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Detection of attack manifestations on networks and systems via correlation
of log information, is crucial for security. Speci�cation-based solutions have
been proposed as a promising paradigm that counters the high variability of
attacks.
In this study, a solution model using a form of Extended Finite State

Automata is proposed, which is argued to be very e�ective as a fundamental
and precise primitive in sequence analysis of log events. Attack behaviour
speci�cations, are translated to runtime operations which show the viability
of the approach.
After an initial evaluation, these augmented state machines accompanied

with a proof-of-concept Domain Speci�c Language, o�er a solid foundation
for accurate conceptualization and classi�cation of attack vectors; further
applications with attack speci�cation languages appear promising.
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1. Introduction & Scope

This document describes the thesis project that was carried out by Chris-
tos Tsigkanos, under the supervision of Dr. Jurgen Vinju from Centrum
Wiskunde and Informatica (CWI), and Sedat Çapkin from SURFsara B.V.
The project entails intrusion detection by correlation from a multitude of
log information in SURFsara operational networks, from the point-of-view of
information security.

1.1. Document Structure

The document starts with outlining the context and description of the prob-
lem, a formulation of the underlying research questions and reasoning behind
them. After a study of relevant scienti�c literature, what follows is an outline
of the phases of the research approach used, namely Domain Analysis/Spec-
i�cation, Classi�cation, Architecture/Design and subsequently Evaluation.
System Requirements, both functional and non-functional, grow through-

out the Domain Analysis/Speci�cation section, and a study of the proposed
theoretical component follows at the Classi�cation chapter. The rationale
behind each design decision is intended to capture and convey the signi�cant
choices and solution patterns which have been made regarding the system.
Then, a comprehensive overview of the proposed software solution is pre-
sented, using a number of di�erent architectural views to depict di�erent
aspects of the system. This study concludes with the presentation of cases
where the prototype system has been used, along with relevant analysis and
discussion.

1.2. Problem Description and Context

SURFsara manages for science and research purposes a number of High Per-
formance Computing systems. These systems have an open accessible char-
acter. While ensuring the safety of scienti�c research data on these systems
must be guaranteed. Information security has a high priority within SURF-
sara; to ensure the safety of information and other valuable assets, systems
are constantly monitored.
Intrusion detection is the process of monitoring the events occurring in a

computer system or network and analyzing them for signs of possible inci-
dents, which are violations or circumventions of computer security policies,
user policies, or malicious attacks. Such incidents have many causes, such as
malware as network worms or viruses, attackers gaining unauthorized access
to systems from the Internet, or legitimate users who misuse their access or
attempt to gain additional privileges for which they are not authorized.
For the purpose of intrusion prevention and detection, large amounts of log

information are generated daily from the networks and systems. The security
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group of SURFsara, as the major stakeholder, envisions a security system that
identi�es anomalies and misuses from correlations between di�erent types of
information, so attacks or security incidents are detected in time.
Such a system, is usually a software application that monitors network and

system activities for malicious activities or policy violations, and produces
reports to security o�cers. Its primary goal, is to identify possible incidents,
log information about them, and report back analytics on attempts to cir-
cumvent security facilities in place.
Several solution schemes are proposed in scienti�c literature for the type

of problem of intrusion detection such systems solve; these include machine
learning or data mining techniques, statistical methods or expert systems,
neural networks, or a combination of these. Another novel approach, is based
on modeling through speci�cation languages.

1.3. Detection Techniques

With the ever-growing attacks on network infrastructures, the need for tech-
niques and advanced tools to detect, study and prevent attacks is increasing.
The notion of intrusion detection, refers to a wide range of literature and
techniques that counter malicious attacks [1]. Techniques generally are cate-
gorized as either misuse detection or anomaly detection.
In misuse detection approaches, abnormal system behaviour is de�ned;

this stands against anomaly detection approaches, which utilize de�nitions
of normal behaviours, aiming to classify outliers as abnormal. The main
advantage of misuse detection is that it can very accurately detect known
attacks, while its main drawback is the inability to detect previously unseen
attacks. Anomaly detection, on the other hand, is capable of detecting novel
attacks, but su�ers from a very high false positive rate. This is because
previously unseen, yet legitimate behaviours are regarded as anomalies.
Speci�cation-based solutions have been proposed as a promising alterna-

tive that combine the strongest points of misuse and anomaly detection [28].
The main theme in these approaches, is that expert-de�ned speci�cations
are used to characterize legitimate, or illegitimate program behaviors. This
way deviations or instances of either, are very accurately detected, and thus
the false positive rate, the major hurdle with anomaly detection, is reduced
signi�cantly.
The modeling of the problem domain lies in the ability of the security

experts, who are constantly aware of the nature of potentially interesting sit-
uations. Enabling experts to actively de�ne and detect intrusion behaviours
pertinent to their speci�c use case, is a powerful concept: it is an intrusion
detection system coupled with and supported by domain knowledge.
Interfacing between the domain expertise of security experts and the amount

and variability of relevant data is a challenge where the concept of using a
Domain Speci�c Language �ts right in. Via this mechanism descriptions of
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attack manifestations can be generated [4]; these are to be constantly checked
against data available, and in turn provide back relevant insights.
This way, the de�nition of an anomaly or misuse is delegated to the security

expert who uses the Domain Speci�c Language: the DSL should provide the
underlying mechanisms and language constructs to support this. The DSL,
as a mediator through the domain and the user, should outline all possible
ways an interesting case could be de�ned. Thus, what does an outlier "looks
like" is de�ned on a precise basis, depending on the speci�c use case. A
formulation of research questions based on this follows.

1.4. Research Questions

Can expert knowledge about attack manifestations be captured in

formal and executable speci�cations?

• What are the di�culties associated with information security oriented
speci�cation?

• How can speci�cations of attack manifestations can be e�ciently trans-
lated to operations on data?

2. Related Work

Attack languages have been used for security requirements speci�cation pur-
poses and attempt to bridge the gap between software engineering and se-
curity engineering. The common objective, is that manually speci�ed be-
havioral speci�cations are to be used as a basis to detect attacks, novel or
otherwise, and several of these security speci�cation-based languages have
been proposed, i.e. AsmL, STATL, ASL and USTAT [10].
STATL [17] is an attack language that can describe di�erent attack sce-

narios, where an attack is modeled as a sequence of steps that bring the
system from an initial state to a compromised state. The Behavior Mod-
elling Speci�cation Language (BMSL), is a language designed for developing
security-relevant behavior models at the system call level [16]. Speci�cations
in BMSL consist of rules of the form of a tuple (pattern, action), where pat-
tern can be an event sequence and action the the response to it. It can be
used for both normal and abnormal behavior speci�cation, by using nega-
tions of properties of normal or abnormal event histories. Validation in such
language approaches is promising, and false alarm rates are considered gen-
erally low and quite comparable to misuse detection. Another result of note,
is that generic speci�cations seem to be su�cient for detecting a majority of
the attacks [16].
Other approaches such as the extensive speci�cation theme apparent in the

Audit Speci�cation Language (ASL), include language support that allows
speci�cation authors to describe complex data structures [19]. This way, an
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attack scenario can be generic enough and be able to handle di�erent low-
level formats (e.g., switching from IPV4 to IPV6 packet inspection). In [34],
a pattern language and intrusion detection system is introduced, which uses
a novel algorithm for correlating distributed event signatures.
Another matter, is that the underlying data required for security oriented

speci�cation, have to exhibit certain properties. In [2], an extensive study
is done on the context of requirements of attack manifestations, however di-
rected on di�erent parts of the network stack. The framework proposed for log
data extraction, proves valuable for its classi�cation of attack manifestations
with respect to data available. Case studies of attacks and their di�erent data
extraction requirements provide the foundation in �nding classes of attacks
with similar demands on log data [15].
A common denominator in many security speci�cation languages, is a state

transition concept in specifying behaviors. Using this, thorough models are
built which represent a variety of situations and interactions that can happen
in the relevant domain. Using stateful analysis, descriptions of pro�les of
behaviour which model activity in the domain are created and analyzed.
The rationale behind the addition of state, is the fundamental notion that
attacks happen as a sequence of steps, and thus should be analysed as such.
This stateful sequence-based detection as relevant to networks security is the
general fundamental theme for study [6, 7]. The trend of stateful detection
is evident, as there exist also frameworks to translate between state-based
languages, as indicated for AsmL and STATL in [18].
The primary hindrance of stateful security analysis methods is that they

are very resource-intensive because of the complexity of the analysis and the
overhead involved in performing state tracking for many simultaneous sessions
and cases. Another serious problem is that stateful analysis techniques cannot
detect attacks that violate general characteristics of the previously analyzed
and understood behavior, such as novel denial of service attacks. Yet another
disadvantage is that the implementation of the model used might con�ict
with the way the underlying events are represented across di�erent systems,
thus introducing development overhead in real-world scenarios.
However, the consideration for the state-transition concept is evident in

scienti�c literature as an excellent match for modeling attacks that exhibit
high complexity. It imposes a convienient structure for study and speci�ca-
tion, and o�ers a solid foundation for runtime operations.
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Lessons learned from the relevant literature concern several components of
an attack detection system. As an initial step, characteristics of the event
entities for attack manifestation speci�cation must be de�ned, following the
course in log data extraction such as in [2, 5]. Relations between these �elds
will provide insight for selecting the right set of entity features for classi�ca-
tion.
At the core, regarding classi�cation through sequence analysis, techniques

help understand what properties time series of events in attack vectors should
have, along with the theoretical foundation [28]. The speci�cation approach
followed in extensive frameworks and languages in intrusion detection, are
valuable to enable complex attack description support [19]. Regarding the
formal modeling of attack vectors through correlation of event streams there
exists also research in [11].
Regarding evaluation of the proposed system, the use of case studies is

the de�nitive way used by researchers in each context, using attack cases
pertinent to each framework or system. The stateful analysis in languages and
frameworks mentioned, i.e. in AsmL, STATL, ASL and USTAT is oriented
in a wide part of the system-network stack, ranging from the system kernel
level, to the network packet level, so use cases must be found which represent
the right domain.
In the current study, an attempt is made to apply the lessons learned from

similar approaches in literature, but utilizing both system data and network

meta-data.
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3. Research method

The project revolves around four main themes, which are described below.
The interplay between them is key to the approach.

Domain Analysis and Speci�cation

This research component aims in the description of the project goals, through
a study of matters relevant to the domain. These include a study about
the underlying data entities and their requirements, computational tradeo�s
and speci�c domain constraints. In the form of design considerations, the
discussion is directed towards the de�nition of the system's functional and
non-functional requirements. Extrapolating on these, major concerns are how
one can understand, accurately specify [3] and detect security-oriented events
based on the current context, which is the subject of the next section.

Sequence Analysis and Classi�cation

Strongly coupled with validation of the research implementation, this compo-
nent entails observing occurrences of combinations of security oriented events
in reality and building a model, classifying characteristics and enabling detec-
tion. Through classi�cation, common denominators can be found in possible
outliers, and the main analysis mechanism is developed.

Prototype Architecture and Design

Since possible answers to the Research Questions entail a pragmatic attempt
at de�nition, a relevant prototype system must be designed, which addresses
the analysis concerns, and based on the requirements set in the Domain Anal-
ysis section. This also includes the system architecture, after study of relevant
literature. Design and implementation with the Research Questions in mind,
is the shortest path to evaluation of the model and system.

Evaluation

After a formulation of appropriate key points, evaluation of the design, anal-
ysis mechanism and prototype system is attempted using a variety of case
studies. In this section, typical domain problems are discussed, along with
solutions using the proposed approach. Possible improvements over the cur-
rent study, lessons learned and threats to validity are also included.
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4. Domain Analysis and Specification

The goal of this section is to build system requirements throughout a study
and discussion of underlying matters relevant to the current domain. The
context diagram in Figure 1 identi�es the entities interacting with the system,
as well as the �ow of data. In context, the operation is as follows: there is
an in�ux of log events from various sources, which the system processes and
stores in an external facility. Then, the security expert introduces attack
speci�cations to the system, which use the information in the data store to
produce result reports back to the operator.

Figure 1: System Context Diagram

4.1. Data Format and Sources

The system aims at analysis of information contained in log �les which are
collected from a variety of systems and network components. These source
systems, may use di�erent log formats, and di�erent components use di�er-
ent syntax for logging information. Thus the need for a common reference
speci�cation arises; a common denominator is necessary in order to abstract
operations on the data. An accurate notion of 'log entity', allows for de�nitive
speci�cation whereas also possibly addressing data storage and operational
concerns, which require uniform structures [2].
Moreover, an interesting observation is that every line in an arbitrary input

log �le is self-contained; all information about an event can be found there.
Conversely, meta-data about the log �le attributes or �lesystem location are
not important. This assumption a) does not enforce strict raw input con-
straints at the log event importing stage, such as relying on when or where
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the log �le came from, and b) has clear advantages over data storage distri-
bution and parallelization of operations, as each line in a �le can be parsed
individually.
Available at the time of this study were mainly logs about authentica-

tion/syslog and net�ow. However, generic syslog and kernel logging parsers
are also included for future extension. Test data for the prototype corre-
sponded to one month of systems and network usage, which was about 220
million events (or 180GB). An overview of the two primary log categories
follows.

4.1.1. System/Authentication Data and Taxonomy

Syslog is the standard facility for data logging in UNIX systems. It presents
an uni�ed interface to various programs, gathering the relevant log informa-
tion along with certain metadata, making it possible to store them centrally.
Implementations are available for a variety of operating systems. In the
current problem's case, log information can be from facilities which include
authentication services, system facilities such as �rewalls and applications
such as web or mail servers.
Focus is given on the use and analysis of mainly authentication data, as

pointed out by the stakeholders. Information related to authentication on
SURFsara systems come from a variety of sources and relevant components,
which are handling a large number of users and sessions at a time.
Syslog-related entities, sharing common characteristics, are parsed and the

relevant �elds are populated, if applicable. A detailed description of the even-
tual parsed �elds can be found on Table 4.1.

Requirement 1: System and NetFlow log analysis
Requirement 2: Common log entity speci�cation
Requirement 3: Flexibility in input mechanisms
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Event Field Event Description

action An action associated with the entity, if applicable e.g. 'open', 'accept',
'close', 'fail'

component The component which �red the event, if available, e.g. 'pam_access',
'pam_unix', 'pam_succeed_if', 'pam_keyinit'

date Date and time in ISO 8601, up to a standard second resolution
pid The PID of the unix process that generated the log event.
program The program that generated the log event; versions of PAM, various

authentication or login facilities, or system components such as �re-
walls, e.g. 'login', 'rpcbind', 'sshd-external', 'su', 'syslog-ng'

source The source host of the log event, e.g. 'iokasti'
taxonomy A general taxonomy of the syslog entries, e.g. 'access control'
type Characterization of log event, if available, e.g. 'auth', 'session', 'ac-

count'
user The user involved in the log event, if applicable, e.g. 'root'
source ip External address related to the event, if applicable, for example in

authentication attempts
body The body of the log event

Table 4.1: Fields of syslog event entity

4.1.2. NetFlow Data and Taxonomy

NetFlow is a network protocol developed by Cisco Systems for collecting IP
tra�c information. It has become a wide industry standard for tra�c mon-
itoring and is supported on various routers, enabling collection of IP tra�c
meta-data: the network router, while conducting normal operations, gathers
statistics about the current routed socket pairs.

The Flow abstraction

A "�ow", is de�ned as the set of characteristics of a unidirectional sequence
of IP packets between two networked endpoints. It is de�ned by some key
�elds: source and destination address and port, protocol type, type of ser-
vice, as well as various routing information. The unidirectionality property in
practice, means that for a TCP communication session two complementary
�ows will be observed, while for UDP only one.
The termination conditions of a �ow are of note:

• Inactivity in transmission exceeds 15 seconds.

• The transport layer indicates that the connection is completed, and in
case of TCP, FIN �ags are observed. In this case the full acknowledgment
handshaking is also included.

• For �ows that remain continuously active, �ow cache entries expire in a
maximum of 30 minutes and new �ow records are created.
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The key concept of NetFlow, is that only meta-data and no paylod infor-
mation about the connections are captured. This is an important di�erence
from signature-based tools that do packet analysis. The NetFlow approach
however, has some distinct advantages.
The notion of not considering packet payloads, greatly reduces the pro-

cessing demands and makes the NetFlow protocol an excellent �t for busy,
high-speed network environments. In addition, this abstraction characteristic
makes it very useful in zero-day or novel attack detection, a use case where
traditional signature-based methods would fail due to the high in�ux of data.
Since �ow data is coming directly from the lower network level, NetFlow

is capable of providing a unique perspective of the entire tra�c pro�les of a
network at the core infrastructure level. Another advantage, is that higher
data retention is possible, in contrast to traditional packet analysis setups.
This allows for extensive later analysis and observation of network events.
The �ows in a typical setup are exported in near real-time via UDP to a
collector host, which compresses and stores them.
NetFlow records are parsed as per the information contained. Note that on

every �ow record, all information is always present. Table 4.2 has a detailed
description of the parsed �elds available for analysis.

Event Field Event Description

tos Source type of service, e.g datagram's priority, low-delay, high-
throughput, or highly-reliable (Layer 3)

dstas Identi�er of destination Autonomous System, used for BGP routing
dstip Destination IP address of the �ow (Layer 3)
srcip Source IP address of the �ow (Layer 3)
input Input interface index used by the SNMP protocol
dstport Destination port of the �ow
srcport Source port of the �ow
�rst Flow start timestamp, normalized to ISO 8601
last Flow end timestamp, normalized to ISO 8601
�ags TCP �ags of the �ow, ORed, e.g. 000010 (SYN) + 000100 (RST) =

6 (FLAG)
srcas Identi�er of source Autonomous System, used for BGP routing
prot Protocol of the �ow packets (Layer 3), e.g. 'tcp', 'icmp'
packets Number of packets observed in the �ow
bytes Number of bytes observed in the �ow
output Output router interface index, or zero if the packet was dropped.

Table 4.2: Fields of net�ow event entity
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4.2. Data Store

The storage of the log entities speci�ed, is highly relevant to the design of the
prototype system. It is evident from the nature of the data that log entities are
self contained and loosely coupled, showing no strong relationships between
them, as every log line is transformed to a log entity object populated with
the available �elds. This object-like structure is relevant to an evaluation of
data storage options for the implementation stage.
A key factor is that initial data size is relatively unknown, since the operator

can choose to import any amount of log data for analysis. So given this
loose constraint requirement on the input data, strong assumptions are not
e�ective: operations need to be able to scale as possible in a uniform fashion.
As for system operation, it is apparent that the large dataset remains

unchanged throughout operations, so write-related actions are not much of
a concern. Instead, the data storage solution must display high bulk insert
performance, since the initial insertion of data is a demanding process. As
for data access and aggregation operations, the use case at hand displays
minimal data ordering needs; data are ordered in a time-series and the need
for extensive indexing at the database layer is minimized.
Another quality that would prove bene�cial by enabling rapid prototyp-

ing at the implementation phase, is direct mapping between objects in the
database and programming constructs.

4.3. Data Quality

In the current context, due to the sheer amount of information, as well as the
lack of �ne-grained control over the initial raw input data, the issue of data
quality arises even at the initial input stage. To overcome this, measures must
be taken towards data cleansing ; operations on the dataset highly depend
on the expected data distribution. The expert might decide to enter data
of a speci�c type or quantity, to test a speci�c scenario hypothesis, and so
should be allowed to inspect the data entered for integrity. This theoretically
translates to setting qualitative and quantitative standards on data present
in the system: these can be estimated through learning techniques [28], the
expert user can choose them through an interactive process or to ensure
standards, can be hardcoded.
Another related matter also concerning baselines, is estimating thresholds.

The problem of accurate threshold de�nition is a recurring theme in secu-
rity analysis; the ability to distinguish normal from abnormal or malicious
from legitimate, is highly sought. Thresholds highly depend on their context,

Requirement 4: Maintain limited dependance on input data size
Requirement 5: Realize high insert performance in data input
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making statistical measures over the data set hard to de�ne; the overall goal
being to develop ways of determining baselines that depend on a relevant data
subset. An event analysis mechanism that would provide auxiliary functions
supporting this would be very bene�cial. More on this subject can be found
in Appendix A.
In the current problem's case however, the focus is given on data quality.

The system must maintain �exibility in operation and be able to work with
non uniform data distributions, since conceptually arbitrary data is coupled
to the scenarios that the domain expert de�nes for analysis; in practice, the
simplest case of this translates to aiding the expert to verify the dataset.

4.4. Online, Offline and tradeoffs in analysis

Another critical consideration, is the way the analysis is performed; this po-
tentially a�ects also the core sequence analysis mechanism. Online or o�ine
modes can be vastly di�erent regarding implementation.
The stakeholders requested o�ine analysis, but with the option to expand

the underlying core runtime engine in the future to support also online anal-
ysis. The reason online analysis is not initially addressed, is that as with
every critical security matter, there are deployment considerations. Software
that imposes changes in multiple points of critical infrastructure, such as core
network routers or servers, must be thoroughly tested, security checked and
augmented with resilience mechanisms before reaching production.
Another consideration, is that the amount of o�ine data, processing re-

sources and capacity for analysis can not be predicted beforehand, but �uc-
tuate depending on the current use case, environment and timespan the log
entities represent and assumptions on the density of the data set can not be
made.
These goals point to a solution pattern based on the notion of processing an

event stream, as such an organization is compatible with both perspectives.
The base principle, is the existence of an event feed, which whether in online
or o�ine mode, is directed to scenario checking components. These state-
ments represent requirements that constrain the solution space, and must be
taken into account when evaluating possible solution schemes for the runtime
analysis engine.

Requirement 6: Architecture must support online analysis
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4.5. Challenges and Driving Quality Attributes

Several challenges can be identi�ed in the solution space of the problem.
These regard both the system as well as the accompanying speci�cation lan-
guage.

• E�cient computation; operations on the dataset available must be as
quick as possible, and domain speci�c optimizations should allow for
rapid processing,

• Runtime library interfacing; translating the attack scenarios to runtime
computations, to account for the variation of the problem space is also
a challenge.

• Data Storage; the choice of database greatly a�ects performance, and
possible solutions must be evaluated.

• Language syntax; the new language must be accurately speci�ed, whereas
maintaining usability characteristics. The speci�cation process must be
aided by graphical reporting capabilities,

Additionally, the speci�cation language should ultimately full�l these goals:

• Simplicity; the language should provide just those features needed to
represent attack scenarios, i.e. to not deviate from the domain.

• Expressiveness; the language should have a rigorously de�ned, implementation-
independent syntax and semantics, so that the meaning of any attack
scenario is unambiguous.

• Extensibility; it should be possible to extend the language in a well-
de�ned, relatively simple way.

In the following sections, an attempt to address these points is made, re-
garding architecture, design and implementation of the prototype system.
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5. Sequence Analysis and Classification

In this section, the foundational theoretical model and base mechanism for
sequence analysis is presented, accompanied with a study of the implications
of its use.

5.1. Attack Vectors and Sequence Detection

Misuse detection analysis in literature, can be characterised as stateless or
stateful. Stateless analysis concerns the investigation of each event in the
input stream in an independent fashion, while stateful analysis considers the
relationships between events and is able to detect event sequencies that repre-
sent attack vectors. This analysis is considered more powerful and allows one
to detect more complex attacks. However, drawbacks of stateful approaches
include high CPU and memory costs and possibly a vast amount of com-
plexity. An event stream assosiated with such stateful approaches, can be
any continuous �ow of information coming from system auditing facilities,
application logs, or the various network appliances.
Taking into account the problem setting, it is observed that an attack vector

can be broken up into a series of discrete event characteristics; actions on the
network or a system, happen within the time domain and other constraints:

• In the case of the network level (net�ow), events happen between two
endpoints, i.e. a client and a server and are ordered on a time basis.

• In the case of the system level (syslog), available information are bound
to the originating host or possibly other information, such as the initi-
ating user, but always the time.

This corresponds to the de�nition of a security related attack vector: a
malicious attacker, worm or virus, will take a series of steps, representing
the path to a computer or network server in order to deliver a payload or
malicious outcome [14]. This time series of steps is de�nitely represented
distinctively in the underlying data set, since quanti�cation is available at
even the network �ow level. It is evident that e�ective modelling of these
discrete stages is the precursor of detection.
Thus an detection mechanism in this context must support e�cient detec-

tion of a well de�ned, but su�cient abstractly described sequence of event
characteristics. While the former concerns design and implementation, the
latter is highly dependent in allowing accurate speci�cation by enabling the
domain expert. At the core of the problem, a solution can be reduced into
e�ectively distinguishing malicious sequences of events from benevolent ones.
The approach, has to satisfy the following requirements:

• Flexible speci�cation of the event characteristics for detection

• Extensibility in the sense of enabling detection of combinations of se-
quencies
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• Clear syntax and easy conceptual understanding of the modeling con-
structs

• Compatibility with runtime concerns

Note that traditional database query mechanisms and languages are not fully
applicable for this type of operations, as they do not satify these require-
ments. Moreover, in this case a) language constructs expressing sequential
operations become quickly complex and cumbersome and b) there is an inher-
ent incompatibility with an event-feed runtime architecture, which is highly
sought in the current solution space.

5.2. Solution Candidates

Based on the assumptions that sequence detection includes and the require-
ments of the prototype system, possible solutions addressing the problem are
evaluated.
Event processing is used in operational intelligence solutions to provide

insight into business operations by running query analysis against live feeds
and event data [20], and is heavily used in �nancial applications, where time-
ordered data are frequent. The goal is to combine data from multiple sources,
to infer analytics or patterns that identify meaningful opportunities or threats
and respond to them as quickly as possible.
Implementations that address event processing include stream processing

languages such as StreamSQL [21], Esper [22] or domain-speci�c integrations
in products as in TIBCO StreamBase [25]. These approaches use time win-
dows to process event streams and extend the SQL type system to allow
manipulation such as stream relation and stream join operations. Others
such as OpenPDC [23] or Kinetic Rule Language [24], aim at advanced rule-
based action de�nition regarding event streams. Time-series databases also
exist as a backend to support performant operations on time-ordered existing
data. Architectures concerning event system processing are extensive, and
typically concern large scale systems used in process monitoring or �nancial
applications. Proprietary solutions dominate the �eld.
However, the fragmentation over di�erent implementations regarding event

processing is apparent. Each approach uses di�erent semantics, o�ers di�er-
ent features and is targeted to speci�c event processing applications of mostly
enteprise level. The absence of a uni�ed framework and model makes solu-
tions not compatible with one another, being tied up to speci�c languages,
systems and architectures.

Requirement 7: E�ective attack modeling
Requirement 8: Allow combination of scenario sequencies
Requirement 9: Provide facilities to aid understanding of scenario speci�cation
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Another solution candidate is Finite State Automata [27], a mathematical
model of computation conceived as an abstract machine composed of states
and transitions. The conceptual simplicity of a solution based on a form
of Finite State Automata is argued that is an asset that extends to many
advantages. An automaton is a primitive construct, which very naturally
corresponds to the processing of discrete events. It exhibits high extensi-
bility, as auxiliary operations and internal elements can be included in the
model implementation seamlessly after deployment. Software design patterns
also exist to enforce best practices on complex designs [26]. Another point is
that this model is a highly transferable abstraction, allowing interoperability
between implementations. Regarding runtime operations, the �nite state au-
tomata model is compatible with every implementation language and setting,
ranging from hardware implementations in embedded systems to high per-
formance software systems. It has no dependancies on libraries or external
systems. Distinction on the mode of operation between o�ine and online
analysis mechanisms is not a concern, as the exact same model and design
can be applied. Moreover, the memory footprint is minimal and the compu-
tation cost is equivalent to if-clauses. Also, in scienti�c literature on stateful
analysis for security through speci�cation languages, the use of various forms
of �nite state automata as a base to model attacks is common [6, 7, 18].
In the current problem setting, it fully ful�lls the concerns previously set.

In the next section, a solution using �nite state automata is presented.

5.3. Extended Finite State Automata

Extended Finite State Automata (EFSA) are an e�cient construct for mod-
elling attack speci�cations. An EFSA, as outlined in [28], is similar to a
Finite State Automaton, with some key augmentations revolving around a
more complex set of transition trigger conditions, state variables and con-
structs to support higher level operations.
The model, should be able to be translated to operations on the dataset.

Regarding the runtime behaviour characteristics, event streams representing
sequences of attack vectors should traverse an automaton, beginning from
the initial state. At each intermediate state, the state conditions are checked
against the event parameters and possible various state variables present, de-
pending on the speci�c operation. If the conditions are satis�ed, a transition
should be �red. Should the EFSA reach a �nal state, it is successful.
The base FSA model, does not allow the presence of variables in states. In

the current domain such variables are needed to complement more advanced
state conditions, and manipulation of them according to the transition logic
enables computation dependent on the state's internal environment. Logical
or arithmetic functional primitives present on the state which have the role
of conditions, can manipulate these state variables and trigger transitions
depending on the event stream.
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In context, the model proposed is based on the assumptions that (a) an
EFSA makes transitions that may have arguments, (b) it can use a �nite set
of state variables in which values can be stored, and (c) accepting states can
have outward transitions. If trigger conditions are satis�ed with respect to
the present context, a transition is �red, bringing the automaton from the
current to the next state, while potentially performing auxiliary operations.
Formally, an EFSA is de�ned to be a tuple (Σ, Q, s, F, V,M,D, δ), where:

• Σ is the alphabet of the EFSA. It is an alphabet of possible events,

• Q is a �nite set of states of the EFSA,

• s ∈ Q is the initial state of the EFSA,

• F ⊆ Q is a set of accepting states, where for f ∈ F , f can have outward
transitions,

• V is a �nite tuple (u1, ..., un) of state conditions,

• M is a �nite tuple (m1, ...,mn) of state variables,

• δ : Q× V × Σ×M → Q×M × V is the transition relation.

Using this de�nition, a solution for specifying EFSA that model attack
vectors is proposed. The re�ection of this model to programming constructs
can be found in Table 5.1.
In practice, the de�nition entails creating states Q, where each one is com-

prised of conditions V and state variables M . This combination of V and
M , represents accurately the events that can incur transitions to this state.
Beginning from a speci�c state designated as initial, control may �ow through
the automaton up to a state marked as accepting. A series of events that led
from s to an f ∈ F , is marked as successful.
It is argued that this fundamental view can be a very compelling model for

attack speci�cations; possible extensions are outlined in Appendix A.

EFSA Programming Construct

s ∈ Σ Event represented as a hash map
q ∈ Q Instance of a State class.
s Initial designated state where processing should start

F ⊆ Q States designated as accepting
M Variable of state information, represented as a hash map
V Function that takes as argument the incoming event and the state hash map

variable, returns True or False
δ Instance of an EFSA class which handles the transitions between states

Table 5.1: Pairing of EFSA elements and programming constructs
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6. Prototype Architecture and Design

In this section, an in vitro system is designed, to address the concerns set
by the current study, using the theoretical model previously presented. After
an overview of the system requirements derived from the Domain Analysis in
Section 4, design and architecture are discussed, followed by implementation
details of the prototype.

6.1. Prototype Requirements Overview

A set of requirements for the prototype are derived from the Description/Spec-
i�cation phase. These concern practical considerations or constraints of the
proposed design.

Identi�er Requirement Description

R1. Perform System and NetFlow log analysis
R2. Introduce a common log entity speci�cation
R3. Have �exibility in input mechanisms
R4. Maintain limited dependance on input data size
R5. Realize high insert performance in data input
R6. Architecturally support online analysis
R7. Enable e�ective attack modeling
R8. Allow combination of scenario sequencies
R9. Provide facilities to aid understanding of scenario speci�cation
R10. Minimize disruption of network services, present topology and internal

processes
R11. Support required variability in order to change and/or easily introduce

input mechanisms and log formats
R12. Be �exible in data store deployment options
R13. Expose an Application Programming Interface (API), for interoperability

with future plug-in components
R14. Exhibit realistic processing/response times

Table 6.1: Prototype Requirements Overview

A set of further requirements (R11 to R14) are derived from stakeholder
concerns. Since the core analysis mechanism can be �exible, new input mech-
anisms and log formats should be easy to introduce. Regarding deployment
options, due to the sensitive nature of security-oriented applications change
is not easily embraced. A fully functional system must be thoroughly tested
and veri�ed before being ready for production-level deployment.
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6.2. System Decomposition

The module decomposition view presents the modular division of the system,
which is comprised of the Extraction, Analysis, Runtime and Application
layers.

Figure 2: System Decomposition View
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In the Extraction Layer, the central part is the Log Analysis module, which
performs the necessary logic depending on the input it receives from the Log
Parser, while the Log Normalizer and Format Speci�er weigh in the extraction
mechanism. In the Runtime Layer, everything revolves around the central
EFSA Analysis engine, which making use of the EFSA backend and various
helper functions, receives an event stream from the relevant submodule. The
Application Layer, is responsible for parsing the user-inputted scenario spec-
i�cations, and building the relevant EFSA, making use of the API that the
Runtime Layer exposes. At a later stage, a visualization module displays the
results back to the user.

6.3. Data Format, Storage and Extraction

The implementation of the data extraction mechanism, is centered around
optimizing bulk insert performance. Initially, raw logs from various systems
are placed by a script locally, in a non-uniform tree structure. The �le formats
contained range from text �les to various compression formats used by each
system. Based on assumptions set previously, every log line is parsed and the
relevant �elds are extracted, populating an 'object' entity with the detected
�elds.
At the parsing runtime level, a multi-process approach is used, in order

to maximize the disk throughput. Concurrent processes traverse the log di-
rectory structure, parsing log �les and using a database connection store the
objects at the appropriate log category satisfying the requirements set on
6.1. This way, the overall process is disk I/O-bound, and horizontal scaling
by adding more database shards is possible. When the data extraction pro-
cess is �nished a visualization facility allows the expert operator to inspect
present data characteristics and distributions, to ensure qualities required for
scenario speci�cation.
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Figure 3: System Data Extraction �ow diagram

6.4. Sequence Analysis and Runtime Architecture

Since the proposed Extended Finite State Automata approach is directly
compatible with an event stream model, this is re�ected on the runtime ar-
chitecture. Given an EFSA, the goal is to investigate whether it can reach
an accepting state, using a sequence of log events. This sequence, can be
previously bound to and �ltered by de�ned �elds, to reduce the data needed
for runtime computation. One should keep in mind however, that basically
the existence of any satisfying subsequence is necessary for completion, as
transitions are �red only on permitting events.
Design concerns raised regarding the sequence analysis operation include:

• The number of EFSA to be applied is unknown

• The size of the log event stream can not be determined beforehand

The �rst point is about the EFSA instances in memory, which is a space
concern. The second point addresses time, since the system must exhibit
realistic response times (R14). A tradeo� is attempted in those aspects,
outlined in the next section.
The number of operations or their size is unknown at runtime, so mea-

sures must be taken to achieve a time-space tradeo� regarding memory and
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disk storage. Regarding the actual EFSA representation, a �exible construct
based on hashed values allows for minimization of the memory footprint. A
range of helper functions model the behaviour of the theoretical foundation
outlined in chapter 5.3. An attempt to counter the second concern with �l-
tering on common event attributes is applied.

Data: Event Pool
Result: Satisfying Event Sequences
initialization;
attempt to �lter on common attributes present on all states;
while events exist do

get event from pool;
foreach efsa do

foreach next state do

if accepting state then
store run results;

end

if next state conditions satis�ed then
store event at state;
transition;

end

end

end

end

postprocessing;
Algorithm 1: Outline of simulated EFSA event stream processing

However, since the data size is signi�cant, disk latency and datastore over-
head are a serious hindrance, even for simple operations. To leverage against
this, chunks of events size-dependent on available memory are sequentially
loaded into an event pool, and the event stream abstraction is simulated. A
possible optimization would invert the states in unreachable paths with re-
spect to acceptance, thus progressively reducing the size of EFSA instances
in memory. In the given context this proved not to be a concern and was not
investigated further, as the bottleneck was the I/O operations of loading the
event objects.
In every case, the results are stored back to the datastore, as the events

that led to an accepting state of an EFSA. Extra code provided by the user
can apply aggregation operations.

6.5. Scenario Specification: API and DSL endpoints

Building upon the EFSA de�nitions and system requirements, an Application
Programming Interface is exposed which is responsible for de�ning speci�ca-
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tions and handling the operations on data.
A scenario is programmatically represented as follows with respect to the

de�nition in Section 5.3: a given EFSA is an instance of a class which handles
generic initializations, and is responsible as well for graphically depicting the
resulting model. Then, states (q) are de�ned: these are comprised of the
state's information (Mi), which are checked if applicable against incoming
event objects (Σ) using set operations. Alternatively, a custom state context-
aware checker function included in the state handles this (Vi). Subsequently,
transitions between states are declared, a state is characterized as initial (s)
and others as accepting (F ). Other facilities extend this runtime model by
o�ering endpoints for user provided functions by �ring events on state entry
or in the case of a transition. Table 5.1 shows in context the pairing of this
functionality with respect to the appropriate theoretical component.

A basic Domain Speci�c Language, is used as a user endpoint. It is intended
merely as a proof-of-concept; functionality is reduced to simple scenario spec-
i�cation. Scenarios are parsed, and the relevant API calls form the resulting
EFSA. A state declaration, is comprised of the parameters relevant to its
context. These can refer to characteristics, the domain of values of the state,
or a custom checking function to apply to incoming events. Subsequently,
transitions are declared. The EFSA constructed by the user, is �nally de-
picted in a diagram to aid understanding. What follows is the processing
of the event stream that was speci�ed (or a correlation of streams), and the
results are presented back to the operator.

[su_escal]
stream=syslog
every=user
state idle {

initial=True
}
state loginopen {

action=open|accept
}
state escal {

program=su
action=open
accepting=True

}
idle−>loginopen
loginopen−>escal

Figure 4: EFSA of a su priviledge escalation scenario
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User authentication being a prime domain of security concerns, two scenar-
ios are considered to showcase simple operations of the DSL. Due to the large
number of users involved in the systems in question, close automatic moni-
toring of their login behaviours is highly sought. Ability to specify scenarios
of this type where requested by the stakeholders. As a simplistic example,
consider a hypothetical case where a user logs in and succeeds in priviledge
escalation using the 'su' program, as a scenario depicted in Figure 4 along
with the accompanying EFSA diagram. The action associated with a suc-
cessful login, can be either 'open', or 'accept', so the declaration of an 'or'
�eld is possible. The resulting EFSA is applied to every user available, and
the successfully matched events are returned.
A common SSH authentication case of interest, is when an attacker tries

an arbitrary number of user login attempts, ultimately being successful. A
scenario of this type, can be useful for detecting a guest attack, by keeping
track of the failed login attempts to an account, generating an alert if it
crosses the maximum number of retries [8]. A variation point applied is that
the failed attempts can be on a wide spectrum of di�erent login hosts across
the network. A characteristic in this case language-wise is the repetition of a
state, introducing a 'loop'-like functionality in the EFSA model, as outlined
in Listing 1.
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Listing 1: EFSA of a brute force login scenario

[auth_attempts]
stream=syslog
every=user
state idle {

initial=True
}
state loginaccept {

action=open|accept
accepting=True

}
state loginfail {

source=SSH_SERVERS
action=fail

}
idle−>loginfail∗3−>loginaccept

As another example but making use of NetFlow data, consider a network
worm's infection process. A computer worm is a standalone malware com-
puter program that replicates itself in order to spread to other computers on
the network. Unlike a computer virus, a worm does not need to attach itself
to an existing program, but rather relies on security vulnerabilities on the
target computers for spreading. To do this, it scans an arbitrary number of
network hosts for possible infection, and if it succeeds it copies itself. How-
ever in this process uniform connection characteristics are observed. Such is
the case for the blaster worm, where the manifestation of its propagation [33]
can be easily modeled over the NetFlow protocol as a sequence as in Figure
5.
In a blaster infection, victim scanning occurs over TCP on port 135. Given

a successful connection, exploit code is transfered to the infected host with
a distinct �ow size. Subsequently, worm code upload is initiated with a
connection over 4444/TCP, and the actual upload happens over 69/UDP
also with a distinct �ow size [33].

Note that this is in contrast to the stateless, aggregation method described in [33]. In this case,
propagation is modeled as a sequence of events using EFSA.
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[blaster_classi�er]
stream=net�ow
state idle {

initial=True
}
state victimscanrpc{

prot=tcp
dstport=135
size<2017

}
state initwormcode{

prot=tcp
port=4444

}
state downwormcode{

prot=udp
port=69
size=6592
accepting=True

}
idle−>victimscanrpc
victimscanrpc−>initwormcode
initwormcode−>downwormcode

Figure 5: EFSA of a blaster worm infection scenario

Prototype Runtime

The prototype system was implemented using the Python programming lan-
guage, using a single MongoDB database on a test machine as backend. Some
runtime statistics can be found in Table 6.2.

Test machine: i5-2400 CPU @ 3.10GHz, 4GB RAM. Memory benchmarks by Pympler.
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Operation Remarks Performance

NetFlow Logs Parsing, Index
Building

15 days data 80GB, 108mil.
objects

~6h

Authentication brute force lo-
gin scenario run

30 days data, 255k objects ~40sec

NetFlow Connection Refused
run

Size-intensive scenario ~2h

Memory footprint of a runtime
EFSA instance

TCP connection refused
EFSA, class size (states size)

1.73 KB (1.54 KB)

Table 6.2: Indicative prototype operations performance

7. Evaluation

Evaluation of the analysis mechanism as well as the prototype system is at-
tempted with two case studies. These are set in di�erent contexts, making use
of di�erent data and scenarios. Questions that are addressed pragmatically
in this section revolve around topics such as:

• Is the EFSA analysis mechanism successful in detecting sequencies that
use a correlation of events?

• Is the API interface adequate and diverse enough for real-world speci�-
cation of scenarios?

• Is the DSL endpoint descriptive and expressive enough?

• Is the resulting output up to par for understanding?

7.1. Case Study: Slow Portscan Detection

Problem: Is it possible to detect slow portscanning in computer networks
using Net�ow data?
As a case study, a slow portscan scenario is considered, ideal for the sim-

plistic underlying concepts, showcasing the sequence analysis mechanism on
the large and dense NetFlow data set. The EFSA model used is the simple
TCP connection refused in listing 2.

7.1.1. Context

Portscanning is considered a minor event by network security specialists, and
this phenomenon is observed in every large network. Worms, malware or
attackers perform automated scanning, searching for services and vulnerabil-
ities, by means of attempting to connect to various ports on target machines.
This process has the goal of information gathering about the network topol-
ogy, possible vulnerabilities, or in the case of worms and malware, hosts that
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can be further infected. It's signi�cance is also correlated with recognizing
precursors to more serious attacks.
Portscanning with respect to a speci�c host (thus vertical) is a generally

understood problem [32], and many Intrusion Detection Systems monitor �re-
wall log information and extract scanning patterns. However, by introducing
two variation points to this simple scenario, detection is hindered.
Slow portscanning: the attacker introduces arbitrary long pauses between

individual connection attempts, in order to evade the IDS rules which typi-
cally monitor connections closely together due to time-space limitations. Such
scanning can theoretically take a lot of time to complete per scanned host,
and while being more costly for the attacker, is very e�ective [30].
Horizontal portscanning: in order to search for a speci�c vulnerability or

service, an attacker or worm/malware scans a wide range of addresses, on a
speci�c port. This method is highly unlikely to be detected on a speci�c host,
as the only element of information recorded per host, is a single unsuccessful
connection attempt.
The presented approach uses the NetFlow data from the router level. The

�rst variation point is countered by applying the solution to the data store
available, thus limited by the date range of the input data already present.
Regarding the horizontal problem component, by observing the same connec-
tion characteristics across di�erent hosts and distinguishing between inner
and outer counterparts, portscans can be detected. A more advanced ap-
proach, utilizing state variables counting elapsed time to detect SYN �ooding
attacks is presented in [17].

A foundational case where this type of horizontal port scanning is appli-
cable, is a network worm's scanning process. Typically, hundreds or even
thousands of probes with uniform characteristics to large blocks of IP ad-
dresses are observed, in short periods of time.
The fundamental case for modeling, is also the same TCP three-way hand-

shake, as in a worm infection there exist three possible outcomes [29]. In
the �rst one, the destination host is alive and the corresponding vulnerable
service targeted is running. A TCP connection is established and possibly
the worm manages to infect the target host. This case can be speci�ed by
the security expert as for the blaster [33] worm in Figure 5. In another case,
the destination address the worm attempts to connect to does not respond
to the SYN connection requests of the worm-infected source. In this case,
a �ow with only the SYN bit set is observed on the network, but may not
show on the NetFlow records (Section 7.3). In the third case, the destination
host is alive, but refuses a connection on the requested port and a �ow with
the RST/ACK bits is observed. Aggregation and visualization over size on
NetFlow records of this third case are the primary methods of identifying
worm propagation.
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Listing 2: EFSA TCP Connection refused with custom checker functions on states

tcp = SaraEFSA('tcp_connection_refused')
# Common state variables
state_info.update({'client':client, 'dstport':dstport, 'server':server})
# States declaration
idle = Checker('idle', initial=True)
connect = Checker('connect', checker=conn_req, info=state_info)
accepted = Checker('server_accepted', checker=conn_acc, info=state_info)
refused = Checker('server_refused', checker=conn_ref, accepting=True, info=state_info)
established = Checker('client_established', checker=conn_est, info=state_info)
# Transitions declaration
idle['syn'] = connect
connect['syn'] = connect
connect['syn_ack'] = accepted
connect['rst_ack'] = refused
accepted['ack'] = established
# Initialization
tcp.initialize()
# A Custom checking function
def conn_est(obj, info):

return info.get('attacker', None) == obj['srcip']
and info.get('�ags', None) == 16
and info.get('server', None) == obj['dstip']
and info.get('dstport', None) == obj['dstport']

7.1.2. Analysis

Results expected from such an basic operation, are to be interpreted lightly.
More advanced portscanning scenarios can be modelled as in [32]. The con-
nections involved in such a scenario might as well be legitimate tra�c from
a miscon�gured host. They can hint towards the construction of a list of
possibly interesting or problematic hosts, and be used in conjunction with
data from other IDS systems and methods with more con�dence. However,
a modeling instance of a worm or malware infection can be detected with
this method by specifying speci�c connection characteristics. Example re-
sults in Listing 3 using aggregation operations on the resulting dataset, show
the hosts involved where connections refused are more than a soft limit, the
average time between attempts as well as the overall timespan.
As for the evaluation questions, this case uses only NetFlow data. The

API interface can in detail express the characteristics of the satisfying event
sequence, which in this simple case revolves around the addresses of the con-
nection parties and the packet �ags. However, the resulting output of the
operation is de�nitely not adequate for human understanding; it requires
further aggregation to make it useful as in Listing 3.
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Listing 3: TCP Connection refused scenario aggregated results

198.51.5.201 −> 198.51.3.89 113 ports in 32969 − 60966 interval_avg: 1101.4375sec in 4 days
198.51.2.213 −> 198.51.6.156 415 ports in 32789 − 60879 interval_avg: 533.925121sec in 17 days
198.51.12.233 −> 198.51.6.182 927 ports in 32772 − 60963 interval_avg: 425.093953sec in 17 days
198.51.13.245 −> 198.51.6.217 1003 ports in 32792 − 60987 interval_avg: 89.3503sec in 2 days
198.51.5.201 −> 198.51.3.90 119 ports in 32792 − 60881 interval_avg: 1103.70339sec in 7 days
198.51.12.233 −> 198.51.6.84 120 ports in 32901 − 60312 interval_avg: 3874.521008sec in 7 days
198.51.13.245 −> 198.51.6.84 155 ports in 32952 − 60875 interval_avg: 614.38961sec in 7 days
198.51.29.138 −> 198.51.6.84 149 ports in 33066 − 60834 interval_avg: 1880.770271sec in 7 days
198.51.3.226 −> 198.51.6.84 144 ports in 32835 − 60969 interval_avg: 447.601399sec in 7 days
198.51.3.227 −> 198.51.6.84 161 ports in 32815 − 60846 interval_avg: 172.46875sec in 7 days
198.51.13.110 −> 198.51.6.123 127 ports in 33418 − 60780 interval_avg: 1677.396826sec in 7 days
198.51.13.245 −> 198.51.6.123 133 ports in 32884 − 60933 interval_avg: 2746.469697sec in 7 days
198.51.12.233 −> 198.51.6.236 250 ports in 33294 − 60980 interval_avg: 67.485944sec in 17 days

This scenario was targetted speci�cally to test the system with a simplistic
EFSA model under heavy load due to the high number of accepted sequencies
and the density of the NetFlow dataset. In Listing 3, sequencies of SYN
packets followed by RST/ACK between two hosts are considered as refused
connections. Veri�cation of the data is performed by manually �ltering the log
entities in the dataset and comparing the outcome with the EFSA operation
results.

7.2. Case Study: Remote Shell Web Application Exploit

Problem: Is it possible to model and specify attack scenarios on web appli-
cations through correlation of event data?

7.2.1. Context

Web applications today, can contain dangerous security �aws and are often
the entry point in an otherwise secure network. No matter how strong �rewall
rulesets are, or how diligent the security patching process is, the web appli-
cation layer poses many risks. Two of the most common as per the OWASP
consensus [37], are injection and directory traversal attacks.
The injection technique involves including portions of code statements in an

entry �eld in an attempt to get the application to pass a newly formed rogue
command for execution. Directory traversal attacks consists of exploiting
insu�cient validated user-supplied input, so that the attacker gains access to
�le or binary that was not intended to be user-accessible.
Injection attacks involving SQL queries are encountered very often in pro-

duction environments, and automated penetration testing tools assisting at-
tackers also exist. Evidence of injection attacks are found in malformed re-
quest URLs in web server logs, and they have been studied thoroughly by the
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scienti�c community [38]. Their detection is done with regular expressions
that look for certain character patterns [37, 36]. Another case, where plenty
of forensic information exists, are attempts involving malicious �le execution
through directory traversal attacks.
The �ow of such an attack vector, is as follows [38]: In this scenario, an

attacker discovers a vulnerability in a web application by performing repeated
discovery attempts on the server. He then proceeds to exploit the poorly
written application code through e.g. malicious code injection. At this point,
the attacker has succeeded in acquiring access as the web server user. Then,
the inserted exploit sets up a remote shell from the web server back to the
attacker, on an usually high port. Once the attacker gets access to the server
shell, the attacker can use the compromised host to scan the local network
for other possible targets. He then attempts to escalate his privileges on the
server using a local exploit, downloads and subsequently installs a rootkit.

7.2.2. Sequence Model

Using the scenario presented in [38], the modeling of the attack can be broken
up to distinct events; the sequence of steps the attacker follows, are evident in
the system logs. A model that encompasses all possible states and transitions
must be implemented and checked against the data. Regarding the attack on
the web server, several techniques based on regular expressions exist to detect
e.g. injection attempts. Subsequently, the possible attempt of the locally
compromised server to communicate with the attacker host will be evident in
the NetFlow dataset, as a connection from an unusual port. Since the server
can be considered compromised at this point, the attacker will possibly try
to escalate the priviledges of the web server user, which in a simple scenario
will be evident on the system logs. In the case that he fails, he uses the
compromised server to scan for other vulnerabilities on the network, which is
evident on NetFlow activity.
In Figure 7.2.2, states corresponding to an injection attempt and discovery

phase as well as a traversal case is modeled. The programmatically corre-
sponding scenario is trivial and is omitted; a satisfying example sequence can
be found in Table 7.2.2. In a real world scenario however, multiple vulnera-
bilities would correspond to multiple states at the �rst level, leading to the
infection server state.
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Figure 6: EFSA of a remote shell web application scenario

Event Relevant Event Payload Explanation

a 'body': /cgibin/af.cgi?_browser_
out=|\necho;id;exit|

Example OS Shell injection attempt
in request URL.

b 'body': /siteone/ index.php?
page=http://explet32.org/
CMD.gif?&cmd=cd%20/tmp;
wget%20http://123.36.224.21/�fanta/
dc.txt;perl%20 dc.txt%24384

Attacker coerces index.php to run
CMD.gif which changes directory to
/tmp, downloads the exploit dc.txt,
and executes it, opening a high port
on the server.

c 'srcport': 24384, 'dstip': '194.171
.96.170', 'srcip': '194.171.96.171'

Flow from a high source web server
port back to the attacker's IP.

Table 7.1: Example sequence of events leading to an accepting state of a web application
exploit EFSA

7.2.3. Analysis

In this case, the scenario uses a combination of webserver and NetFlow events.
In contrast to the previous one, in this use case a mere noti�cation of a
matching event sequence is adequate as a report to the operator; this is
a discrepancy that is of note with regard to the reporting facilities of the
prototype system and DSL.
Regarding the accuracy of the attack model, several log events will success-

fully match on the initial attack states of the EFSA, as automated attacks
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where scripts randomly issue requests to servers are very common. However
the automata will not traverse further, reducing the chance of the model
generating a falsely positive result. As for the NetFlow rules involved, the
problem of accurate threshold determination is also present. As expected,
with a lower level of introduced abstraction, it is easier to correlate sequences
that represent an attack and disambiguate them from harmless events. More
on possible extensions of the EFSA model in this regard can be found in
Appendix A.

7.3. Threats to validity

NetFlow Records Accuracy and Limitations

Net�ow despite being a relatively widely used router protocol, its implemen-
tation might exhibit minor di�erences between routers of di�erent vendors or
versions. While Net�ow records used in this study are considered homogenous
in this regard, this must be taken into account as a general directive.
Another consideration is that �ow records are a statistical measure, and

may not be completely accurate even at the lower level. Whereas the concep-
tual �ow model continues to apply, outliers can be missed. This phenomenon
can happen for a variety of reasons related to data sampling or network con-
ditions. As connection routing can change abruptly as the network rearranges
itself, the �ngerprint mirrored in the �ow record can be arbitrary, and might
re�ect any condition of the underlying connections. Load balancing between
base router con�gurations, or BGP route changes before �ow expiration are a
typical cause, as interfaces can change. Inactivity timeouts or slow respond-
ing hosts may cause packet retransmissions, which is not distinguished in
the relevant �ow �elds; there exists a multitude of border cases which a�ect
record accuracy. Situations like this happen often ex vitro, and thus must be
taken into account when modeling scenarios.
NetFlow deals with and stores highly �ltered tra�c. For example, tra�c

may or may not be logged if it is dropped by a switch or router on another
network component. In this study, only �ows going from a server to a client
are considered; by doing this, the problem with clients generating false pos-
itives by trying to contact services that do not exist is avoided. Another
issue is the time resolution used in the operations on data. In this study,
sensitivity up to a second was used, to simplify data intensive operations
and indexing. However, this is not a realistic condition, and the millisecond
resolution natively o�ered by routers is more accurate.
To sum up, the largest disadvantage of using NetFlow data for attack

detection is that there is absolutely no access to the raw network tra�c, but
only to a restricted subset of meta-data. This by de�nition severely limits
the attack detection potential of the dataset.
False Positive and False Negative Rates

Generally, the major hindrance with anomaly detection techniques is a high
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false positive rate, where there is signaling to the system to produce an alarm
when no attack has taken place. Conversely, failures to detect an actual
attack are referred to as false negatives.
Speci�cation based detection, aims to bridge the gap between the two via

making use of domain expert knowledge, implemented via Domain Speci�c
Languages. In this case, apart from the e�ciency of the language constructs
and general abilities, the rate of success lies in the speci�cation. On one hand,
the language should support the required variability to express accurately
attack speci�cations; on the other hand, facilities in the underlying system
should guide the expert through this process and the model itself should
provide intuition in baseline determination. More on possible extensions of
the EFSA model in this regard can be found in Appendix A.
Model Limitations

Regarding the EFSA model, a crucial assumption has been made regarding
multiple satisfaction of neighbouring states. The case where conditions on
more than one states are satis�ed, is simpli�ed to the transition to the �rst
satisfying one. This was done to aid conceptual understanding and minimize
model complexity, but in the real-world all path conditions must be taken
into account.
Logging Constraints

The base assumption made on every study of security log analysis, is that
log records actually exist. This is an important constraint, in the sense that
an attacker can have the chance to remove revealing entries in logs. This is
highly pertinent to system and authentication data, and must be taken into
account when considering any scenario in this context.
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7.4. Discussion

Regarding the validity of the model, the EFSA proves to be a very accurate
archetype in the representation of the discrete states and possible connections
between them.
However, more advanced language constructs in the Domain Speci�c Lan-

guage component would allow more accurate representations of abstract data
types. Describing characteristics in a more �exible way, would open up more
possibilities for extended scenario speci�cation. Advancements in this regard
would lower the false positive and false negative rates altogether, by enabling
more advanced speci�cation of attributes of accepting event sequencies.
In the current implementation, lack of advanced features are leveraged

by directly building models through the generic runtime API and supplying
custom functions. However, expressiveness in the current state is highly hin-
dered. Experience has shown great e�ectiveness in fully designed languages
for security related purposes [16]. A�ected are both syntax and semantics;
special syntax would be optimized for the domain at hand, and allow for
complex semantics de�nition and use. Secondary attributes such as ease of
use would also be improved.
Rigorously de�ned and implementation agnostic language syntax support,

optimized for patterns speci�cation would allow reuse of scenarios. This could
lead to an emergence of library-like abstractions that would radically a�ect
the speci�cation's semantic capacity.
Regarding the presentation of results of operations, automatic domain spe-

ci�c aggregation functionality leading to graphing capabilities would greatly
bene�t the end user. However, the event sequence notion must be preserved
internally, in order to allow for interoperability and system extension. This is
evident in the discrepancy between the two case studies presented: in the �rst
one where the model is very simple but applied to numerous subsequences
of client-server pairs, heavy aggregation operations are needed to group re-
sult primitives i.e. by host or port number into meaningful reports. In the
second one, merely a noti�cation of an accepting sequence is adequate for a
qualitative result. Despite representing two quantitatively di�erent types of
operations, this disagreement in results semantics and size should be managed
by the DSL backend as transparently as possible.
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8. Conclusions

In this study, a solution pattern using Extended Finite State Automata for
attack modeling was presented along with a prototype runtime and proof-of
concept DSL endpoint. To aid in information security-oriented speci�cation,
an attempt is made to quantify classi�cation of attack vectors by analysis in
discrete steps.
This EFSA model, is argued to be very e�ective in classi�cation as a fun-

damental and precise primitive in sequence analysis. Attack vectors in this
case are composed of sequences of events, and functional speci�cations using
states, actions and connections between them form a very able construct,
re�ecting expert knowledge. Di�culties associated with this process can be
countered by a Domain Speci�c Language, which would aid and enable the
domain expert.
Conversely, the runtime operations derived from such speci�cations, show

the viability of the model in this context. It is compatible with both on-
line and o�ine modes of analysis, and a plethora of applications correlating
security-oriented information are possible. These augmented state machines,
o�er a solid foundation for accurate conceptualization and speci�cation of at-
tack vectors; using this as a base, further applications with learning properties
in mind appear promising. A valuable byproduct, is that understanding of in-
creasingly complex speci�cations is intuitive to the operator, and abstraction
is possible to some extent.
The bene�ts of having a dedicated language for attack manifestation spec-

i�cation are evident; complex scenarios using a plethora of event sources can
be modeled in an abstract yet concice way, a notion which encompasses a
di�erent viewpoint than signature based solutions. The high number of false
positives which is the usual problem with intrusion detection techniques, is
reduced in the case of security speci�cation languages by actively leveraging
domain speci�c knowledge. This approach appears highly promising, and
further advancements in this �eld could utilize a wide plethora of system or
network information. However, the problem of accurate threshold de�nition
remains; future work on combinations of detection methods and advanced
modeling using EFSA can shed light on this important matter.
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A. EFSA as a Foundation & Future Work

The EFSA model along with the accompanying event stream concept, ex-
hibits several advantages as a powerful construct for the study of network
and security behaviour. It provides a solid foundation, and is also highly
compatible with additional, more advanced analysis methods.
The practice of using a state transition model for attack detection is ev-

ident in scienti�c literature, and there exist also frameworks to translate
between state-based languages, as indicated for AsmL and STATL in [18].
This increases interoperability between di�erent implementations and allows
for a common base for discussion and applications of security speci�cation
languages.
Moreover, the model presented in this study can be extended further in

the application layer to exhibit more advanced capabilities, presented here as
possibilities of future work.

A.1. Threshold Definition

A byproduct of the EFSA model de�ned in this study, is its ability to address
also the problem of accurate threshhold de�nition, a general theme in secu-
rity analysis. Especially in networking environments, irregularity in expected
behaviour is the norm and the parameters of the problem increase signi�-
cantly. In this case, the EFSA scheme can provide valuable analytics, by
the complete modeling of interesting, possible scenarios. In such an instance,
the designation of certain states as accepting is not that signi�cant, but the
�ow of data by itself is, along with the e�ect it has on the automaton. Just
by modeling every possible path the event stream might follow, the oppor-
tunity for the determination of a range of statistical attributes on the data
arises; in this case, as an event possibly traverses the automaton, information
about its path is recorded at every state. This can prove insightful in dynam-
ically determining threshholds on the data, depending on speci�c scenarios
modeled.
The per state information storage functionality, is implemented by support-

ing arbitrary state variables. To complement the case where every possible
scenario is speci�ed, features in the implementation of the EFSA model, allow
checking for speci�c path traversal, given an event sequence. The statistical
domain of values present in a state after the �ow of an event stream through
it, can be helpful to determine a threshhold with respect to the state con-
ditions set within it. Note that usage of this functionality would potentially
a�ect the space tradeo� mentioned in Section 6.4, that is the footprint of the
EFSA in memory. In the NetSTAT attack speci�cation language, local state
variables are used to track elapsed time between events [17]. This concept
can be expanded using the feature of local state information presented in
5.3, where for instance can be used for Distributed Denial of Service attacks,
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in which aggregation of �ow characteristics for behaviour modeling is highly
bene�cial.

A.2. Learning Properties

In a more advanced case, as an event �ows through an EFSA instance, ad-
vanced logic present at a state can potentially a�ect the current domain of
conditions. Essentially this consists of the addition of "state" property in
states, which opens up a wide set of possibilities. Relevant computations on
the state can be performed and the conditions present can be dynamically
altered, allowing the system to adapt to the data �owing through it. The
transition relation, can be an arbitrary processing function with access to
the current state, dynamically de�ning new or changing the local domain V .
This emergence of the system learning property can perform highly advanced
correlations.
Both of these approaches are introduced in [28], where statistical proper-

ties of packet sequences are mapped into statistical properties associated with
the transitions of the automaton; results are promising. This combination ex-
hibits best the bene�ts of anomaly detection coupled with speci�cation-based
detection. Language support combining learning features with advanced spec-
i�cation development, would bring together both worlds, allowing e�cient
anomaly detection as well as accurate threshold de�nition.
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