scenario is =

#steps to learn facts about a Program +

#steps to modify the Program

Reify steps as a “Meta Program” that operates the
IDE

Precise definitions in [TOOLS2011]

Inspired by “Measuring Software Flexibility”

by Mens & Eden, IEE Software 2006

Collecting data

Results
S Visitor (COM) Interpreter (COM) Vis.>Int.

S1 ci11(g2a)2) (18) m2b(e f 2)3(ga)2 (16) yes
S1(N) ci11(gNa)2) (14+2N) mNb(e f N)3(ga)N (4+6N) if N � 2

S1’(N,2) ci11(gNa)2) (14+2N) mN(ga)N (3N) if N � 14
S1’(N,M) ci9+M(gNa)M (10+NM +2M) mN(ga)MN (N +2MN) if N � 2M+10

M+1
S2 i2g3iga (8) i2g3gaig3aiga (14) no

S3 dg5egcg15g2a(eea)4i2h(ga)3 (43) d(ig)2a(iga)15(ig)3gai
(ig2)a(igg)2anigaih(ga)3 (83) no

S3’ d(ga)5egac(ga)15(ga)2

(eea)4i2h(ga)3 (70) d(ig)2a(iga)15(ig)3gai
(ig2)a(igg)2anigaih(ga)3 (83) no

S4 mg11a (13) bga(bga)11 (36) no
S5 biga (4) bga (3) yes

Table 2. A comparison of all maintenance programs (see Table 1).

In terms of construct validity one may argue that the COM framework may not
measure all relevant aspects of maintenance. The first aspect that is missing is the general
understanding that a programmer needs of the particular program, before she can decide
what to look for and what to change. We argue that this knowledge is equally needed
for Visitor and Interpreter. We do not use COM for predicting maintenance effort, but
for comparison. The second aspect is that we did not distinguish whether or not method
bodies are hard to understand. Fortunately, in the case of Visitor vs. Interpreter the
method bodies are practically equivalent in complexity on both sides.

We do not claim much about external validity. The current study is highly focused on
the Rascal case. We do expect that if the current study were replicated on different AST
processing software written in Java, with different maintenance scenarios, the results
would be comparable. This expectation is motivated by the fact that the scenarios above
do not refer to any intrinsic details of the syntax and semantics of Rascal.

We have assumed ample use of browsing, searching and editing features of Eclipse.
It is unknown what the effect of not having these tools would be on the case of the Rascal
interpreter.

Finally, if other quality attributes enter the scene, or other refactorings are applied, our
conclusions about maintainability and runtime performance may be invalidated. The di-
mension of (parallel) collaborative development—as enabled by a modular architecture—
might have an unpredictable impact on our results.

In terms of internal validity, we hope to have provided enough detail for the reader
to be able to replicate the scenarios and their measurement. If shorter but otherwise
plausible meta programs are defined, this might invalidate our analysis. Naturally, our
interpretation of the causes of differences is also open to discussion.

5 Efficiency

We now focus on the effect on run-time efficiency of moving from Visitor to Interpreter.
The impact is measured using four programs, designed both to highlight different aspects
of performance and to represent typical Rascal usage scenarios:

steps to
add N

constructs
to Visitor

14 + 2N

steps to add
N constructs

to
Interpreter

3N

break-even at

N = 14

Why trust this?

Construct validity: are all aspects of
maintainability observable in this experiment?

Internal validity: did you really do the best
job possible in all scenarios?

External validity: does this say anything
about the next interpreter I write in Java?
The next maintenance? What if I don’t use
Eclipse? What if <blablabla>?

other factors may still

dominate, but that is

why we compare two
equivalent systems

there is no proof of
that - we invite you

to reproduce or
invalidate the results

we do not know

Summary of case

We used Rascal to build a refactoring tool

to isolate the difference between Visitor &
Interpreter

and using the “Complexity of Maintenance” method

we found that Visitor is better*

*given the scope of the experiment

From threats to questions

Theoretical: how to prove semantics
preservation for these types of
transformations for real programming
languages?

Empirical: how to validate that our
maintainability complexity measure makes
sense?

Semantics preserving
Problems:

Programming languages are ridiculously complex

There are ridiculously many languages

Possible answers:

Abstract semantics [Veerman (CFG), Vu (PGA)]

Formal specification of refactorings [Tip, DeMoor]

The future

Do many more of such “isolation” experiments

Study theory of refactoring

Prototype relevant (lab) tools

Find out what matters in software
engineering

Cases: exceptions, parallelism, dynamic dispatch,
immutability, … ad infinitum

Questions?

http://www.rascal-mpl.org

http://www.rascal-mpl.org

