TooLs

Conference Series

A case of
Visitor versus Interpreter Pattern

Paul Klint, Mark Hills, Tijs van der Storm,
Jurgen Vinju

Zurich, June 30th 2011

Why?

@ Why this experiment?
@ Why this "laboratory” setup?

@ Why frust the conclusions?

"Long Live Incremental Research!”

AST AST Source AST Builder
Generator Code Source Code
Grammar Java
Source Code Compiler
Parser Parser Interpreter

Case:

build-time
run-time

Rascal Rascal Parse AST AST Rascal Input
Programs Parser Tree Builder Interpreter Output

@ Abstract syntax trees (ASTS)

@ Operations on ASTSs

@ 400 concrete classes, 140 abstract classes
® AST classes are generated from a grammar
@ Dispatch, dispatch, dispatch

@ Evolution of the + 100 kLOC java code

Sunday, November 17, 13

learn which is besf& which situations

—

(We ‘qupe to “interpreters in Java, based on AST objects”

——
———— e

Sunday, November 17, 13

Composite Pattern

Component

+ operation()

Composite

+ operation() + operation()
+ add()
+ remove()
+ getChild()

Fig. 2. The Composite Pattern’

image from wikipedia.org

Sunday, November 17, 13

Composite Pattern

+ operation()
+ add()

+ remove()

+ getChild()

Fig. 2. The Composite Pattern’

image from wikipedia.org

Sunday, November 17, 13

Composite Pattern

+ operation()
+ add()

+ remove()

+ getChild()

Fig. 2. The Composite Pattern’

image from wikipedia.org

Sunday, November 17, 13

Composite Pattern

S’m’teme“* , o

+ operation()

Les

+ add()
+ remove()
+ getChild()

NOO P + operation() + operation() 1 ?T h er\E\ S e
i i3

Fig. 2. The Composite Pattern’

image from wikipedia.org

Sunday, November 17, 13

Composite Pattern

-~ '

’\ n Component

S
E%Pr es + operation()

i
NOO P + operation() + operation() 1 ?T h er\E\ S e
‘ 1

+ add()
+ remove()

+ getChild()

Fig. 2. The Composite Pattern’

image from wikipedia.org

Sunday, November 17, 13

Composite Pattern

Component

+ operation()

/\

Les

S
operation + operation ‘ E\
P 0 ¥ agdo 0 ? ‘ he .

+ remove()
+ getChild()

Fig. 2. The Composite Pattern’

image from wikipedia.org

Sunday, November 17, 13

Composite Pattern

Component

+ operation()

/\

Les

2
operation() + operation() ‘. P‘dd.\'\'.\Oﬂ

+ add()
+ remove()
+ getChild()

Fig. 2. The Composite Pattern’

image from wikipedia.org

Sunday, November 17, 13

AST
instance ==

m

variable
name: a

compar
op: #

variable constan

_ branch
name: b value: 0
variable variable B8 variable bin op variable bin op
name: a name: b name: 2 op: — name: b op: —

compare
op: >

variable variable variable variable
name: a name: b name: b name: a

image from wikipedia.org

Sunday, November 17, 13

Interpreter Pattern

Client
AbstractExpression

Interpret(Context)

o | TerminalExpression NonterminalExpression
Interpret{Context) Interpret(Context)

Fig.4. The Interpreter Pattern with reterences to
C omposite (F igure 2) ./

image from wikipedia.org

Interpreter Pattern

Context Component
Client — <=
AbstractExpression

Interpret(Context)

SS.\O

Expre °

S
<= | TerminalExpression NonterminalExpression

Interpret{Context Interpret(Context) .
atiter® padition

/ -

Fig.4. The Interpreter Pattern with reterences to
C omposite (F igure 2) ./

image from wikipedia.org

Visitor Pattern

cli <<interface>>
lent Visitor

visit(ConcreteElement : Object)

/\
|

- it
accept(Visitor : Object) _

/ \ visit(ConcreteElement : Object)

<<realize>>

ConcreteElement
accept(Visitor : Object)

Addition accept(Visitor v) {
return v.visitAddition(this);

Fig. 3. The

image from wikipedia.org
Tsunday, November 17, 13 e

Visitor Pattern

<<interface>>

Client Visitor W Add*\oﬂ

Litero!

visit(ConcreteElement : C \J-\s\-\ln‘\'
/ \

<<realize>>

Element re-\-er

ConcreteVisitor ln*er?/

express :I/
e accept(Visitor : Object) Context

/\ visrt(Conc;eteEIement rOk d‘-\-'\or\

reral
v ot
ConcreteElement & —

ln’f\,\’(e‘”o\
/,,/, ar~ept(Visitor : Object)

nddition Addition accept(Visitor v) {

L return v.visitAddition(this);

Fig. 3. The

image from wikipedia.org

Visitor design pattern and the
Interpreter design pattern are
functionally inter-changeable

Visitor design pattern and the
Interpreter design pattern are
functionally inter-changeable

But, they are different
in non-functional
properties

Visitor design pattern and the
Interpreter design pattern are
functionally inter-changeable

But, they are different
in non-functional
properties

And, these emergent properties
tend to be difficult to predict

Theoretical Observations [T

Theoretical Observations [T

@ Visitor is conceptually more complex

@ Interpreter is only a small extension of composite

Sunday, November 17, 13

Theoretical Observations [T

@ Visitor is conceptually more complex

@ Interpreter is only a small extension of composite
@ Visitor encapsulates entire algorithms

@ Interpreter encapsulates language consiructs

Sunday, November 17, 13

Theoretical Observations [T

@ Visitor is conceptually more complex

@ Interpretfer is only a small extension of composite
@ Visitor encapsulates entire algorithms

@ Interpreter encapsulates language consiructs
@ Visitors decoupling implies dynamic indirection

@ Interpreter has less dynamic dispatch

Sunday, November 17, 13

Theoretical Observations [T

@ Visitor is conceptuall

Harder o maintain,
1> only a small extension of composite

@ Interprete
@ Visitor encapsulates entire algorithms

@ Interpreter encapsulates language consiructs
@ Visitors decoupling implies dynamic indirection

@ Interpreter has less dynamic dispatch

Sunday, November 17, 13

Theoretical Observations

@ Visitor is conceptuall

Harder 0 maintain,
1> only a small extension of composite

@ Interprete

hard for adding
t, right?

@ Visitor encgc or adding algorithm,

guage construc

@ InterpramEsEELSUlates language constructs

@ Visitors decoupling implies dynamic indirection

@ Interpreter has less dynamic dispatch

Sunday, November 17, 13

Theoretical Observations

@ Visitor is conceptuall

Harder 0 maintain,
1> only a small extension of composite

@ Interprete

@ Visitor encag —
Easy for adding

new langud
ates language constructs

o\gor.ﬂ'hml '
ge construct, T

@ Interpre

@ Visitors deamic indirection

@ Interpreter has less dynamic dispatch

Sunday, November 17, 13

In theory, we could argue for

either pattern being more

maintainable than the other in
different maintenance scenarios

Aristotle o

Plato

In theory, visitor might be twice as slow

Raphael - School ofi'Athens

Empirical Observations.

@ Visitor-based interpreter is complex
@ Many visitors classes
@ Main interpreter is a "God class”

@ Interpretfer should run faster than this

Sunday, November 17, 13

Why this experiment?

Is the difference between Interpreter and

Visitor causing a part of these two problems,
or not at all?

How does one answer such a question?

Why this lab setup?

Observing

software
“in the wild”

@ In reality, there exist no two different

versions of the same inferpreter

@ In reality, there are many other factors
influencing maintenance and efficiency other
than this design choice

@ Reality is perhaps easy to see, but it is very
hard to understand

Sunday, November 17, 13

Lab
Experiment

@ In a lab we may isolate a factor
@ In the lab we may focus on the effect

@ In the lab we can observe causality more directly

Sunday, November 17, 13

Possible lab
experiments

@ Source code meftrics for maintainability
@ Construction of Cognitive Models

@ New method based on “Evolution complexity”

Source Code Metrics are (perhaps) good
for observing reality statistically, but not
for observing implications of design choices

Source Code Metrics are (perhaps) good
for observing reality statistically, but not
for observing implications of design choices

Source Code Metrics are (perhaps) good
for observing reality statistically, but not
for observing implications of design choices

SIG maintainability model

Source Code Metrics are (perhaps) good
for observing reality statistically, but not
for observing implications of design choices

: .

; - . . . +ainability model
.n’m'\nob'\\'\’f\/ 1nde Maintenance compleXIfy Metric SIG maintaina y
N\O\

Source Code Metrics are (perhaps) good
for observing reality statistically, but not
for observing implications of design choices

: .

; - . . . +ainability model
.n’m'\nob'\\'\’f\/ 1nde Maintenance compleXIfy Metric SIG maintaina y
N\O\

Computing and aggregating meftrics values,

independent of maintenance scenario, predicting
long-term expectations on maintenance costs

Source Code Metrics are (perhaps) good
for observing reality statistically, but not
for observing implications of design choices

SIG maintainability model

Computing and aggregating meftrics values,

independent of maintenance scenario, predicting
long-term expectations on maintenance costs

these make sense on huge long-lived PR
The

i nd calibrated
If validated ut the next maintenance

systems, but they say nothing abo
scenario applied fo the system

. Problem |

- -— ~ .- -

Sunday, November 17, 13

What about using Cognitive Models of
understanding the source code then?

G

_ abSde

conclude

Sunday, November 17, 13

What about using Cognitive Models of
understanding the source code then?

Sunday, November 17, 13

What about using Cognitive Models of
understanding the source code then?

IDE + source code + human =>
very complex models of cognition

Our Lab Setup

@ Refactoring to get two versions
o Applying realistic maintenance scenarios

@ Measuring the optimal “effort” of doing maintenance

@ Analyzing differences by tracing back to code

Isolating the variable

System Version n Refactoring System Version m dataflow

—>

Scenario

Complexity Complexity data
System Version n + 1 Analysis Analysis System Version m + 1
Complexity of A Comparison Complexity of B

Cause
Analysis

Rascal & JDT to implement Visitor
to Interpreter refactoring

Sunday, November 17, 13

Isolating the variable

System Version n Refactoring System Version m dataflow

—>

Scenario

Complexity Complexity data
System Version n + 1 Analysis Analysis System Version m + 1
Complexity of A Comparison Complexity of B

Cause
Analysis

Rascal & JDT to implement Visitor
to Interpreter refactoring

Sunday, November 17, 13

Isolating the variable

System Version n Refactoring System Version m dataflow

—>

Meta Program A Maintenapce Meta Program B manual
Scenario

Comple>_(ity ‘ Complexity data
System Version n + 1 Analysis | Analysis System Version m + 1
Complexity of A Comparison 1 Complexity of B

Cause
Analysis

Rascal & JDT to implement Visitor
to Interpreter refactoring

Sunday, November 17, 13

Isolating the variable

System Version n Refactoring System Version m dataflow

—>

Meta Program A Maintenapce Meta Program B manual
Scenario

Complexity ‘ Complexity data
System Version Analysis | Analysis System Version m + 1

Complexity of A Comparison 1 Complexity of B

Cause
Analysis

%@ Rascal & JDT to implement Visitor

‘/o“:’ﬂ% to Interpreter refactoring

Sunday, November 17, 13

"Complexity of
Maintenance”

Precise definitions in
@ Maintainability = Understandability + Modifiability

@ Complexity of a maintenance scenario is =

@ #steps to learn facts about a Program +

@ #steps to modify the Program
@ Reify steps as a "Meta Program” that operates the IDE

Inspired by "Measuring Software Flexibility”

by Mens & Eden, IEE Software 2006

Collecting data

.-

)dOfLineRequirement. java 351
FollowRequirement java 1541
FollowRestriction jJava 35418

WCharfollowRequirement Java

iICharfollowRestriction java 3°
gfollowRequirement java 3154
gfollowRestriction java 15411

plumnRequirement.java 3513¢
hrrOfLineRequirement java 15
PrecedeRequirement java 3151
PrecedeRestriction java 35131
iICharPrecedeRequirement jave
iCharPrecedeRestriction java °
gPrecedeRequirement java 315
gPrecedeRestriction java 351°
ptionFilter java 35137 12/1

kNodejava 35381 6/16/1]
StackNode. java 15369 6/15)
sitiveLiteralStackNode java 15
iode java 15369 6/15/11 1)
lode. java 35369 6/15/11 2
ANode Java 15369 6/15/11
ackNode Java 14723 4/4;
StackNode Java 315365 6/15)
ode.java 11 11
Node java 35369 6/15/11 1
erStackNode Java 15369 &,
alStackNede java 315369 6/)
kNode java 35369 6/15/1
stStackNode Java 315360 6/1
KkNode. java 35369 6/15/1

315369 ¢

,' t@ ‘ A a 1 ';‘ " v 1‘-" v

Java - rascal/src/org/rascalmpl/interpreter/Evaluator.java ~ Eclipse -~ /Users/jurgenv/Wg

|J] AtEnaOflineRequirement. java .L’_, ArColumnRegquirement. java Q'J AtStanOfLineRequirement java é ParserCenerator java -,) Meta

P i@ rascal b (f src P [org.rascaimplinterpreter b (@ Cvaluator »
110 public class Evaluator extends NullASTVisitor<Result<IValue>> implements IEvaluator<Result<IValu
111 private IValueFactory vf;

112 private static final TypeFoctory tf « TypeFactory.getInstance();

. protected Environment currentEnvt;

114 private StrategyContextStack strategyContextStack;

11
116 private final GlobalEnvironment heap;
117 private boolean interrupt = false;

119 private final JavaBridge jovaBridge;

private AbstractAST currentAST; // used in runtime errormessoges

123 private static boolean doProfiling = false;

124 private Profiler profiler;

125

126 private final TypeDeclarationEvaluator typeDeclarator;

127 protected IEvaluator<IMatchingResult> patternEvaluator;

129 private final List<Classlooder> classloaders;
130 private final ModuleEnvironment rootScope;

131 private boolean concretelistsShouldBeSpliced;

133 private final PrintWriter stderr;

134 private final PrintWriter stdout;

135

136 private ITestResultlistener testReporter;

:) d /..

138 * To avoid null pointer exceptions, avoid passing this directly to other classes, "

139 * the result of getMonitor() instead. v & Givatont

149 ./ >Q new ik

154 ‘)) o getAcc
1 private IRascalMonitor monitor; ® _gﬂCM:r

142 © __getHeap(

143 © __getinter

144 private Stack<Accumulator> accumulators = new Stack<Accumulator>(); . @ _getav

145 private Stack<Inteager> indentStack = new Stack<Integer>(): 3 © ___getPatter

* Problems .N.i. Declaration 0 Error Log ‘-'; Search ‘b Debug y Merge Results C'_' Progress 'm Javadoc :< Call Werarchy -’ Co .

Rascal IDE (boot 1) [Eclipse Application) /System /Library/Frameworks/JavaVM. framework /Versions / 1.6.0/Home/bin/java (Jun 27, 2011 4.33

Sunday, November 17, 13

&;(\RQSL“*S

S Visitor (Com)|Interpreter (CoMm)| Vis.>Int.
Sl Ela g’ (18)|m°b(ef*)’ (ga)” (16) yes
SI(N) |ci''(gVa)?) (144-2N)|m"Vb(efN)’ (ga)Y (4+6N)| ifN<2
S1I’(N,2) |ci'' (gVa)?) (14 42N)|m" (ga)" (3N)| ifN < 14
S1°(N,M)|ci®™ (gNa)M (10 +NM +-2M)|m" (ga)MN (N+2MN)|if N < 0
S2 i“gviga (8)|i*g>gaig’ aiga (14) no
RN) . AN d(is,’)za(iga)15 (ig)” gai
S3 |dg’egcg' g a(eea)’i“h(ga) (43) (id)a (lgg) amgazh(ga) (83) no
. |d(ga)egac(ga)™(ga)” d(ig)a(iga) ™ (ig)*gai
¥ |(eea)*Ph(ga)? 79 ighha (igg)*anigaih(ga)’ A
S4 |mg'la (13)|bga(bga)'! (36) no
S5 |biga (4)|bga (3) yes

Table 2. A comparison of all maintenance programs (see Table 1).

Sunday, November 17, 13

£

&;(\RQSL“*S

S Visitor (Com)|Interpreter (CoMm)| Vis.>Int.
S1 |ci''(g7a)%) (18)|m>b(ef*)*(ga)” (16) yes
Q1A 11{0Nn\2\ (14 LNl R FNNS (5N IS Ve
S1’(V,2) il gNa (14+2N) N(ga)V (3N)| ifN< 14
astaiinany u“- S u)"’ S RS N S Y T 2o)| S e
S2 i“gviga (8)|i*g>gaig’ aiga (14) no
SR T [AT SRS T
S3 d 5 1579 4 - 2h 3 43 d(lg) a(lga) (lg) gat 83
g egcg g a(eea) (gd) ()(zgz)a(lgg)zanlgalh(ga)3 () no
. |d(ga)’egac(ga)"(ga)? d(ig)*a(iga) " (ig)’ gai
S3 70 83
e, (eea)*i*h(ga)’) (ig*)a(igg)%anigaih(ga)’) b
el P 6) no
_ steps to - steps to add I =

add N © N constructs
constructs to

to Visitor Interpreter
14 + 2N 3N

break-even at
N =14

Sunday, November 17, 13

& | Why trust this?

& | Why trust this?

@ Construct validity: are all aspects of
maintainability observable in this experiment?

& | Why trust this?

@ Construct validity: are all aspects of
maintainability observable in this experiment?

@ Internal validity: did you really do the best
job possible in all scenarios?

& | Why trust this?

@ Construct validity: are all aspects of
maintainability observable in this experiment?

@ Internal validity: did you really do the best
job possible in all scenarios?

@ External validity: does this say anything
about the next interpreter I write in Java?
The next maintenance? What if I dont use
Eclipse? What if <blablabla>?

& | Why trust this?

other factors may still

dominate, but that is
why we compare two

@ Construct validity: are all aspects ofMEELEEELE
maintainability observable in this experiment?

@ Internal validity: did you really do the best
job possible in all scenarios?

@ External validity: does this say anything
about the next interpreter I write in Java?
The next maintenance? What if I dont use
Eclipse? What if <blablabla>?

€ | Why trust this?

other factors may still

dominate, but that is
why we compare two

@ Construct validity: are all aspects ofMEELEEELE
maintainability observable in this experiment?

there is no proof of
that - we invite you

@ Internal validity: did you really do

job possible in all scenarios? to reproduce or
invalidate the results

@ External validity: does this say anything
about the next interpreter I write in Java?
The next maintenance? What if I dont use
Eclipse? What if <blablabla>?

€ | Why trust this?

other factors may still

dominate, but that is
why we compare two

@ Construct validity: are all aspects ofMEELEEELE
maintainability observable in this experiment?

there is no proof of
that - we invite you

@ Internal validity: did you really do

job possible in all scenarios? to reproduce or
invalidate the results

@ External validity: does this say anything
about the next interpreter I write |

T e do t know
The next maintenance? What if I do

Eclipse? What if <blablabla>?

Summary

*given the scope of the experiment _W

Summary

® We used Rascal to build a refactoring tool

*given the scope of the experiment _W

Sunday, November 17, 13

Summary

® We used Rascal to build a refactoring tool

@ to isolate the difference between Visitor & Interpreter

*given the scope of the experiment _W

Summary

® We used Rascal to build a refactoring tool
@ to isolate the difference between Visitor & Interpreter

@ and using the "Complexity of Maintenance” method

*given the scope of the experiment _W

Summary

® We used Rascal to build a refactoring tool
@ to isolate the difference between Visitor & Interpreter
@ and using the "Complexity of Maintenance” method

@ we found that Visitor is better*

*given the scope of the experiment _E

Summary

® We used Rascal to build a refactoring tool
@ to isolate the difference between Visitor & Interpreter
@ and using the "Complexity of Maintenance” method

@ we found that Visitor is better*

*given the scope of the experiment _E

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org

h’r’r://www.rasca\—m\.or

Summary

® We used Rascal to build a refactoring tool
@ to isolate the difference between Visitor & Interpreter
@ and using the "Complexity of Maintenance” method

@ we found that Visitor is better*

*given the scope of the experiment _E

Sunday, November 17, 13

http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org
http://www.rascal-mpl.org

