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Chapter 1

Introduction

In this thesis, we will study generic debugging in the ASF+SDF Meta-Environment.
This is done by using TIDE, the ToolBus Integrated Debugging Environment,
designed five years ago by Olivier [1]. Being a ToolBus-based framework, TIDE
is especially applicable in the ASF+SDF Meta-Environment. Although it has
been partially documented and applied in the past, we feel that further research
may reveal interesting results for debugging ASF+SDF and debugging in gen-
eral.

In this chapter, the reader is introduced to ASF+SDF, the ToolBus and the
ASF+SDF Meta-Environment, which is the main application area of TIDE. We
then formulate the problem statements of this thesis, explaining what it is we
are trying to accomplish. Finally, we will name some related work on generic
debugging.

1.1 Introduction to the ASF+SDF Environment

1.1.1 ASF+SDF

ASF+SDF [2, 3, 4, 5] is a specification formalism used for the definition of
languages. An ASF+SDF specification consists of two parts: SDF, which stands
for Syntax Definition Formalism, and ASF, Algebraic Specification Formalism.

A specification’s SDF-part defines the syntax of the language. It allows for
the definition of both the lexical and the context-free syntax.

The ASF-part describes the language’s semantics by providing of a set of
equations. These equations are rewrite rules that are meant for reducing a
syntactically correct term to its normal form, in accordance with the syntax
definition in the SDF-part.

1.1.2 The ToolBus

The ToolBus [6] is a software coordination architecture written in C. It is a
middleware that is suitable for component-based environments. A scripting
language based on process algebra is used to let tools communicate with each
other.

Associated with each tool is an adapter, which forms the intermediary be-
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tween the tool and its ToolBus process. Tools can only communicate with each
other through these processes (figure 1.1).

Figure 1.1: The ToolBus.

1.1.3 The ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [7, 8] is an interactive programming envi-
ronment for the development of ASF+SDF specifications. It uses the ToolBus
as a coordination architecture and features a user interface that displays the
module hierarchy of the module being developed. A separate tab for TIDE’s
debugging environment has recently been added.

The user may open existing modules or create new ones, and the editors of-
fer support for the syntax checking of both ASF and SDF files. An ASF+SDF
specification’s correctness can be verified by providing an input term in the
term editor. In this editor, one may perform a syntax check on the term and
have the term reduced to its normal form by use of the specification’s rewrite
rules (figure 1.2). Another option is to reduce the term with debugging support,
which invokes the TIDE interface and allows the user to debug the specification
at hand.

1.2 Problem statement

Writing a faultless ASF+SDF specification is not easy. While we are dealing
with formal language, it is essentially a programming language in which mistakes
are easily made. This clarifies that there is a substantial need for debugging
support in the Meta-Environment.
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Figure 1.2: Reducing an input term to its normal form.

In this thesis, we explore the ways in which both ASF+SDF and languages
specified in ASF+SDF are debugged. It is important to distinguish between
these two, as debugging can be done on more than one abstraction level. To
this end we will use a debugging framework called TIDE [1]. This is a ToolBus-
integrated framework that is capable of debugging both ASF+SDF and, theo-
retically, any other language. We will touch upon the following problems:

• Documentation
The TIDE framework lacks a thorough technical documentation. Although
a number aspects are clarified in [1], there is need for a complete spec-
ification of the framework’s design and implementation. Additionally, it
would be good to have some sort of tutorial that contains guidelines for
debugging ASF+SDF specifications by use of this framework.

• Generating language-specific debuggers
Currently, the framework is merely capable of debugging ASF+SDF itself,
and some prototype debuggers for C and Java exist. However, it has been
stated that languages specified in ASF+SDF are also eligible for having
debugging support. We will explore this matter and attempt to obtain
a specific debugger for such a language, and if we succeed in doing so,
provide guidelines for creating new debug adapters.

• Debugging at multiple levels

6



Debugging one single process within an application is more or less straight-
forward. It would be more interesting to investigate to what extent we
can debug multiple processes, especially if they are dependent on each
other. TIDE has been designed to debug multiple processes in parallel,
but if these processes rely on each other, things get more complicated. An
attempt to simultaneously debug such processes with TIDE has not yet
been made.

1.3 Related work

Related to the work in this thesis is the DDF project [9], in which a debugger
framework is built for domain-specific languages. Using a mapping technique,
existing domain-specific language grammars are extended with hooks for them
to communicate with a debugger.

The reader is referred to the appropriate sections in [1] for other, similar
efforts.

1.4 Overview

• Chapter 2 provides an extensive description of the TIDE framework, and
sheds light upon both its design and its implementation.

• The following chapter provides a tutorial for using the framework to debug
ASF+SDF in the Meta-Environment.

• In chapter 4 we explain how to extend an application, or a programming
language, with debugging support.

• Chapter 5 discusses how to obtain a debugger from a language specification
and provides a case study.

• Finally, we present our conclusions in chapter 6.
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Chapter 2

The TIDE framework

2.1 Introduction

The need for debugging support in the ASF+SDF Meta-Environment inspired
Olivier [1] to design a framework for generic debugging: TIDE, the ToolBus Inte-
grated Debugging Environment. It was designed to be a framework for debugging
heterogeneous, distributed systems while remaining language independent :

• It is applicable in distributed environments, in which multiple applications
reside that require debugging.

• In addition to the support offered by most debuggers, in which support
is often limited to debugging the communication between components, it
can also debug these components themselves and the processes therein.

• Being language independent, it is capable of dealing with the various lan-
guages in which applications may be implemented.

By use of the ToolBus as a coordination architecture, TIDE utilizes language
independent debugging events that are generated by components that require
debugging.

This chapter offers a detailed description of both the concept and the current
implementation of the framework. Before explaining the notion of events and
event rules in section 2.3, we discuss the debug processes and adapters that are
associated with the components being debugged. We then describe the functions
that are implemented by TIDE (section 2.3.3), both existing and new. What
follows in section 2.4 is a brief description of the graphical user interface. Finally,
section 2.5 reveals some details on the implementation of the framework.

2.2 Adapters and processes

The TIDE framework is capable of debugging multiple processes simultaneously.
This is explained in detail in the case study in chapter 5. In order to keep track
of the distinct components being debugged and to be able to distinguish between
these components, TIDE utilizes debug adapters and debug processes.

A tool that needs debugging may connect to TIDE, which will in turn create
an adapter for this tool. Afterwards, one or more debug processes are created
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within this adapter. This concludes the creation of a debugger for this specific
component, and execution with debugging support may commence. Note that
TIDE’s Java part (section 2.5.3) maintains counterparts of the active debug
adapters and processes.

The following sections provide details on the ins and outs of debug adapters
and debug processes.

2.2.1 Adapters

The ToolBus maintains the connections of the various applications and controls
the communication between these applications. If such a component - having
been extended with TIDE support - requires debugging, it may connect to TIDE
through a debug adapter. A debug adapter translates the debugging primitives
from the application to the TIDE interface. Every new application or language
needs such an adapter to receive debugging support (figure 2.3).

As such an application applies for debugging support, TIDE creates a new
debug adapter and creates a ToolBus connection between the adapter and the
application. This is an adapter-specific connection that is used for the debug-
ging of this application in particular. The adapter then allocates one or more
new debug processes that will consequently register any custom functions for
which the component has the necessary implementations (see section 2.3.3.

Certain applications, for instance if they are multithreaded, may require
multiple debug processes. Though having never been tested with such applica-
tions, TIDE provides the necessary support by allowing more than one debug
process to reside within the adapter simultaneously. Nevertheless, we will only
consider applications featuring one single process in this thesis.

As the adapter and the process have been created, it is communicated to
TIDE’s graphical interface that a new adapter has been connected. The user
may now start a debugging session, in which all ToolBus communications on
one hand and the component’s debugging events on the other are handled by
the debug adapter.

2.2.2 Debug processes

Associated with each debuggable process in the component is a debug process
in the component’s debug adapter. Such a debug process contains actual infor-
mation on the state in which the application currently resides: for example, the
current point of execution. This is best illustrated by the corresponding code
fragment:

typedef struct
{
int id;
int cid;
char *name;
int state;
int stack_level;
int start_level;
TA_Location cpe;
TA_Rule *enabled_rules[MAX_PORT_TYPES];

9



TA_Rule rules[MAX_EVENT_RULES];
} TA_Process;

Most fields are used by any type of debug process; the stack level and start level
however are only applicable in case of a stack-based execution.

As the execution has finished, the corresponding debug process is destroyed.

2.3 Events, ports and rules

An adapter communicates events to TIDE for it to keep track of the execution
of a program. Based on these events, TIDE may take action: for instance, if
a breakpoint is encountered, execution must be halted and control must be re-
turned to the user while awaiting further orders.

In order to bind such actions to certain events, the notion of event rules
is introduced. An event rule is process-specific in that it belongs to one cer-
tain debuggable process. It consists of an event port, a condition, and one or
more actions. The event port indicates at which point during the execution
the associated rule should be activated (table 2.1). Upon activation of a rule,
its condition is evaluated and if the condition holds true, the rule is triggered
and its actions are consequently performed (figure 2.1). During execution, event

Figure 2.1: Event rules.

rules may be enabled, disabled, deleted or modified by the user or the applica-
tion. Sections 2.3.1 through 2.3.3 provide detailed descriptions on each of
the event rule’s components, whereas some examples are given in section 2.3.4.

2.3.1 Event ports

Event ports are used to bind events to event rules. Which port is currently
active in the debugging session depends on the application’s debug adapter,
which is capable of setting it to any of the values in table 2.1. When a certain
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port has become active, e.g. when execution has stopped, it is verified whether
the current process contains any enabled rules that are bound to this port. If
such rules exist, they are activated.

One can observe in the code fragment in section 2.2.2 that indeed a set of

event port activated when
started execution is continued
stopped execution has halted
step a statement is executed

Table 2.1: The event ports that are currently supported.

event rules is associated with each debug process. Each execution step results
in its debug process being changed, and its event rules being operated on. For
instance, as the execution’s port changes, TIDE searches the process’ array of
enabled rules so as to activate the rules that are on the new port.

2.3.2 Event conditions

Upon activation of an event rule, the associated event condition is evaluated to
determine whether the rule should be triggered. This condition is an expression
that is evaluated by the process’ debug adapter. An event rule may simply put
true as the condition so the action is always performed on the corresponding
port, for example highlighting the current point of execution when there is no
activity. However, one may also use functions for conditions; more details on
functions are described in the next section.

2.3.3 Functions and actions

TIDE offers built-in functions that may be used for conditions and actions.
These are predefined expressions that are evaluated by a special function called
eval(). Arguments may be passed on to these functions, as is shown in table 2.2.
The list of currently implemented functions is far from complete. One can

function return type returns
true boolean true
false boolean false
cpe location current point of execution
location(loc) boolean whether loc is part of the current cpe
stack-depth integer current depth of the stack
start-depth integer stackdepth as was on the last call of resume

Table 2.2: Predefined built-in functions.

think of many more functions that come in handy when creating custom event
rules, such as functions that determine equalities between integers. We have
contributed in the expansion of the pre-defined set by adding more comparison
operations on integers, one of which is exemplified in the next chapter. Since
the user is required to know the exact syntax of these functions in order to apply
them, they are explicitly listed in table 2.3.

In addition to these predefined functions, a tool may also register custom
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function return type returns
equal(t1,t2) boolean whether t1 is equal to t2
higher(t1,t2) boolean whether t1 is higher than t2
less(t1,t2) boolean whether t1 is less than t2
higher-equal(t1,t2) boolean whether t1 is higher than or equal to t2
less-equal(t1,t2) boolean whether t1 is less than or equal to t2

Table 2.3: Additional functions.

functions for its debug processes to use. These functions need to be implemented
by the debug adapters themselves. An example of such a custom function is
source-var, which is used for variable viewing during the debugging process.
Since every application stores variables and their actual values in its own way,
each component needs to provide a method for TIDE to collect these values.

Functions can be used for both conditions and actions. Examples are given
in section 2.3.4.

2.3.4 Examples of event rules

We now provide some examples of event rules. These will clarify the use of event
rules in various aspects of the debugging process.

We obviously want the current point of execution to be highlighted between
every step. To achieve this, TIDE creates the following rule by default:

port stopped
condition true

action cpe

This implies that whenever execution is halted, the condition true is evaluated,
obviously returning true. The rule is consequently triggered and the action cpe
is executed. This is a built-in function resulting in the evaluation of the current
point of execution. By means of a ToolBus event, the result is then received by
the GUI, in which the corresponding location is highlighted.

TIDE implements breakpoints by constructing a rule from the source loca-
tion that was clicked on:

port step
condition location(loc)

action break

As an instruction is about to be executed, the corresponding debug adapter
evaluates whether the point of execution associated with loc has been reached,
halting execution if this is the case. This is achieved by use of the built-in func-
tion location(), which determines whether its argument is part of the actual
cpe.

A final example illustrates how the actual values of variables are retrieved.
Recall from the previous section the custom function source-var(). By use of
this function, TIDE creates a rule of the following form whenever the value of
a variable is requested:
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port stopped
condition true

action source-var(loc)

As soon as this rule has been created for the requested variable, the value
of this variable is continually displayed and retrieved every time the execution
halts. The value is passed to the GUI and, as will become clear in section 2.4, it
is displayed in a popup. Closing this popup will automatically delete the rule.

2.4 GUI

TIDE’s graphical user interface is where the user controls the debugging pro-
cesses of one or more applications. It has been integrated into the most recent
release of the ASF+SDF Meta-Environment, residing under the Debugging-tab.

The left portion of the GUI displays the currently connected adapters and

Figure 2.2: TIDE’s user interface in the ASF+SDF Meta-Environment. De-
picted is a recently connected adapter hosting a process called ASF+SDF.

processes that are currently connected, whereas the rightmost part contains
the TIDE tools that are active for these processes. These utilities are process-
specific and can be invoked by right-clicking on a processname and selecting the
appropriate tool (figure 2.2). Currently implemented are three types of tools:

• SourceViewer
Used for execution control such as stepping and setting breakpoints.
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• StackViewer
Allows the user to inspect and operate on the execution stack.

• RuleInspector
Grants access to the currently active rules for the purpose of inspection
or modification.

Pictures of the tools can be found in figures 3.1 through 3.4 in the next chapter.
Each tool is a producer of event rules and, at the same time, a consumer of

the event actions’ results. Some of the tools are useless when debugging certain
applications; the stackviewer for instance is not applicable if the component
being debugged has no stack-based execution model.

Whenever the user starts debugging an application, the Debugging-tab au-
tomatically jumps on top as soon as the debug adapter has connected. The
reader is referred to the next chapter for guidelines on using the GUI and its
tools, as they are best explained by way of an example debugging session.

2.5 Implementation

The implementation of TIDE comsists of ToolBus scripts, C libraries, Java li-
braries and a Java-based GUI. Communication between the debug adapters and
the GUI is handled by the ToolBus. The GUI has recently been integrated into
the ASF+SDF Meta-Environment for users to apply it whenever they consider
it necessary.

Section 2.5.1 provides information on the ToolBus processes that are associ-
ated with TIDE. Follows in section 2.5.2 is a description of the most important
C library, called tide-adapter.c. Finally, section 2.5.3 briefly discusses the
class hierarchy and interaction in TIDE’s Java part.

2.5.1 ToolBus interaction

TIDE utilizes ToolBus scripts for its processes to communicate with each other.
Figure 2.3 illustrates the relevant processes and tools when debugging a single
application. We shall now provide brief descriptions for each of these processes.

• CONTROL
This process generally utilizes the ToolBus’ java-adapter to invoke TIDE’s
graphical user interface1. The GUI then connects to the TOOL-CONNECT-
process. CONTROL offers the possibility to embed TIDE in another GUI,
or to run as a separate application.

• TOOL-CONNECT
TOOL-CONNECT waits for a debug tool (generally TIDE’s GUI) to connect,
after which a new process TOOL is consequently created. A name of the
form debug-tool(cid) is henceforth associated with this process.

1In the case of a custom debug tool (e.g. an alternate GUI), passive mode may be enabled
for the CONTROL-process to accept incoming tool connections instead of invoking the standard
GUI.
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Figure 2.3: The relations between TIDE’s ToolBus processes, the GUI, and the
applications being debugged. It has been indicated whether multiple instances
of the processes and tools can exist.

• TOOL(debug-tool)
Upon creation of the TOOL-process that belongs to debug-tool, TIDE
has been initialized and is ready to accept connections from applications
that need debugging. Any messages and events that are destined for or
originating from the GUI are handled by TOOL.

• TIDE-ADAPTER-CONNECT
TIDE-ADAPTER-CONNECT awaits the connection of a debug adapter, after
which it creates a new process called TIDE-ADAPTER. The debug-adapter’s
identification is supplied as a parameter.

• TIDE-ADAPTER(debug-adapter)
A new TIDE-ADAPTER-process first informs any TOOL-processes of its exis-
tence by sending an appropriate message. It then awaits further orders,
which may come from its application or from the TOOL-process.

Summarizing the above, the ToolBus scripts implement a simple router between
TIDE’s interface, the applications being debugged, and the various debug tools
and debug adapters.

As an example, consider the situation in which the GUI enables an event
rule. The associated debug-tool posts a ToolBus event that is picked up by its
TOOL-process. The relevant piece of communication in TOOL looks like

rec-event(T, enable-rule(Process?, Rule?)) .
snd-msg(enable-rule(Process, Rule)) .
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rec-msg(rule-enabled(Process)) .
snd-ack-event(T, rule-enabled(Process, Rule))

in which Process is a tuple of a debug adapter and a process id within this
adapter.

The corresponding messages in TIDE-ADAPTER are

rec-msg(enable-rule(proc(A, Pid?), Rule?)) .
snd-eval(A, enable-rule(Pid, Rule)) .
rec-value(A, rule-enabled) .
snd-msg(rule-enabled(proc(A, Pid)))

TOOL receives the job from the GUI and consequently sends it to the debug
process that the rule belongs to (i.e. to its debug adapter). It then waits for an
acknowledgement message from the corresponding TIDE-ADAPTER-process. As
the TIDE extension of the application reports that the rule has been enabled,
the GUI is notified by means of an ack-event.

2.5.2 Adapter library

Applications that are C-based have TIDE’s adapter library linked with them
as they are extended with debugging support. This library, tide-adapter.c,
contains all of the functions that are necessary for the application to communi-
cate with TIDE, i.e. to create a debug adapter and a debug process. (Programs
written in Java may use the Java equivalent, which is the DebugAdapter-class
discussed later on.) Auxiliary functions reside in TA.c, whereas ToolBus com-
munication is handled by debug-adapter.c.

Section 4.3, which deals with TIDE extensions in applications, reveals some
details on the adapter library by looking at it from an application’s point of
view.

2.5.3 The TIDE mainframe

TIDE’s Java part consists of roughly 50 Java classes. The implementation
conforms to the Model-View-Controller (MVC) paradigm: there exists a clear
separation between the model, the view and the controller. We provide short
descriptions for the most important classes and their relations below (see also
figure 2.4).

• TideMainFrame
TIDE’s primary class is instantiated the moment TIDE is started. This
is the result of the CONTROL-process invoking the java-adapter upon the
TideMainFrame-class. TideMainFrame creates the main window and in-
stantiates the TideControl-class.

• TideControl
Among other things, this object creates a TideControlBridge and a
DebugTool. It then plugs the DebugTool into the ToolBus, resulting in
the creation of a new debug-tool(cid) that is to be associated with the
TOOL-process mentioned in section 2.5.1.
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Figure 2.4: The foremost classes in TIDE’s Java class hierarchy.

• DebugTool
Together with the DebugAdapter described below, this class forms the
controller -part of the MVC-model. The DebugTool is responsible for han-
dling the connection of any new DebugAdapter, which it then puts in a list.
It also listens for incoming events that its TOOL-process receives, such as
the creation of a new event rule. This is then delegated to the appropriate
DebugAdapter.

• DebugAdapter
The DebugAdapter-class can be considered as the Java counterpart of the
adapter library described in section 2.5.2. Serving as an intermediary
between the DebugTool and the DebugProcess it is, by means of mes-
sages and events, continually synchronized with the corresponding debug
adapter at application-level.
As has been stated in section 2.2, each debug adapter maintains a list
of debug processes for its application. It is also the case in TIDE’s Java
part that the adapter serves as an intermediary. When the DebugTool
receives an event from the ToolBus, it is passed on to the appropriate
DebugAdapter, which then sends it to the target DebugProcess.

• DebugProcess
This the Java version of the debug process at application-level (section 2.2.2).
In MVC terms, DebugProcess is the model : it contains the properties of
the debug process it represents, such as the current point of execution and
a set of enabled rules. These properties are retrieved or updated through
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a chain of responsibility.

• SourceViewer, StackViewer, RuleInspector
These are the graphical tools that receive input from the user and visualize
the current state of the associated debug process. Together, they make
for the view -part of the architecture. Each of the tools is instantiated by
the DebugProcess-object that it belongs to.
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Chapter 3

Using TIDE to debug
ASF+SDF specifications

3.1 Introduction

Having discussed the TIDE framework in chapter 2, we now present what can be
considered as a tutorial for using TIDE in the ASF+SDF Meta-Environment.
The following sections cover most of the functionality that TIDE offers with
respect to debugging on the ASF+SDF level. The reader is referred to chapter 4
for debugging on different layers.

Given the fact that the ASF interpreter was extended with TIDE support
when TIDE was developed, and since TIDE has now been integrated into the
Meta-Environment, not much needs to be done by the user to start debugging
ASF+SDF specifications. By means of illustrations and examples, this chapter
explains the features that are currently at the users disposal. These features
include execution control, stack operations, viewing the values of variables, and
operations on rules. We shall start off by describing how rule rewriting works
in ASF+SDF, and in which respect TIDE may offer support in debugging this
rewriting process.

3.1.1 ASF execution mechanism

The ASF interpreter is responsible for rewriting an input term by use of an
ASF+SDF specification. Before reducing a term, it has been verified whether
the term is syntactically correct.

The next phase consists of rewriting the term to its normal form, which is
done by use of the rewrite rules that are contained in the specification at hand.
The reduction of terms occurs in an innermost fashion: considering the term as
a tree, the leaves (subterms) are reduced first. As a subterm is being reduced,
each of the rewrite rules is tried until a match has been found. The matching
rule is then applied, and reduction continues until all terms are in normal form.

In the case of a conditional rewrite rule, the conditions are evaluated to
determine whether the term being reduced is eligible for reduction by this rule.
This leads to terms being put on the interpreter’s execution stack. The stack
can actually grow pretty large if the conditions contain function calls that in
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themselves require an innermost reduction.
The next section provides an example of a term reduction.

3.1.2 TIDE support in the ASF interpreter

TIDE offers debugging support to the ASF intepreter on the level of rewriting.
In the process of reducing a term, the interpreter generates a debugging event
whenever it is about to take the next rewriting step. This is the case

• when the left-hand side of the rewrite rule is considered.

• when each of the conditions is evaluated.

• when the right-hand side of the rule is considered.

• when each of the terms in the right-hand side is considered, in an innermost
fashion, thus leading to the transformation of the term.

It is important for the reader to know this sequence, as the notion of breakpoints
(discussed in section 3.2.2) requires the user to know exactly in which part of
the rule he or she must put a breakpoint, if execution is to halt at the desired
point.

As an example, suppose we have a generic conditional rewrite rule of the form

[tag] variable == true
================
lhs = rhs

and assume that the condition is in fact satisfied. As the ASF interpreter
applies this rule while using debugging support, it generates a debugging step
whenever it is about to evaluate a new part the rule - thereby shifting TIDE’s
focus to this new part. The order of evaluation would be:
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variable == true
================

lhs = rhs

variable == true
================
lhs = rhs

variable == true
================
lhs = rhs

variable == true
================
lhs = rhs

variable == true
================
lhs = rhs

variable == true
================
lhs = rhs

variable == true
================

lhs = rhs

What is important is that the last step would not have taken place if the con-
dition were not satisfied. If this were the case, placing a breakpoint at the
right-hand side would not have halted execution, implying that the evaluation
of this rule would have gone unnoticed.

3.1.3 Getting started

We now discuss a couple of matters before moving onto the debugging part.

Connecting to TIDE

Enabling debugging support in the process of reducing a term is easy. Instead
of choosing reduce in the editor’s Actions-menu, one selects reduce from the
Debug-menu. As soon as all pre-execution steps are finished, the Debugging-
tab becomes active. In the top-left portion of this tab, one can see that a
new debug adapter has connected, associated with which is a process named
ASF+SDF. Debugging can now start at the user’s discretion.

Tools

Currently implemented in the TIDE interface are three types of tools. These
tools include a sourceviewer, a stackviewer and a rule inspector, all of which
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can be used when debugging ASF+SDF specifications. Each of these utilities
may be invoked by right-clicking on the process of choice and selecting the
appropriate tool from the popup menu. The tools provide various features, of
which the details are explained in sections 3.2 through 3.5.

3.2 Execution control

An indispensible feature in any self-respecting debugger is rendering the user in
control of the execution of the program that is being debugged. This is generally
accomplished by stepping through instructions and by use of breakpoints. TIDE
supports this functionality and presents the user with three kinds of stepping,
and enables the user to set breakpoints in the specification being debugged.
Stepping and breakpoint interaction are both available in the sourceviewer.

3.2.1 Stepping

With regard to stepping through the execution path of a program, TIDE distin-
guishes three types of steps: Single stepping (step into), stepping over function
calls (step over) and stepping up (step up). These functions are part of TIDE’s
graphical interface and a button is associated with each of the steptypes. The
functionality is described in the following sections.

Step into

The simplest stepping method is step into, which resides under the leftmost of
the step buttons in the sourceviewer. Pressing step into basically sets the pro-
cess state to ’running’, thereby continuing the execution until either the next
step or a breakpoint is encountered. Stepping is implemented by the following
rule (section 2.3).

port step
condition true

action break

which reads: in case a statement is executed, always halt execution. As exe-
cution is halted, the current point of execution is highlighted.

Step over

When an instruction containing a function call is about to be executed, pressing
step over results in the execution of that function, during which no stepping
or intervention is possible. This can be useful in case the user is not interested
in stepping through the individual instructions of the function that is being
skipped. Typical functions that one may want to step over are library func-
tions, such as get-location().

What happens during a step over is that the initial stack level is determined
first. Execution is then resumed and as soon as the current stackdepth has
become equal to or smaller than the initial depth, the function has apparently
finished and consequently a break renders the user back in control. This is ac-
complished by use of the following rule:
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port step
condition higher-equal(start-depth, stack-depth)

action break

As the condition of this rule is evaluated, the built-in function higher-equal()
is invoked, which takes two arguments and returns true in case the former num-
ber equals or exceeds the latter. The arguments in this case are the built-ins
start-depth and stack-depth, which evaluate the process’ initial and current
stackdepth, respectively.

As has been pointed out in section 3.1.1, ASF has a stack-based execution
model, thus enabling it to use the provided stacklevel-based steppings.

Step up

In addition to the former two types of stepping, another variation called step up
has been constructed that continues execution until the current stackdepth has
grown smaller than the initial stackdepth (i.e. the level at which this button was
pressed). This feature can be a helping hand when step into has accidentally
been pressed and the user wants to return to the former stack level.

Among other, similar functions, less() has been implemented to support
this functionality. The rule therefore reads

port step
condition less(stack-depth, start-depth)

action break

3.2.2 Breakpoints

Another way of controlling the execution of a program is by use of breakpoints.
A breakpoint is a user-defined fragment in the source code that causes the ex-
ecution to halt when the current point of execution has reached it. That way
the user can have the program execute until a certain point from whence he
or she wishes to control the execution manually. This is typically a piece of
code that requires close inspection or some debug utility. Section 3.1.2 provides
information on the placement of breakpoints in rewrite rules.

The sourceviewer provides the ability to set breakpoints in any piece of source
code. This is done by simply right-clicking on the desired spot and selecting
add breakpoint. An event rule of the following form is consequently created:

port step
condition location(loc)

action break

Figure 3.1 illustrates the use of breakpoints.
Once the desired breakpoints have been set, it is a matter of pushing the run-

button to let TIDE resume execution until a breakpoint has been encountered.
Removal of a breakpoint is done by right-clicking on it and choosing delete rule;
clicking edit rule highlights this breakpoint in the rule inspector for the user to
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Figure 3.1: Inserting breakpoints in the sourceviewer.

alter it. The rule inspector is also the best option in case multiple breakpoints
need to be removed at once.

3.3 Stack viewing and unwinding

As the execution of an input term is started, more and more instructions are
placed on the stack. Associated with each of these instructions is a stackframe
which contains the frame’s name, its stackdepth, and its location in the cor-
responding source file. When the stackviewer is spawned, a list containing all
current stackframes is generated. Selecting a stackframe provides its fields for
the user to inspect.

Figure 3.2 shows an example in which the stackframe that corresponds with
a rewrite rule called [Ev5d] has been highlighted. This rule reads

[Ev5d] eve(Exp, Venv) == 0
==========================================
evst(while Exp do Series od, Venv) = Venv

and we observe that the stackviewer displays the values of the variables involved,
e.g. Exp’s value is input-1, which is the condition for this while-loop. If we take
a step further, the ASF interpreter will shift its focus to this rule’s condition
so as to evaluate it in an innermost fashion. This results in the creation of a
new stackframe called *innermost* (figure 3.3). Selecting this new frame, we
see that it is now evaluating the leftmost argument of the eve() function that

24



Figure 3.2: Stack viewing. The stackframe associated with a rewrite rule has
been selected.

Figure 3.3: Selection of a so-called innermost frame.

is being called in the rule’s condition. This is indicated by *subject*: the left-
most argument is Exp, which corresponds with input-1 in the input program.

An extremely useful feature is the ability to unwind the stack up to a certain
stackframe. If a stackframe is selected and this button is pressed, execution will
automatically continue until the chosen stackframe has reached the top of the
stack, i.e. the current stackdepth has become equal to the selected depth. (This
is similar to stepping up, except that the target stacklevel is user-defined.)

The associated rule reads

port step
condition higher-equal(frame-depth, stack-level)

action break

in which frame-depth is the depth of the chosen stackframe. Looking at this
from an ASF+SDF perspective, we are able to automatically continue execution
until we have returned at the desired rewrite rule.

Note that any resident breakpoints in the source are potentially responsible
for a premature halting of a stack unwinding operation.
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3.4 Monitoring variables

Another of the sourceviewer’s features is viewing the actual values of variables
in the corresponding source. This is done by simply doubleclicking on an alleged
variable. If there exists no variable associated with this location, an error dialog
is displayed. Otherwise, a popup appears that displays the actual value of the
variable.

The event rule for this feature reads

port stopped
condition true

action source-var(loc)

in which loc is the location as is on the user’s screen, and source-var() the
registered function that retrieves the value of the variable at that position.

Instead of removing the popup, the user may drag the popup to a suitable
location enabling him or her to monitor this variable; the value is automatically
updated every step.

3.5 Rule viewing and manipulation

As has been described in section 2.3, the way in which the program being
debugged executes largely depends on the rules that are currently active in the
associated TIDE process(es). Most of the rules are created, modified, deleted or
triggered automatically: these include the standard rules that either resume or
halt execution at ports started and stopped, respectively. Another example is
the step into rule that is created as soon as a sourceviewer is spawned.

Other rules are (indirectly) constructed at request, e.g. rules associated with
breakpoints.

By use of the rule inspector on the other hand, the user can have a direct
influence on the rules that are considered during the current debugging process.
Invoking a rule inspector for a certain debug process presents the user with a
list of rules that currently exist in that process (figure 3.4).
For each of the rules the tag, the port and the condition are displayed. They

can be modified, deleted or enabled, and new rules may be created by supplying
the necessary fields. Refer to sections 2.3.1 and 2.3.3 for a list of currently
supported ports and built-in functions.
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Figure 3.4: The rule inspector.
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Chapter 4

Extending interpreters with
debugging support

4.1 Introduction

The previous chapter has illustrated the use of TIDE in debugging ASF+SDF
specifications on the ASF+SDF level. Debugging applications on this level has
been made possible by the fact that the ASF interpreter is extended with TIDE
support. We will now show that such applications may also be debugged on the
application level by adding debugging support to their implementations.

The recipe for extending an interpreter or runtime system with debugging
support basically consists of three steps:

• Verifying whether the requirements are met.

• Integrating TIDE’s adapter library into the interpreter’s architecture and
establishing a communication layer.

• Placement of debugging steps near relevant events within the interpreter.

We start off by reviewing these ingredients in sections 4.2 through 4.4. The
guidelines we present apply to the situation in which the application being de-
bugged is written in C. In case the application is written in some other language,
TIDE’s adapter library must be ported to that language.

4.2 Requirements

TIDE offers both basic and advanced features to debuggable applications. The
advanced functionality can only be used in case the application can provide the
necessary implementation. As Olivier mentions in [1] the TIDE framework does
however require a set of basic features. Debugging support for a component is
not possible in case the component lacks these properties. The basic features
include:

• Support for the notion of a current point of execution in each process
being debugged.
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• Being able to resume and halt execution at the debugger’s discretion.

• Single stepping functionality.

• Breakpoint support.

Additional debugging features are offered only if the application being debugged
allows for it. An example of this is stepping up (section 3.2.1), which requires
the application to rely on a stack-based execution.

4.3 Connecting and initializing

In case the requirements mentioned in the previous section are met for a certain
application, it may be considered for extension with debugging support. Thus,
a language specific debugger may be created. This section deals with the steps
that are necessary for a C-based application to establish a connection with the
debugger and to initialize its debug adapter.

4.3.1 Getting started

To extend a component with debugging support, we need to write additional
code to make communication with TIDE possible. Considering this from the
application’s point of view, we must:

• Include the adapter library.

• Add function calls to create a new adapter and a new process.
This means putting TA connect(int port) from where on debugging
should commence. By use of this function, the connection id (cid) of the
new debug adapter is received. Afterwards, a call to TA createProcess(int
cid, char *name) is performed to obtain a process id (pid).

• Implement a stepfunction. This function is to be invoked whenever
an instruction is executed that calls for a step, i.e. in case execution is
supposed to halt. It receives the current point of execution as an argu-
ment so the process’ cpe may be updated for the sourceviewer to display.
Furthermore, the function should contain an eventloop in which it waits
for the user to undertake action. The step function must end as the user
chooses to resume execution.

• Register built-in functions for resuming and halting execution.
Registering built-in functions is achieved through use of the function
TA registerFunction(int pid, AFun name, TA Function func), that
takes as arguments the pid, the properties of the desired built-in function
and the name of the local function that implements it. These properties
include the name and the arity.

• If desirable, provide implementations for additional debugging fea-
tures and register the corresponding built-in functions. It is by means of
these functions that custom actions are implemented.

For instance, consider the following code that is used by the ASF interpreter to
establish a connection with the debugger.
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int pid;

void Tide_connect()
{
int cid;
char *name = "ASF+SDF";

cid = TA_connect(TIDE_PORT);
pid = TA_createProcess(cid, name);

TA_registerFunction(pid,ATmakeAFun("resume",0, ATfalse),eval_resume);
TA_registerFunction(pid,ATmakeAFun("break", 0, ATfalse),eval_break);

...
}

Appendix A reveals a large portion of an application’s TIDE extension.

4.3.2 Implementing features

If an application wishes to receive more debugging support than it gets by de-
fault, it may register additional functions in its debug adapter. By means of
registering such an additional function, TIDE has a handle by which it can
invoke the function (i.e. execute the action). The component being debugged
must provide implementations for these function handles, as the debugger itself
has no way of knowing how to perform the requested feature in the application’s
specific architecture. The functions can then be called by means of an action in
an event rule.

As an example, consider the function called list-sources in the ASF in-
terpreter’s TIDE extension. It is used by the sourceviewer, presenting the user
with a list of sourcefiles that are currently active. list-sources is a function
that takes no arguments and invokes eval list sources(), which is the in-
terpreters implementation for this function. Upon reception of an evaluation
request of type list-sources, the interpreter executes the associated function
and returns the list of source files.

4.4 Placement of debugging steps

As the application in question has been extended with debugging support, the
ability to debug it is within reach. Hoewever, before we can make anything
useful out of debugging it, we need to insert calls to the application’s step-
function into its architecture.

During execution, a call to the application’s step-function results in the
execution being stopped in case of single stepping. Obviously the placement of
these steps should be done at strategic places, that is, at points at which the
user would actually want the execution to halt. For instance, in the case of the
ASF interpreter, calls to TIDE STEP have been placed in the various stages of
the rewriting process (see section 3.1.2) for the user to verify whether terms are
reduced correctly. This is illustrated by the following code fragment, which is
part of the interpreter’s subroutine that deals with rewriting terms.
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TIDE_STEP(lhs, env, depth);
lhstrm = rewriteInnermost(lhs, env, depth+1, NO_TRAVERSAL);

if (!lhstrm) {
return fail_env;

}

TIDE_STEP(rhs, env, depth);
rhstrm = rewriteInnermost(rhs, env, depth+1, NO_TRAVERSAL);

if (!rhstrm) {
return fail_env;

}

currentRule = cur;
TIDE_STEP((PT_Tree) cond, env, depth);

As soon as debugging steps have been inserted at relevant points in the appli-
cation’s architecture, we may proceed with debugging.

4.5 Summary

With the appropriate support in place, the construction of a language spe-
cific debugger is complete. The interpreter at hand can now connect to TIDE
and send debug events that TIDE can comprehend. Upon execution of the in-
terpreter, the support being offered is automatically available. The user may
intervene the execution process, for instance by invoking a stackviewer or by
placement of breakpoints (figure 4.1). The program finishes upon execution of
the last instruction.

Chapter 5 presents the user with a case study, in which a specific debugger
is instantiated for an example language.
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Figure 4.1: Language specific debugging.
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Chapter 5

Obtaining a debugger from
an ASF+SDF specification

5.1 Introduction

It has become clear in chapter 4 that extending an application with proper
debugging support is relatively simple. In order to create a language specific
debugging environment, it suffices to extend the language’s specification with
calls to functions in the TIDE adapter library and implement the desired de-
bugging features. With such a debugger at our disposal, in addition to TIDE’s
ability to debug ASF+SDF, we have the means to take debugging a step further.

In this chapter, we will focus on two types of debugging:

1. Debugging a language specified in ASF+SDF.

2. Debugging a program that is executed by an interpreter that is also being
debugged at the same time.

We start off by introducing the reader to the material used in this chapter, and
then touch upon some issues that will rise in our attempt to accomplish the
above. By means of an example language called Pico, we will then show in
section 5.2 how to implement language-specific debugging support and perform
an example debugging session. Afterwards, we will then attempt to debug this
language on multiple levels. We conclude this chapter by discussing the results,
e.g. the degree to which we have been successful, and which aspects require
further effort.

5.1.1 Debugging programs written in ASF+SDF specified
languages

An ASF+SDF language specification consists of the language’s syntax in SDF
and its semantics in ASF. In order to debug programs written in such a lan-
guage, we require it to generate debugging events during its execution. The
easiest way to accomplish this is by means of calls to built-in functions in the
specification’s rewrite rules.

Furthermore, we need a debugger that can handle these debugging events.
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This debugger can be either language-specific or generic: this depends on whether
we want to reuse the support for the debugging of other languages. More on
this is explained later on.

5.1.2 Multilevel debugging

So far, we have only considered debugging one single process in this thesis.
However, given the fact that TIDE has been designed to deal with multiple
debug adapters and debug processes, one could also consider debugging multiple
process at the same time.

We distinguish between three cases:

• The processes being debugged belong to different applications and are
independent of each other (figure 5.1).

• The processes being debugged belong to one single application and are
possibly dependent on each other (figure 5.2).

• The processes being debugged belong to different applications and are
dependent on each other (figure 5.3).

Figure 5.1: Debugging two processes that are completely independent of each
other.

Figure 5.2: Debugging two processes in one application.

The first case is not very interesting in the context of this thesis, and we do not
consider it necessary to prove that this actually works with TIDE.
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Figure 5.3: Debugging two processes that are dependent on each other.

The latter two cases on the other hand are situations that seem quite at-
tractive for testing. Debugging two dependent components simultaneously may
yield interesting results: Imagine running an application that consists of two
parts, both of which are prone to contain mistakes - for example, an interpreter
running an interpreter that runs a program. Debugging this process on two
abstraction levels at the same time would greatly improve the effectiveness of a
debugging session (figure 5.4).

In debugging two or more applications that are dependent on each other,

Figure 5.4: Debugging a single application on two abstraction levels.

the current point of execution shifts from one level to the other, following the
exact path of execution in this program. The user is constantly in control of
both debug processes and may utilize the debugging features that are offered on
each of the layers (figure 5.5). Clearly, all of the components being debugged
must be extended with TIDE support to accomplish this.

5.1.3 Issues

Several challenges await us when implementing a debugger for languages speci-
fied in ASF+SDF. We now describe the most notable issues.

• As was mentioned earlier, we have two options with regard to the type
of debugger: it can either be language-specific or generic. In the running
example we present later, we will choose the latter solution. This means
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Figure 5.5: An example session in which debugging is done at both the specifi-
cation and the language level.

that the generated events and the built-in functions will be generic in na-
ture and, to a certain extent, capable of debugging any language specified
in ASF+SDF. Whether or not we are making the right choice will become
clear in the case study.

• The notion of multilevel debugging can not be realized in TIDE in its
current form. This is because of the fact that although multiple processes
are supported, processes belonging to multiple applications are not. As
TIDE is asked to handle debugging events from more than one process
and to relate these to the correct debug adapters, race conditions will
inevitably turn up. Since our goal is to debug an ASF+SDF specification
on both the language level and the level of ASF+SDF, we are essentially
dealing with two applications at the same time and must therefore come
up with a solution.

5.1.4 Introduction to Pico

To explain the concepts in this chapter, we will employ a running example by
use of the toy language Pico. Pico is a simple programming language specified
in ASF+SDF. Its implementation consists of multiple modules that specify the
types, the value environments, syntax and so on (figure 5.6).

A Pico program starts by declaring its variables, which are subsequently
put in a variable environment. The next phase consists of Pascal-like code that
operates on these variables and adjusts the variable environment accordingly.
Well-known constructions such as if-then-else and while-loops may be used to
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Figure 5.6: Pico’s module hierarchy.

obtain the desired behavior.
Follows is an example Pico program that computes the factorial of 4:

begin
declare
input : natural,
output : natural,
repnr : natural,
rep : natural;

input := 4;
output := 1;

while input - 1 do
rep := output;
repnr := input;
while repnr - 1 do
output := output + rep;
repnr := repnr - 1

od;
input := input - 1

od
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end

Pico-eval is a module that evaluates a Pico program and returns the resulting
values of all variables. It contains the syntax definitions and semantics specifi-
cations necessary to reduce a Pico program to a variable environment.

As an example, consider the rewrite rule in Pico-eval.asf that is applied
in case the condition in an if-then-else construction fails:

eve(Exp, Venv) == 0
=====================================================
evst(if Exp then Series1 else Series2 fi, Venv) =

evs(Series2, Venv)

As the condition Exp in the current environment Venv evaluates to 0, evaluation
of the else-statements Series2 ensues.

Having Pico-eval reduce the example Pico program mentioned earlier re-
sults in a variable environment that contains

[<input,1>, <repnr,2>, <output,24>, <rep,12>]

5.2 Implementation

5.2.1 Support being offered

In this case study, we have restricted the debugging support being offered to
some of the most elementary features:

• Single stepping through Pico instructions.

• Placement of breakpoints in a Pico program.

• Inspection of event rules during a Pico debugging session.

This means that in comparison to the debugging support for ASF+SDF, several
feature have been dropped. Unfortunately, this is inevitable due to genericity -
the built-in library discussed in the next section has been designed to essentially
support any ASF+SDF-specified language.

The dropped features include:

• Stepping over and stepping up is obviously not possible, as the execution
of a Pico program is not stack-based.

• The stackviewer is not applicable for the same reason.

• No implementation is offered for viewing the actual values of Pico vari-
ables, as this is not done easily and because we do not consider it necessary
for our demonstration purposes.

The latter feature would require the tide-step-function to take additional pa-
rameters, e.g. a value environment. Implementing a generic solution for this,
however, is not trivial because languages may each store their variables in a
different way. The alternative would be to make the built-in library language-
specific, implying that it would merely be suitable for debugging Pico programs.

Nevertheless, it is our belief that the support being offered is sufficient to
illustrate the basics of language specific debugging.
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5.2.2 Built-in library

In order to effectively debug a Pico program, debugging steps are placed at
strategic positions in Pico’s semantics specification. To implement these de-
bugging steps, and for both connecting and disconnecting, we have written a
generic module called Tide that provides the necessary functions:

context-free syntax
"tide-connect"(StrCon,Location) -> Boolean

{built-in("tide-connect")}
"tide-disconnect"(StrCon) -> Boolean

{built-in("tide-disconnect")}
"tide-step"(Location) -> Boolean

{built-in("tide-step")}

These are to call newly created built-in functions, that relate to a built-in library
called builtin-tide.c1. This is a generic library, meant for any language spec-
ification to employ through the use of the built-in functions. TIDE’s adapter
library (described in section 2.5.2) has been included in the built-in library for
the language to communicate with the debugger.

5.2.3 Insertion of debugging events

We now need to extend Pico’s specification with calls to the built-in tide-step-
function mentioned in the previous section. In addition, we must have the Pico
program connect to the debugger in an early stadium, and allow it to disconnect
when the execution of the program has finished.

The latter is relatively simple in the Pico evaluator, as in this module there
exists a global function evp() that encapsulates a Pico program. Its syntax
definition reads

"evp"(PROGRAM) -> VENV

whereas its algebraic specification looks like

evp(begin Decls Series end) = evs(Series, evd(Decls))

This reads: upon encountering a Pico program, evaluate its declarations and
then evaluate its statements.

Converting the rewrite rule so as to enable connection with the debugger
results in

tide-connect("PICO",get-location(Decls)) == true,
tide-step(get-location(Decls)) == true,
Venv := evs(Series, evd(Decls)),
tide-disconnect("PICO") == true
=================================================
evp(begin Decls Series end) = Venv
1Built-in functions are constructed in the Meta-Environment’s asc-support package, which

is linked with the ASF interpreter.
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which means that in order to rewrite a Pico program to a new value environ-
ment it will connect to TIDE, invoke a debugging step upon the location of the
declarations, rewrite the program, and disconnect.

The placement of debugging steps into other relevant rewrite rules is done
in a similar fashion. Taking the rule associated with an if-then-else construction
(mentioned in the introduction) as an example, we put

tide-step(get-location(Exp)) == true,
eve(Exp, Venv) != 0
=====================================================
evst(if Exp then Series1 else Series2 fi, Venv) =

evs(Series1, Venv)

The same is done with all rewrite rules that are associated with while-loops and
statements. Appendix B provides the entire specification of the modified Pico
evaluator.

5.2.4 Handling multiple applications

The issue concerning TIDE’s incapability to handle multiple applications has
been solved by building a wrapper around TIDE’s connection manager. By
means of this wrapper, it can not only distinguish between processes but also
between applications. We have accomplished this by having TIDE establish
separate ToolBus connections for each application that requires debugging.

In addition to the wrapper, an adjustment in the ToolBus architecture was
necessary to keep messages from being delivered to the wrong debug adapter.
We identified what can be considered a shortcoming in the way the ToolBus
handles queued events: As the first in a series of events was posted, the Tool-
Bus memorized the destination file descriptor and, consequently, sent all of the
queued events to the very same connection. Obviously this posed a problem, as
a series of events may well contain messages that are destined for different debug
adapters. It has been solved by extending the ToolBus’ EventQueue datastruc-
ture with a field that contains the corresponding file descriptor.

Having dealed with these issues, the debug events generated by one applica-
tion can no longer interfere with the communications of the other (figure 5.3),
since the applications only listen at their own sockets. Multiple applications
can now be part of one single UNIX process, which is the basis for multilevel
debugging.

Further details on the implementation of the built-in library can be found
in appendix A.

5.3 Debugging a Pico program

With the debugging steps and the underlying implementations in place, we are
ready to start a Pico debugging session. Having loaded the modified Pico evalua-
tion module, and taking the example program of section 5.1.4, we start reducing
by choosing Actions and Reduce. (Choosing Reduce from the Debug-menu is
left to the next section.)

As the first debugging step is encountered, reduction of the program halts.
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Indeed this occurs in the initial phase, that is, upon evaluation of the declara-
tions. If at this point we take a single step, the current point of execution shifts
to the first statement. This is according to our expectations, as the specification
of Pico-eval has been modified such that it invokes a debugging step at every
type of statement.

We now step further until we come across the outer while .. do .. od con-
struction. Pressing step once more reveals that it is now evaluating its condition.
As the condition initially evaluates to true, the statements within the while con-
struction are next.

Having verified whether the statements within the outer while-loop are all
evaluated in accordance with our expectations, we may consider the placement
of a breakpoint. By putting a breakpoint at the loop’s condition for example, we
can monitor the evaluation of the condition and afterwards press run to make
the evaluator automatically step through the statements within the iteration
(figure 5.7). Indeed, by putting a breakpoint in the condition and automati-

Figure 5.7: An example Pico debugging session. A breakpoint has been placed
at the condition of the outer while-loop.

cally executing each iteration for a total of four times, the reduction of the Pico
program finishes as soon as the condition fails.
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5.4 Debugging ASF+SDF and Pico simultane-
ously

Now that we have a language specific debugger at our disposal, in addition to
TIDE’s ability to debug ASF+SDF, we have the means to conduct a debugging
session on multiple layers. To start debugging a Pico program and its ASF+SDF
specification simultaneously, we open our example Pico program and choose Re-
duce from the Debug-menu.

The ASF interpreter is the first to connect to TIDE: in the GUI we can
see on the left that an adapter and its debug process have connected. We can
now invoke a sourceviewer for the ASF+SDF process and step until Pico’s ini-
tial rewrite rule is encountered: the rule that reduces a Pico program to the
evaluation of its declarations and its statements. Since this rule has a call to
tide-connect() in its condition, we can see that after a few more steps a new
adapter connects with a debug process named Pico. However, since we have not
yet reached a debugging step for the Pico debugger, we cannot directly start
debugging on the Pico level.

After some more steps, we have come across a debugging step in Pico’s
specification. From here on the ASF interpreter has no longer control over the
execution (the light next to the ASF+SDF -process turns green) and we may
open a sourceviewer for the Pico-process. As was the case in the previous sec-
tion, the program’s declarations are highlighted in the Pico sourceviewer. Upon
taking another step, the execution’s control is returned to the ASF interpreter.

One can observe that the control continually switches between the two de-
bug processes (figure 5.8). If at a certain point we decide that debugging one
of the two processes is no longer necessary, it is simply a matter of pressing
run in the sourceviewer of that process. From here on, that process’ state is
set to running, which implies that the other process can continue without being
interfered by debugging steps on other levels - as long as no breakpoints are
set on those levels. Clicking on run in the other process as well results in the
normal execution of the input term.

It is important to realize that every tool at the user’s disposal is process
specific. Changing the event rules for a certain debug process does not influence
the set of rules that is maintained in the other; the same goes for breakpoints.

5.5 Discussion

From our case study we can draw several conclusions.

• The processes being debugged are strictly separated by TIDE. The way
one process is debugged does not influence the execution path of the other.
Although one can think of situations in which the contrary would be help-
ful, for example setting breakpoints in one process that result in the halt-
ing of the other process’ execution, we feel that a strict separation is wise
because it guarantees a normal execution of the processes involved.
Implementing the support for multilevel debugging turned out to be quite
delicate. Race conditions indeed occured at first, but the wrapper we
described in 5.2.2 solved this issue. Additionally, several adjustments in
the ToolBus’ architecture were necessary. Having done this, the processes
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Figure 5.8: Simultaneously debugging a Pico program and its ASF+SDF spec-
ification.

involved in the session we conducted were strictly separated by means of
their own private TIDE connections, resulting in our debugging session
showing the desired behavior.

• We can state that, judging by the amount of code that was needed, it was
relatively easy to extend Pico with debugging support. As we required
only the basic support in this case study, the built-in library we created
remained fairly simple. Insertion of steps into Pico’s specification was a
relatively straightforward task.
It is important to realize that things are not always this simple. Building
debugging support into an ASF+SDF specified language is easy because
a generic module may be used to invoke the TIDE functions, by means
of which a language specification is easily transformed even by users with
limited ASF+SDF knowledge. However, one can also think of other types
of applications, e.g. applications in which the placement of debugging
steps is not intuitive. A great deal of knowledge of an application’s archi-
tecture is required if calls to the step-function are to be placed at suitable
positions.

• Concerning the built-in library, the question is how to provide a generic
interface, e.g. for value environments. One solution is to have a value en-
vironment that every language specification should use. It is obvious that
by remaining generic, the amount of domain-specific support diminishes.
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On the other hand, implementing more advanced features tends to be
complicated: a thorough understanding of Pico’s specification is then re-
quired. If we want to implement the feature that displays the actual value
of a variable, we need to know all about the underlying datastructures in
which the variables are stored. The debugging support for the ASF inter-
preter does contain this feature, and indeed its implementation comprises
over 70 lines of code. Still, this is negligible compared to the effort it takes
to implement a language specific debugger from scratch.
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Chapter 6

Conclusions

In this final chapter we shall reflect upon our work in this project. It will be
summarized to what extent we have managed to tackle the problems stated in
the introduction, and with regard to which aspects we have been less successful.
We conclude by pointing out which areas require further research.

6.1 Contributions

• Documentation
In this thesis, we have documented the TIDE framework in detail. In
chapter 2, we touched upon most of the framework’s features and pro-
vided an understanding of the underlying implementation, whereas the
tutorial in chapter 3 illustrated the use of TIDE’s features in the con-
text of ASF+SDF debugging. We also added more built-in functions and
implemented a button for stepping up.

• Generating language-specific debuggers
We then broadened our perspective and moved onto extending the frame-
work’s usefulness. We both explored and implemented debugging support
for a language specified in ASF+SDF. By means of this case study, we
illustrated that any ASF+SDF specified language is subject to debugging
by extending it with the appropriate support. We observed that the effort
needed to implement the debugging support was dependent on the desired
features, and concluded that compared to building a language-specific de-
bugger from scratch, the effort was negligible.

• Debugging at multiple levels
Finally, we took it a step further by discussing the case in which multiple
processes within one application are debugged at the same time. After
a few issues were solved, some of which required adjustments in TIDE’s
own implementation, TIDE was able to handle multiple applications. The
notion of multilevel debugging in TIDE was introduced and we have shown
that TIDE is indeed capable of simultaneously debugging a language at
two abstraction layers.
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6.2 Future work

As it stands, the user does not receive full support in debugging ASF+SDF
specifications when using the Tide-module we presented. It was pointed out
in 5.2 that looking up variables, for example, is not easily done in a generic
manner because it depends on the program’s architecture how the variables are
stored. Whether this can be accomplished may be an interesting research ques-
tion for the future.

Other points of interest include applying TIDE in different environments.
Although we have only used the framework for debugging ASF+SDF and lan-
guages specified therein, it should also work for debugging programs that are
written in different languages, e.g. C++ and Java. New debug adapters need
to be written for these languages to render them eligible for debugging, and the
adapter library discussed in 2.5.2 needs to be ported to these other languages.

Another interesting application area for TIDE would be a distributed envi-
ronment. This should obviously work out since we have shown that the frame-
work is capable of handling multiple processes, both dependent and independent.
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Appendix A

TIDE built-in

In this appendix we provide the relevant parts of the source code of builtin-tide.c,
the library that implements the TIDE built-ins discussed in section 5.2.

int pid;

static PT_Tree tide_connect(PT_Tree name, PT_Tree init_location)
{
int cid;
char* str = PT_yieldTree(name);

cid = TA_connect(8999);
pid = TA_createProcess(cid, str);

TA_registerFunction(pid, ATmakeAFun("resume", 0, ATfalse),
eval_resume);

TA_registerFunction(pid, ATmakeAFun("break", 0, ATfalse),
eval_break);

TA_atCPE(pid, tree_to_ta_location(init_location), 0);

return (PT_Tree)CO_makeBooleanConstant(CO_makeBoolConTrue());
}

static PT_Tree tide_disconnect()
{
if (TA_isConnected()) {
TA_disconnect(ATtrue, pid);

}

return (PT_Tree)CO_makeBooleanConstant(CO_makeBoolConTrue());
}

static PT_Tree tide_step(PT_Tree tLoc)
{
if (TA_isConnected()) {
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int old_state = TA_getProcessState(pid);

old_state = TA_getProcessState(pid);

TA_atCPE(pid, tree_to_ta_location(tLoc), 0);
TA_activateRules(pid, TA_makePortStep());

if (TA_getProcessState(pid) == STATE_STOPPED) {
if (old_state != STATE_STOPPED) {
TA_activateRules(pid, TA_makePortStopped());

}

while (TA_getProcessState(pid) == STATE_STOPPED) {
TA_handleAny(pid);

}
if (TA_isConnected()) {
TA_activateRules(pid, TA_makePortStarted());

}
}

}
return (PT_Tree)CO_makeBooleanConstant(CO_makeBoolConTrue());

}

static TA_Expr eval_resume(int pid, AFun fun, TA_ExprList args)
{
TA_setProcessState(pid, STATE_RUNNING);

return ATparse("true");
}

static TA_Expr eval_break(int pid, AFun fun, TA_ExprList args)
{
TA_setProcessState(pid, STATE_STOPPED);

return ATparse("true");
}

static TA_Location tree_to_ta_location(PT_Tree tree)
{
PERR_Location pLoc;
ERR_Location loc;

pLoc = PERR_LocationFromTerm(PT_TreeToTerm(tree));
loc = PERR_lowerLocation(pLoc);

return TA_LocationFromTerm(ERR_LocationToTerm(loc));
}
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Appendix B

Pico specification with
TIDE support

The entire algebraic specification of Pico-eval as described in section 5.1.4 can
be found below. It has been enriched with calls to TIDE functions to make Pico
specific debugging possible.

equations
[Ev1] tide-connect("PICO",get-location(Decls)) == true,

tide-step(get-location(Decls)) == true,
Venv := evs(Series, evd(Decls)),
tide-disconnect("PICO") == true
=================================================
evp(begin Decls Series end) = Venv

[Ev2] evd(declare Id-type*;) = evits(Id-type*)

[Ev3a] evits(Id:natural, Id-type*) = store(evits(Id-type*), Id, 0)

[Ev3b] evits(Id:string, Id-type*) = store(evits(Id-type*), Id, "")

[Ev3c] evits() = []

[Ev4a] tide-step(get-location(Stat)) == true,
Venv’ := evst(Stat, Venv), Venv’’ := evs(Stat*, Venv’)
======================================================

evs(Stat ; Stat*, Venv) = Venv’’

[Ev4b] evs( , Venv) = Venv

[Ev5a] tide-step(get-location(Exp)) == true
=======================================================
evst(Id := Exp, Venv) = store(Venv, Id, eve(Exp, Venv))

[Ev5b] tide-step(get-location(Exp)) == true,
eve(Exp, Venv) != 0
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=====================================================
evst(if Exp then Series1 else Series2 fi, Venv) =

evs(Series1, Venv)

[Ev5c] tide-step(get-location(Exp)) == true,
eve(Exp, Venv) == 0
=====================================================
evst(if Exp then Series1 else Series2 fi, Venv) =

evs(Series2, Venv)

[Ev5d] tide-step(get-location(Exp)) == true,
eve(Exp, Venv) == 0
==========================================
evst(while Exp do Series od, Venv) = Venv

[Ev5e] tide-step(get-location(Exp)) == true,
eve(Exp, Venv) != 0, Venv’ := evs(Series, Venv)
=====================================================
evst(while Exp do Series od, Venv) =

evst(while Exp do Series od, Venv’)

[Ev6a] eve(Id, Venv) = lookup(Venv, Id)

...

[Ev6d] tide-step(get-location(Exp1)) == true,
Nat1 := eve(Exp1, Venv),
Nat2 := eve(Exp2, Venv)
======================================
eve(Exp1 + Exp2, Venv) = Nat1 + Nat2

[Ev6e] tide-step(get-location(Exp1)) == true,
Nat1 := eve(Exp1, Venv),
Nat2 := eve(Exp2, Venv)
======================================
eve(Exp1 - Exp2, Venv) = Nat1 -/ Nat2

[Ev6f] tide-step(get-location(Exp1)) == true,
Str1 := eve(Exp1, Venv),
Str2 := eve(Exp2, Venv)
======================================
eve(Exp1 || Exp2, Venv) = Str1 || Str2

[default-Ev6] tide-step(get-location(Exp)) == true
====================================
eve(Exp,Venv) = nil-value
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