
UPTR - a simple parse tree representation format

Jurgen Vinju

Software Transformation Systems

October 22, 2006



Quality of Software Transformation Systems

Quality is a subjective concept

Satisfaction of user requirements
Which STS is best for my task?
Which STS does better for these kinds of tasks?

STS’s are hard to compare

Terminology and concepts differ
Pretty different goals and requirements
Comparing software is a complicated task anyway

Simple questions:

What things are we comparing?
On what attributes are they compared?
How do we compare precisely and honestly?



Some Questions on Parsing

What does this STS consider to be parsing?

Is lexical analysis included/excluded?

What is the input and output of parsing?

Is the output an AST? Parse tree? Something else?

Are the source code comments still in there? Whitespace?

Is the output of this parser “correct”?

Is this the ISO standard interpretation for this C++ program?

Is this the GNU interpretation of this C program?

How did this parser resolve the dangling else issue?

How fast is this parser?



Two pragmatical steps

1 Consensus on the input and output of parsing

Common, more precise, terminology
Measurable parsing process

2 Standard output (file) format for parsing

Enables validation of parsers by comparing parse trees
Enables reuse of parsers (UPTR as input format)
Enables reuse of backends (UPTR as output format)



The input, process, and output

Input a program file

. . . Including lexical (regular) analysis

. . . Including syntax (context-free) analysis

. . . Including all kinds of (context-sensitive) disambiguation

. . . Excluding abstraction

. . . Excluding simplification/normalization

Output parse trees



UPTR

Universal Parse Tree Representation

An exact representation of one or more derivations

for a certain input program
for a certain parser

What is in a UPTR file?

Regular expressions and context-free grammar rules (nodes)
The characters of the input file (leaves)
Ambiguity clusters (nodes)
Cyclic references (leaves)



UPTR properties

Old

More than 9 years of experience
ASF+SDF, StrategoXT, ELAN, Action Notation, . . .

Verbose

Contains the full grammar and regular expressions
Can contain full lexical structure
Can contain all characters of the input (comments)

Efficient

Not XML, but ATerms
Maximal sharing

Versatile

Extensible in three ways
Applied in many contexts



Implementation

Open source (LGPL)

C and Java API’s

(partially) doxygen/javadoc documented

Available tools:

Binary/textual (maximally shared) (de)serialization
Syntax highlighting editors
Source code extraction
Pretty printers
Position annotation
Parse tree visualization
Ambiguity diagnostics
Rewriters

http://www.meta-environment.org



Discussion

Is there consensus on the I/O of parsing?

{W,c,sh}ould your parser output UPTR as an alternative?

Ideas, tips, improvements?


	Introduction
	Quality of Software Transformation Systems
	Some Questions on Parsing
	Two pragmatical steps

	Consensus on Parsing
	The input, process, and output

	Standard output format
	UPTR
	UPTR properties
	Implementation

	Conclusion
	Discussion


