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Abstract

Software cost estimation is crucial in software project lifecycles. Inaccurate estimations can lead to
devastating results. Previous studies have used software metrics as proxies for maintenance effort (i.e.
time spent on a unit of work). Previous studies have the assumptions that large classes and more
complex classes require more maintenance effort. However, the relationship between these proxies
and actual maintenance effort has not yet been empirically examined in detail. The main goal of this
thesis is to assess whether it is possible to accurately predict maintenance effort using total Source
Lines of Code (SLOC) and Cyclomatic Complexity (CC) of classes.

To accomplish this goal, we reused a dataset acquired from a different study on the impact of code
smell over maintenance effort. In the aforementioned study, six professional developers were hired
to perform three maintenance tasks on four functionally equivalent Java Systems. Each developer
performed three maintenance tasks. While working on the tasks, IDE activity logs were collected. In
this study, we created a log analysis tool (LAT) to extract effort from developers’ activity logs and
investigate the effects of SLOC and CC on maintenance effort. We created and empirically validated
LAT for accuracy using the dataset from the previous study. The results show that neither total
SLOC nor CC are sufficient to predict maintenance effort. Furthermore, using SLOC by itself or
together with CC result in the same adjusted R? of 0.21.

One major contribution of this thesis is that it demonstrates that activity logs are reliable data
sources for measuring software maintenance effort. That could lead to more focus on collecting and
analyzing activity logs to support better estimations on maintenance effort.



Chapter 1

Introduction

1.1 Motivation

There is never enough time or money to cover all the desired features we would like to put into our
software products. To prioritize the features, we need to understand the costs (effort) behind each
of them, as well as their criticality from a business point of view. Thus, software cost estimation is
a crucial task in the software project life cycle. Bakir et al. [5] defined software cost estimation as
the process of predicting the effort required to develop a software project. By effort, we mean the
amount of time spent to finish a unit of work. Such estimation can help project managers in plan-
ning and resources allocation. Inaccurate estimations can lead to devastating results. For example,
over estimation can lead to waste of resources, rejecting other projects, thus threatening organization
competitiveness. Conversely, underestimations can lead to a lack of resources allocation, schedule,
and budget overruns, which can ultimately lead to project failure.

Because effort estimation is so crucial, it is a very active area of research. Jorgensen [31] explains the
different types of methods for estimating effort:

e Expert-based methods that uses human expertise, possibly augmented with process guidelines,
checklists and data (e.g. documented data from previous unit of work) to generate predictions.

e Model-based methods that can summarize old data via data miners to make predictions over
new projects.

e A hybrid method that combine expert and model based methods.

Effort estimation normally is done at a task level, because it is difficult to record manually effort at
file/class/method levels. However, software metrics can support estimation of maintenance effort at
these levels. Examples of such metrics are Source Lines of Code (SLOC) and Cyclomatic Complexity
(CC). Developers use these metrics to gain some insight into their code quality as proposed by Zuse
[63] and Fenton and Pfleeger [18]. For example, the larger the code, the more time is used to under-
stand and to perform changes. In the same way, the more complex a piece of code is, the more it takes
to understand it, thus to make modifications on it. For example, if there is a significant difference
between the number of SLOC and CC of two classes, then we could assume that maintenance effort
of the class with the highest SLOC and CC will be higher. Visser et al. [58] and Rosenberg et al.
[47] echoed the same assumptions about SLOC and CC respectively. Visser et al. [58] and McCabe
[39] explained that higher levels of CC affect maintainability negatively. Rosenberg et al. [47] noted
that the higher the total CC of a class, also known as Weighted Methods per Class (WMC), the less
maintainable the class would be.

So what is maintainability? Maintainability is formally defined by ISO/TEC [28, p. 10] as: The
capability of the software product to be modified. Modifications can be corrections, improvements or
adaptation of the software to changes in an environment, and in requirements and functional spec-
ifications. The ISO standard did not define a solid model on how to measure maintainability, thus



many models have been suggested [26, 45, 10]. Code smells ', SLOC and CC examples of source code
attributes that have been proposed to measure software maintainability according to these models.
These attributes are measured via static analysis tools. Examples of static analysis tools are cloc?
and Sonar Qube3. One known drawback of source code attributes is that they constitute proxies for
maintenance effort, but they do not constitute an empirical measure, such as effort (time). Also, they
do not take developers’ experience and familiarity with the system and language into account.

In expert-based prediction, static analysis tools can be used to assist in decision making. Static
analysis is the process of analyzing code without executing it. Emanuelsson and Nilsson [16] defined
it as an automatic method used to reason about runtime properties of program code without actually
running it. Emanuelsson and Nilsson [16] also shows many tools that do static analysis. Heitlager
et al. [26], Oman and Hagemeister [45] and Coleman et al. [10] are examples where static analysis
is used to predict software effort. A major challenge of metrics-based assessment of source code is
that empirical data on the effort (time) used to perform different activities (e.g. search, read, write,
refactor) on a given project is often not available, as explained by Sjgberg et al. [52] and Soh et al. [55].
Consequently, it has been hard to relate maintenance costs empirically to measurable characteristics
of software.

Measuring effort manually at file level is not feasible from a practical perspective because it would be
tedious and prone to human errors. Therefore analysis of activity logs is a potential approach, since
it can measure the actual effort that was spent on a file. This, in turn can be use to estimate effort,
instead of using proxies such as SLOC and CC. However, there are potential issues to measuring
effort from logs according to previous work. Sjgberg et al. [52] noted that it has been historically
difficult to verify if log-based effort extractions are accurate because of the lack of grounded truth or
empirical measurements of effort during a sufficiently extended period. Deligiannis et al. [13]’s study
is an example, where the observational period only lasted for one hour and a half.

Sjoberg et al. [52] studied the impact of code smell over maintenance effort. In this study, six profes-
sional developers were hired to perform three maintenance tasks on four functionally equivalent Java
Systems. Each developer performed three maintenance tasks. While completing the tasks, metadata
was collected. Videos were taken during think aloud sessions and IDE activity logs were collected.
The think aloud sessions were used to annotate the IDE activity logs with the goal of validating the
annotation. By think aloud session we mean when researchers ask participants to think out loud while
performing a task[17].

In this thesis, we revisited Sjoberg et al. [52] study since it counts with both: grounded truth data
and activity logs where the observational period lasted three to four weeks. This enabled us to test if
is feasible in practice to calculate effort by analyzing IDE activity logs.

1.2 Research questions

This thesis will attempt to assess:
1. How accurate can file-level effort measurements be when based on IDE activity logs analysis?

2. Can we effectively use previously measured SLOC and CC of a class to estimate/predict future
maintenance effort on source code at class level?

1Fowler and Beck [22] noted that code smells embody poor design choices.
2e.g., http://cloc.sourceforge.net/
3http://www.sonarqube.org/



1.3 Contributions

Contribution #1

A log analysis tool (LAT) could potentially help identifying high levels of maintenance effort needed
to work with an artifact. It could also be used by tool vendors to identify problematic artifacts and
provide real-time feedback/support to developers during software maintenance activities.

Contribution #2

If LAT can demonstrate that activity logs are reliable data sources for measuring effort, that could lead
to more focus on collecting and analyzing activity logs to support better estimations on maintenance
effort.

Contribution #3

If we can estimate maintenance effort at the class level (via the analysis of activity logs), then we
could examine different attributes of a class to determine which of them lead to higher or lower effort.

1.4 Thesis outline

The thesis is organized as follows. Chapter 2 provides background information and provide related
work on the thesis’ topic. Chapter 3 presents the methodology that was employed to accomplish
the goal of this thesis. The methodology chapter divided into two parts: 1) the implementation and
validation of LAT, and 2) the empirical study used to answer the second research question. Discussions
and results on the work conducted are presented in Chapter 4. Chapter 5 concludes the thesis and
discusses avenues for future work.
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Chapter 2

Background and related work

This chapter will present the background information and related work concerning this thesis. We
clarify terminologies such as static analysis, software maintainability, software maintenance effort,
software effort estimation, and event logs collection tools.

2.1 Static analysis

Wool has a tendency to collect static electricity and thus to attract dust and lint.
Developers know that programs have a similar tendency to attract defects.

- Louridas [38]

Static analysis is the process of analyzing code without executing it. Emanuelsson and Nilsson [16]
define it as an automatic method use to reason about runtime properties of program code without
actually executing it. Static analysis can measure class properties such as code smells (i.e. God
Class, God Method, Data Clump, and much more.), size and complexity. These measures are used
as proxies for maintainability. SLOC and CC are two common metrics used by developers as proxies
for maintenance effort. In listing 2.1, the code snippet has 7 LOC/SLOC and has a CC of 2.

Source Lines of Code (SLOC): Conte et al. [11, p. 35] defined SLOC as any line of program
text that is not a comment or blank line, regardless of the number of statements or fragments of
statements on the line. This specifically includes all lines containing program headers, declarations,
and executable and non-executable statement.

Cyclomatic Complexity (CC): McCabe [39] explained that CC of a program is the maximum
number of linearly independent circuits in the control flow graph of said program, where each exit
point is connected with an additional edge to the entry point.

Weighted Methods per Class (WMC): Rosenberg et al. [47] explained WMC metric as the
sum of the complexities of all class methods. Basically WMC = > CC.

public double sqrt(int n) {
// Newton— Raphson method
doubler =n / 2.0;
while (abs(r — (n / r)) > 0.00001){
r=05x(r+(n/r));
}

return r;

Listing 2.1: Example of SLOC and CC definition




Much has been written about the apparent linear correlation between CC and SLOC. However, in a
recent large-scale study by Landman et al. [35], the evidence towards this conclusion has been refuted.
Therefore, In the current thesis, we consider that these two metrics are sufficiently independent vari-
ables to warrant their independent investigation.

Many have suggested that the larger the class, the more time is used to understand and to per-
form changes. In the same way, the more complex a class is, the more it takes to understand it, thus
to make modifications on it. If there is a significant difference between the number of SLOC and CC of
two classes, then we could assume that maintenance effort of the class with the highest SLOC and CC
will be higher. Visser et al. [58] and Rosenberg et al. [47] echoed the same assumptions about SLOC
and CC respectively. Visser et al. [58] and McCabe [39] explained that higher CC affects negatively
maintainability. Rosenberg et al. [47] noted that the higher the total CC of a class, also known as
Weighted Methods per Class (WMC), the less maintainable the class would be.

2.2 Software maintenance effort

You can not control what you can not measure.
- DeMarco [14]

Cambridge Dictionary [8] defines ”effort” as physical or mental activity needed to achieve something,
or an attempt to do something. Within software engineering research, effort is defined as the amount
of time spent to finish a unit of work [52, 41, 37]. So how is effort currently measured in software
engineering studies?

Table 2.1: Effort measuring methods

Type Description

Video recording [54, 52] Video captures of developers’ screens

IDE interaction data [54, 52] | Event logs of developers actions in the IDE
Manual recording [59] manually keeping daily records

Table 2.1 illustrates various studies that have measured effort in their experiments [54, 52]. Wiegers
[59] showed how it is done manually in the industry where records are kept of the time spent on
a unit of work. Soh et al. [54], Sjoberg et al. [52] explained two methods (video recordings and
IDE instrumentation) that have been used in software engineering experiments. Video software tools
including VLC! and QuickTime? have been used during think aloud sessions. Ericsson and Simon [17]
noted that think-aloud session is when researchers ask participants to think out loud while performing
a task. In the following sections 2.4 and 2.5 respectively, we will describe typical effort estimation
approaches and details on effort measurement by IDE instrumentation means.

2.3 Software maintainability

Who wrote this class?? I can not work like this!!
- Any programmer

Imagine having two softwares (software A and software B) with the same functionality. That means,
given the same input, they both result in the same output. Software A’s source code is easy to modify
and require less effort given a new task. Software B’s source code is barely understandable, let alone
modifiable. Even though software A and software B have the same functionality, their quality differs.
Software A maintainability is higher than the maintainability of Software B.

Thttps:www.videolan.orgvlcindex.html
2https:support.apple.comdownloadsquicktime



Maintainability is formally defined by ISO/IEC [28, p. 10] as: The capability of the software prod-
uct to be modified. Modifications can be corrections, improvements or adaptation of the software
to changes in an environment, and in requirements and functional specifications. The ISO standard
did not define a solid model on how to measure maintainability thus many models have been suggested.

Kitchenham et al. [33] proposed four domain factors that influence the maintenance processes: prod-
uct, organizational process, maintenance activities, and people. High emphasis has been given to the
product and process factors in software engineering research. For example, in the context of estimat-
ing maintenance effort or maintainability assessments. Process-centered approaches for maintenance
effort estimation can be found in the following references. [21, 24, 37]. Many of the process-centered
approaches use process-related metrics or historical data to generate estimation models. Product-
centered approaches for estimating maintenance effort or assessing maintainability include those dis-
cussed in Refs. [1, 6].

2.4 Software effort estimation

Software cost estimation is crucial in software project lifecycle. Bakir et al. [5] defined software cost
estimation as the process of predicting the effort required to develop a software project. Such esti-
mation can help project managers in planning and resources allocation. Inaccurate estimations can
lead to devastating results. For example, over estimation can lead to waste of resources, rejecting
other projects, thus threatening organization competitiveness. Conversely, underestimations can lead
to a lack of resources allocation, schedule, and budget overruns, which can ultimately lead to project
failure.

Effort estimation is a very active area of research because of its importance in software project
lifecycle. Jorgensen [31] explains the different types of methods for estimating effort: Expert-based
methods, Model-based methods and hybrid methods. Examples of Expert-based methods for effort
estimation include the following best practices explained Jorgensen [31]: combine estimates from dif-
ferent experts and estimation strategies, assess the uncertainty of the estimate, ask the estimators
to justify and criticize their estimates and use documented data from previous development tasks.
Model-based methods range in complexity, from relatively simple nearest neighbor methods [32] to the
more intricate tree-learning methods, as used in CART [7] to even more complex search-based methods
that make use of tabu search to set the parameters of support vector regression [12]. Examples of
hybrid methods for effort estimation include those presented in Refs. [9, 56, 51].

2.5 Event logs collection tools

Overall many stakeholders benefit from capturing and analyzing IDE activity logs. Snipes et al. [53]
explained the following: First, IDE vendors leverage the data to get insight into ways to improve
their product based on how developers use the IDE in practice. Second, researchers develop IDE
activity logs collectors and conduct rigorous experiments to (1) make broader contributions to our
understanding of developers coding practices and (2) improve the state-of-the-art programming tools
(e.g. debuggers and refactoring tools). Finally, developers benefit from the analysis conducted on
the IDE activity logs because these analyses lead to more effective IDEs that make developers more
productive. Robillard et al. [46, p. 176] showed the following IDE instrumentations examples:

e Mylyn uses IDE activity logs to recommend source code artifacts relevant for a current task.

e OCompletion improves code completion tools based on a fine-grained analysis of previous edit
interactions.

In this thesis, analysis of IDE activity logs produced by IDE instrumentation is a potential approach
for measuring effort once developers’ events are logged. As mentioned in the previous section, there are
many ways to measure maintenance effort. Manual recording is one approach. However, measuring
effort manually at file level is not feasible from a practical perspective because it would be tedious and



prone to human errors. The effort extracted from the analysis of IDE activity logs can be a extremely
beneficial for effort estimation. Instead of using proxies such as SLOC and CC, the actual effort can
be used to build models that can predict future maintenance effort. However, there are potential
issues to measuring effort from logs according to previous work. Sjsberg et al. [52] noted that it has
been historically difficult to verify if log-based effort extractions are accurate because of the lack of
grounded truth or empirical measurements of effort during a sufficiently extended period. Deligian-
nis et al. [13]’s study is an example, where the observational period only lasted for one hour and a half.

There exist a series of tools or software implementations that enable the collection of IDE activ-
ity logs. Table 2.2 shows a summary of data collection tools that were examined for the purposes of

this thesis. In the remainder of this section, Mylyn and FLUORITE will be discussed in detail.

Table 2.2: Summary of Analysis on log collection tools.

# | Tool Name

Advantages

Disadvantages

—

Eclipse IDE activity logs Collector (UDC)

Well tested, widely deployed.

Collects only data on
tools; sometimes missing data

2 | Mylyn Monitor

Collects data both about
tools and the program
elements the tools are
used on.

No details about code

beyond element names
collected. Extra work

required

3 | CodingSpectator

Very detailed information
collected.

Information collected largely
customized to observe

the usage of refactoring, tools
and it is not up to date.
Legacy plugin

4 | CodingTracker

Not available any more

No available any more

5 Fluorite

Already been used in
previous projects, so it is
stable. It captures fine grain
of data such as time and
selected artifact.

It creates one whole file
per day. That file may
become very large.

6 Mimec

Not available any more

Not available any more

7 | WatchDog

Available for eclipse

Only provide high-level log
data such as user active,
reading, writing. No
information on the specific
file

9 | Building your own

A high degree of
customizability.

Extra work required to collect a wider variety of data

Mylyn Monitor

Murphy et al. [44] created Mylyn, a task-focused user interface, a top-level project of the Eclipse IDE
that is part of many of the Eclipse IDE configurations. To better support developers in managing and
working on multiple tasks, Mylyn makes tasks a first class entity, monitors a developer’s interaction
with the IDE for each task and logs it in a so-called task context. While the source code of the Mylyn
Monitor can still be found on-line, it is not an active part of the Mylyn project anymore.

Data collected by Mylyn: Mylyn captures three types of IDE activity logs: the selection of
elements, the editing of elements and commands in the IDE, such as saving or refactoring commands.
These interaction events are monitored and then stored in XML format in a log file. See figure 2.1
for a log example of a developer selecting a Java class TaskEditorBloatMonitor.java in the package
explorer of the Eclipse IDE.



: <InteractionEvent

2 StructureKind="java"

3 StructureHandle="=org.eclipse.mylyn.tasks.ui/src&lt;org.eclipse.mylyn.
internal.tasks.ui{TaskEditorBloatMonitor.java"

5 StartDate="2012-04-10 02:05:53.451 CEST"

& Originld="org.eclipse. jdt.ui.PackageExplorer"

7 Navigation="null"

8 Kind="selection"

a Interest="1.0"

10 EndDate="2012-04-10 02:05:53.451 CEST"
1t Delta="null"

1z />

Figure 2.1: Example of a log generated by Mylyn monitor
[53]

Figure 2.1 demonstrates that Mylyn logs contain all the required information to be able to extract
effort (time), as it has the selected artifact with a start timestamp and an end timestamp. Unfortu-
nately, the code for the Mylyn Monitor is not part of the active Mylyn project anymore, although the
code for the monitor and example code can be found in the incubator project online® .

FLUORITE

FLUORITE® is an event logging plug-in for Eclipse, which captures all the low-level events when
developers use the Eclipse code editor. FLUORITE captures not only what types of events occurred
in the code editor, but also more detailed information such as the inserted and deleted text and the
specific parameters for each command [60].

Data collected by FLUORITE: FLUORITE captures three types of developer interactions with
the Eclipse development environment: Commands, document changes and annotations. Figure 2.2
shows an example of a log snippet where the developer (1) moved the cursor by clicking mouse but-
ton, (2) selected one line by SHIFT + DOWN, (3) deleted selected code using the DELETE key, and
(4) saved the file. Each event has its own parameters, and the whole deleted text is listed in Docu-
mentChange event. Once FLUORITES is installed on Eclipse, it begins to capture all the low-level
events occurring in the code editor, and saves the transcript as an XML file when Eclipse is closing.
FLUORITE is publicly available and still works in Eclipse.

<Command __id="2" _type="MoveCaretCommand” caretoffset="142" docoffset="142" timestamp="3977"/>
<command __id="3" _type="EcTipseCommand” commandID="eventLogger.styledTextCommand.SELECT_LINE_DOWN"
timestamp="5598"/>
<DocumentChange __id="4" _type="Delete" docASTNodeCount="22" docActiveCodeLength="125" docExpression-
Count="10" docLength="151" endLine="9" Tlength="39" offset="142" startLine="8" timestamp="7186">
<text>
<! [CDATA[ System.out.printin("Hello world!");

11>
</text>
</DocumentChange>
<Command __id="5" _type="EclipseCommand” commandID="org.eclipse.ui.edit.delete" timestamp:"?zoz”/>
<Command __id="6" _type="EclipseCommand” commandID="org.eclipse.ui.file.save" timestamp="8099"/>

Figure 2.2: Example log generated by FLUORITE.
[53]

3http://git.eclipse.org/c/mylyn/org.eclipse.mylyn.incubator.git /tree/
4http://wiki.eclipse.org/Mylyn_Integrator_Reference# Monitor APT
5Full of Low-level User Operations Recorded In The Editor

SFluorite can be found at https://github.com/yyoon /fluorite-eclipse
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2.6 Process Mining

There are different approaches to extract effort from IDE activity logs. One approach is to subtract
the end timestamp to the start timestamp. In this current thesis, a process mining approach will be
used.

Van der Aalst and Weijters [57] defines process miming as follows:

Process mining is defined as the method of distilling a structured process’ description from
a set of real executions.

Case ID Timestamp Activity
Altributes
A"‘l’ ‘\“-l

CaselD Timestamp Medium Activity Service Line Urgency
case9700 20.8.09 11:46 Phone Registered 1st line 0
case9700 20.8.09 11:50 Phone Completed 1st line 0
case9701 23.9.09 12:23 Phone Registered 1st line 0
case9701 23.9.09 12:27 Phone Completed 1st line 0
case9705 20.10.09 14:21 Phone Registered Specialist 2
case9705 20.10.09 16:48 Phone At specialist Specialist 2
case9705 19.11.09 10:31 Phone In progress Specialist 2
case9705 19.11.09 10:32 Phone Completed Specialist 2
case3939 15.10.09 11:48 Mail Registered Specialist 2
case3939 15.10.09 11:48 Mail Offered Specialist 2
case3939 20.10.09 17:18 Mail In progress Specialist 2
case3939 20.10.09 17:19 Mail At specialist Specialist 2
case3939 21.10.09 14:49 Mail In progress Specialist 2
case3939 21.10.09 14:49 Mail In progress Specialist 2
case3939 28.10.09 10:17 Mail In progress Specialist 2
case3939 28.10.09 10:18 Mail Completed Specialist 2
case9704 20.10.09 14:19 Mail Registered 1st line 0
case9704 20.10.09 14:24 Mail Completed 1st line 0
case9703 20.10.09 14:40 Phone Registered 1st line 0
case9703 20.10.09 14:58 Phone Completed 1st line 0
case9702 24.8.09 12:24 Mail Registered 2nd line 2
caseq702? 24.8.09 12:30 Mail Offered 2nd line 2

Figure 2.3: An example of an event log

To illustrate the concept of process mining, we consider the process log shown in Table 2.3. This log
contains the following information:

e Events - Each event corresponds to an activity that was executed in the process.
e Cases - Multiple events are linked together to make a process instance or case.
e Logically, each case forms a sequence of events ordered by their time-stamp.

The process mining approach needs the following minimum requirement from an event log as an input
for effort extraction:

1. Case ID: A case identifier, also called process instance 1D, is necessary to distinguish different
executions of the same process.

2. Activity: There should be names for different process steps or status changes that were per-
formed in the process. If you have only one entry (one row) for each process instance, then your
data is not detailed enough.

3. Time-stamp: At least one time-stamp is needed to bring the events in the right order. Of course
you also need timestamps to identify delays between activities and identify bottlenecks in your
process.

7Cambridge Dictionary [8] defined process as a series of actions or steps taken in order to achieve a particular end.
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For this thesis, a process is a list of events that occur in a particular class. Effort can be extracted,
once the process is identified. Note that we did not use any particular Process Mining approaches,
we only use the process mining concepts.

2.7 Related work on IDE log analysis for studies on software
maintainability

In 2015, Minelli et al. aimed to record interaction data and measure the time effectively devoted to
different activities (e.i. read, inspect, edit). With the recorded data, Minelli et al. aimed to provide
insights on the distribution of development activities. To analysis how developers spend their time,
Minelli et al. collected IDE activity logs. The dataset was collected for about 200 hours of develop-
ment time which amounts to more than 5 million of IDE events. The contributions of this study were
an inference model of development activities to precisely measure the time of different activities and
a brief presentation of DFLOW, the tool with which we collect interaction data.

In 2016, Amann et al. performed a case study of how industrial C# developers use Visual Stu-
dio. Amann et al. developed FEEDBAG;, a tool that anonymously captures developers IDE activity
logs. The tool was deployed at an industry partners software development department, in which more
than 400 developers write software in C#. The dataset collected consist of more than 3.5 million in-
teraction events over a total of 6,300 work hours. The contributions of this study were an open-source
tool, FEEDBAG, a case study of how professional C# developers use Visual Studio and a discussion
of opportunities to advance the research in IDEs and developer-assistance tools.

2.7.1 Related work on effort extraction from IDE activity logs

In 2013, Sjgberg et al. researched the relationship between code smells and maintenance effort. An
Eclipse plugin namely Mimec[36] was used to measure the exact amount of time a developer spent
maintaining each file. There was no further description of how the amount of time spent maintaining
each file was calculated.

In a follow-up study by Soh et al. [55], the effects of code smells at the activity level was inves-
tigated. By activities, Soh et al. [55] means reading, editing, searching, and navigating, which is
performed independently over different files during maintenance. In this study, Soh et al. [55] provide
a more detailed explanation of how Mimec was used for the effort extraction. However, Soh et al. [55]
did not describe the accuracy of that process.

12



Chapter 3

Methodology

3.1 Overview

This chapter describes the conceptual and methodological framework used to accomplish the goal of
this thesis. The red part of figure 3.1 depicts the log analysis tool (LAT), which will be described
in detail in Section 3.2. The blue part of Figure 3.1 depicts the empirical study that answered the

second research question, which will be described in detail in Section 3.3.

Developer

uses

IDE

uses

Log Analysis Tool

to create

Source code

can be described by

Source code metrics

T TG

SLOC per Class

Weighted Method per Class

¥

|
assumed to predict/explain

Maintainability

assumed to pre':dict /explain

Empirical Study

Event logger

Events

input to

Process Mining approach

Figure 3.1: Conceptual and Methodological Framework used in the thesis.
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3.2 Log analysis tool (LAT)

3.2.1 Effort extracting approach

This section describes the techniques and process used to implement LAT, including a description of
the algorithm that extracts effort from IDE activity logs.

The process mining approach enables the extraction of effort from the IDE activity logs as explained
in section 2.6. For example, consider the table 3.1 as a developer IDE activity logs. It contains the
minimum requirement of attributes that enables the process mining approach. It has timestamps,
activities denoted by kind and Case ID denoted by the class name. Below we illustrate the method
of extracting effort using the example log in table 3.1.

Table 3.1: An example of a developer IDE activity logs

# | Time-stamp Kind | ClassName
1 19-02-1991 12:00:00 | open | User.java
2 19-02-1991 12:05:00 | read User.java
3 19-02-1991 12:10:00 | scroll | User.java
4 | 19-02-1991 12:15:00 | edit User.java
5 19-02-1991 12:20:00 | open | Auth.java
6 | 19-02-1991 12:25:00 | edit Auth.java
7 19-02-1991 12:30:00 | scroll | Auth.java
8 19-02-1991 12:35:00 | open | User.java
9 19-02-1991 12:40:00 | read User.java
10 | 19-02-1991 12:51:00 | scroll | User.java

The approach is as follows: we create process cases where the class names group the events.

1. For each event, we calculate the elapsed time. The elapsed time (ET) is the start time (ST) of
the log minus the current time (CT) of the event (ET = CT — ST).

2. We calculate the accumulated time (AC) of each process case by adding all the events’ elapsed
time (AC = sz\;ET i).

3. Finally, all idle times (IT) are removed from the accumulated time. An example of idle time is
when a user is programming, she/he leaves her desk for a pause while everything continues to
run. To detect it, Minelli et al. [42] proposed to set a ”minimum idle time”, of 10 minutes by
default. If the difference between two events is more than 10 minutes, then the difference is also
considered as idle time. Listing 3.5 depicts the implementation of removing idle time.

For further explanation, each time a class opens, the elapsed time is 0 minute. After that, the
elapsed time is calculated from the previous event. For example, in table 3.1, the elapsed time of the
second event is 5 (12:05:00 - 12:00:00) minutes. Table 3.1 also shows an example of an idle time. The
elapsed time of the last event is 11 (12:51:00 - 12:40:00) minutes. This elapsed time is more than the
"minimum idle time,” of 10 minutes. Hence it will be subtracted from the accumulated time. See
Table 3.2 for the full solution.
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User.java
# | Elapsed (mins) | Idle (mins) | Total
1 0 Auth.java
2 5 # | Elapsed (mins) | Idle (mins) | Total
3 5 ) 0
4 5 6 5
8 0 7 5
9 5 AC | 10 10
10 11 11
AC | 31 11 20

Table 3.2: An example of how effort is extracted from Table 3.1

3.2.2 Architectural design of LAT

The design overview contains two parts: Loggers and the LAT itself as presented in Figure 3.2. The
blue part of Figure 3.2 shows three examples of loggers (Mylyn, FLUORITE, and Mimec). More
information about loggers is in the background and related work chapter. The red part of Figure 3.2
shows the decomposition of LAT. It contains the utils, the model and the user interface.

The utils package contains classes that parse the event logs into process models. For LAT to support
the analysis of different types or formats of IDE activity logs, an abstraction was made on top of more
implementation/format related details. Each logger has its separate class for that process because
each event log file could be structured differently. For example, Mylyn saves the events to either a
CSV or XML file; FLUORITE saves the events to XML files and Mimec saves the events to a CSV file.

The process model package contains the process mining approach that was explained earlier. The
package has process cases, process case, and events. The process cases are just a map containing the
class names with their respective process case. Listing 3.4 illustrates an example of process cases.
Listing 3.2 illustrates an example of a process case. A process case contains all the events that belong
to a class. Finally, Listing 3.3 shows an example of the class definition of events.

g Mylyn E . Utils (Parsers) E
E FLUORITE 3 input of LAT : Process Model 3
; Mimec E ; User Interface E
[ Loggers 3 | LAT '

Figure 3.2: LAT Architectural Design
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package edu.cwi.espionage.model;
import java.util. ArrayList;

public class ProcessCase implements Comparable<ProcessCase>{
private String caseld;
private List<Event> events;
private long startTime;
private long idleTime;
private Event lastEvent;
private IdleTimeTable idleTimeTable;

public ProcessCase(String caseld) {
this.events = new ArrayList<Event>();
this.caseld = caseld;
this.idleTimeTable = new IdleTimeTable();

}

Listing 3.2: Example of ProcessCase class definition in Java

package edu.cwi.espionage.model;
import java.util.Date;
public class Event implements Comparable<Event>{

private Date timestamp;
private String activity ;
private long elapstime;
private String caseld;

public Event(Date timestamp, long elapstime, String activity) {
this.timestamp = timestamp;
this. activity = activity;
this.elapstime = elapstime;

}

Listing 3.3: Example of Event class definition in Java

Map<String, ProcessCase> processCases = new HashMap<String, ProcessCase>();

Listing 3.4: Example of ProcessCases code in Java
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private static final long MINIMUM_IDLE_TIME = 600; //10 minutes as default.

private Long getElapsedTime(Event firstEvent, Event secondEvent){
return Math.abs(secondEvent.get Timestamp().getTime() — firstEvent.getTimestamp().getTime());

}

private Boolean IsInactive(Event firstEvent, Event secondEvent){
boolean isInactive = false;
long elapsedTime = getElapsed Time(firstEvent,secondEvent);
long elapsedTimeSeconds = elapsed Time/1000;

if (elapsed TimeSeconds > MINIMUM_IDLE_TIME){
isInactive = true;

}

return islnactive;

}

public Long calculateldleInactiveTime(Event el, Event e2) {
Event firstEvent = el;
Event secondEvent = e2;

if (el.getTimestamp().after(e2.get Timestamp())){
firstEvent = e2;
secondEvent = el;

}

if (IsInactive (firstEvent, secondEvent)) {
return secondEvent.getElapstime();

}

return new Long(0);

Listing 3.5: A code snippet of extracting Idle time code in Java
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Figure 3.3 presents the user interface (UI) of LAT. Figure 3.3 has three parts: the filters, the classes,
and a line graph. The filters allow the user to filter the data. For example, extracting effort spent
maintaining a class on a particular day and range of hours. Below the filters are the classes within
their respective packages. Finally, the line graph shows maintenance effort per day for a class upon
selection. LAT also saves effort (time in minutes) on a class level in a comma-separated value (CSV)
file as it is illustrated in table 3.3. The full code can be found at http://bit.ly /2wiyTIS.

@ [ ] runtime-EclipseApplication - Resource - Eclipse Platfarm
il Qo o> =[S
= v=| Tasks ¢# Espionage 2 .t o
[ty O Minutes ) H SimulaWSClient.java o
. Inutes ours a0
ié Date selection jz
il
é 60
Hour range selection =
E’ 50
Z
E 40
|-+ Espionage E 30
» | halogen I
» [ machina Woog
» | lapache
v [ simula 10
StudySearch.java 0 - i~ " -
PersonalizedReportl ﬁ ﬁ 2 2
SimulaRealm.java ; ; ; ;
PersistentPersonaliz § § § §
MemoryCachingSimt DAYS
PersistentPerson.jav
- Amount of Time
Figure 3.3: An example of LAT Ul
Table 3.3: Example of LAT saved data.
Project EntityName Time(milli) Time(mins)
gjt SimulaWSClient.java 3558000 59
gjt SimulaWS.java 918000 15
gjt Driver.java 231000 3
halogen  LoggableStatement.java 767000 12
halogen = TableRenderer.java 95000 1
halogen = TableTag.java 27000 0
halogen  Table.java 8000 0
machina Exercises.java 8486000 141
machina DB.java 231000 3
machina  SimulaWSClient.java 188000 3
machina  ReportServlet.java 70000 1
machina DBTest.java 29000 0
apache ServletServer.java 611000 10
apache SimulaWSClient.java 223000 3
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3.2.3 Evaluation

There are many issues to measuring effort from logs according to previous work. Sjgberg et al. [52]
explained that it has been historically difficult to verify if log-based effort extractions are accurate be-
cause of the lack of grounded truth or empirical measurements of effort during a sufficiently extended
period. Normally, reported experiments only last a couple of hours[13]. Deligiannis et al. [13] is an
example, where it only lasted for one hour and a half. Soh et al. [54] also noted that IDE event logs
contain noise. Noises can be 0 duration events and overlapping events.

Before using LAT, it is important to verify whether the efforts extracted from the event logs are
accurate. The accuracy of LAT is important because it will validate effort extraction from event logs
and it will enable higher confidence on further results interpretations. Thus, the evaluation reported
in this section intends to answer the following research question:

How accurate can file-level effort measurements be when based on IDE activity logs anal-
ysis?

Evaluation Approach

Two different data sets were used to evaluate the accuracy of LAT. The data sets are from a pilot
evaluation conducted by the author of the thesis and the replication package from the study by Soh
et al. [54]. Both data sets were built by two different means, as presented in Figure 3.4. On one side,
an Eclipse tool is used to gather raw interaction data, and on the other side, software video players
such as VLC and QuickTime were used to capture video of developers’ screens while completing a
task. The blue part (Dataset A) in Figure 3.4 shows how LAT extracts effort from IDE activity
logs (Expected Effort). The red part (Dataset B) in Figure 3.4 shows the real effort or ground truth
(Actual Effort) that was spent on each file, which is extracted by manually examining the recorded
videos. Then, we compare the expected effort with the actual effort to measure the accuracy of LAT.
The analysis methods used to compare compare the degree of similarity or consistency between the
two data sets (and thus, the accuracy of LAT) are regression analysis [20], cosine similarity [25, p. 77]
and a Bland-Altman plot [62]. Each of these analyses methods will be explained in the latter text.

has log traces as input uses
{ Developer ’
' LAT ' i | VCL/QuickTime | !
. extracted ] . extracted ]
. ' —Accuracy— ! '
! ' Cosine similarity : "
: Expected Effort |« ' Adjusted R? ; > Actual Effort ]
. " Bland-Altman plot ! "
[ Dataset A 2 ' Dataset B .

-------------------------------------------

Figure 3.4: LAT Evaluation Overview

As mentioned previously, during the evaluation of the logging tools, it was possible to observe that
most of the logging tools presented in the background chapter were not available anymore at the time
of this study. FLUORITE logging tool was found as the best fit for this study because it was available
and records the data required to extract effort at the file level. However, in principle, any available
datasets from any event logging tool can be used for effort extraction, provided that the datasets
fulfill the requirements explained in Section 2.6 (e.i. Process Mining). The dataset used in this study
can be found at http://bit.ly/2vEIFT7T7.

19


http://bit.ly/2vE9F77

Pilot experiment: We conducted a pilot evaluation with FLUORITE that lasted about 100 min-
utes. Two participants performed their daily programming tasks using the Eclipse IDE together with
the FLUORITE plugin. We collected their IDE activity logs at the end. We also captured video
recordings of the participants screens using QuickTime.

Mylyn dataset: We used a dataset from Soh et al. [54] study about ”Noises in Interaction Traces
Data and their Impact on Previous Research Studies.” We used 175 minutes of data consisting of IDE
activity logs with their respective videos.

For both datasets, LAT was used to calculate the developer’s effort. The tool calculates and saves the
effort spent (in minutes) on a file level in a comma-separated value (CSV) file as illustrated in Figure
3.3. We also transcribed the videos manually to extract the actual effort that was spent on each file.

Analysis conducted for evaluating the accuracy of LAT: Before applying the aforementioned
analysis methods, we first analysed the distributions in our data using histograms, since these anal-
yses perform best when measurements are normally distributed [23, 35, 55]. To understand the
distribution, we use the skewness method. According to Bai and Ng [4], measurements are normally
distributed when skewness is 0. If it is above 0, then it is positively skewed. If it is below 0, then
it is negatively skewed. In case the measurements are not normally distributed, a logarithmic trans-
formation of original data can be applied [23, 35, 55]. The subsequent section describes the three
aforementioned analysis methods.

Cosine similarity: Han et al. [25, p. 77] defined Cosine similarity as follows:

Cosine similarity is a measure of similarity that can be used to compare documents or,
say, give a ranking of documents with respect to a given vector of query words. Let x and y
be two vectors for comparison. Using the cosine measure as a where ||z|| is the Euclidean

norm of vector x = (x1,%2,...,%p), defined as \/xf +zi+ .+ x2. Conceptually, it is

the length of the vector. Similarly, ||yl is the Euclidean norm of vector y. The measure
computes the cosine of the angle between vectors x and y. A cosine value of 0 means that
the two vectors are at 90 degrees to each other (orthogonal) and have no match. The closer
the cosine value to 1, the smaller the angle and the greater the match between vectors.

Regression analysis: Field and Miles [20] defined regression analysis as follows:

Regression analysis is a way of predicting an outcome variable from one predictor variable
(simple regression) or several predictor variables (multiple regression).

In the regression analysis, We will be focusing at the adjusted square of Pearson correlation which is
called the adjusted coefficient of determination (Adjusted R?) and the standard error measures. The
adjusted R? indicates the percentage of the dependent variable that can be explained by the predictor
variable. The standard error measures the accuracy of the dependent variable’s coefficient by esti-
mating the variation of the coefficient if the same test were run on a different sample of our population.

Bland-Altman plot: Zaki et al. [62] explained Bland-Altman plot as follows:

Bland and Altman assess the agreement between two quantitative methods of measurement.
The formula for the limits of agreement is given as: Limits of Agreement = mean differ-
ence 1.96 z (standard deviation of differences). The limits of agreement are dependent
on the assumptions that the mean and standard deviation of the differences are constant
throughout the range of measurement, and that the distribution of these differences ap-
prozimately follows a normal distribution. Bland and Altman proposed a scatter plot of
the difference of two measurements against the average of the two measurements and a
histogram of the differences to check this assumption.
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The above mentioned method gained momentum in the clinical laboratory research (medicine) as
an alternative to correlation and linear regression when changing one method for another one or for
evaluating a new or alternative method [62, 23, 2]. Correlation and linear regression only measure
how strongly, pairs of variables are related but not the level of agreement [62, 23, 2]. For example
given two sets of data X and Y, where Y = 2X. The two sets of data are highly correlated and fit a
perfect line. However, it is obvious that the value of Y is twice the value of X (i.e. no agreement).

Results and discussions

Figure 3.5 and 3.6 show the distributions and skewness of actual effort and expected. Figure 3.5 and
3.6 show skewed distributions with long tails. 3.11 and 3.16 are the skewness respectively. Hence
a log transformation is required for further analysis because the measurements are not distributed

normally.
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Figure 3.5: Actual effort distribution
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Figure 3.6: Expected effort distribution

Figure 3.7 presents the differences in the effort devoted to each file while performing the tasks, between
Eclipse extracted effort and real effort from the recorded videos. Figure 3.7a illustrates Mylyn dataset
and Figure 3.7b illustrates Fluorite dataset with recorded videos respectively.

Finding 1: The cosine similarity between the actual effort and expected effort is 0.87

Figure 3.7b shows that the extracted effort is almost identical to the real effort from the video. Figure
3.7a shows more discrepancy. To evaluate the results, cosine similarity of the datasets are calculated.
Finding 1 showed a cosine similarity of 0.87 between the datasets. From the definition presented
above, the value 0.87 is close to 1. Therefore, the datasets are considered quite similar.
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Figure 3.7: Difference between Eclipse extracted effort (Expected Effort) and real effort from video
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In Table 3.4 we can observe that, in accordance to the correlation ranking provided by Rumsey [48],
expected effort is strongly related to the actual effort of developers, with an adjusted R2? of 75%,
which is also significant at p < .001. This indicates that 75% of actual effort can be explained by our
predictor variable, expected effort.

Finding 2: Actual and expected effort have a strong positive correlation (adj.R?> = .75,
N =28, p<.001).

Table 3.4: Results of regression analysis for LAT accuracy

OLS Regression Results

Dep. Variable: actual R-squared: 0.754
Model: OLS Adj. R-squared: 0.745
Method: Least Squares F-statistic: 79.9
Date: Mon, 21 Aug 2017 Prob (F-statistic): 0.001
Time: 15:08:03 Log-Likelihood: -20.068
No. Observations: 28 AlC: 44.14
Df Residuals: 26 BIC: 46.8
Df Model: 1
Covariance Type: nonrobust

coef std err t P> |t| [95.0% Conf. Int.]
Intercept 5.55E-14 0.097 5.71E-16 1.000 -0.200 0.200
expected 0.8686 0.097 8.939 0.001  0.669 1.068

Table 3.5 shows expected and actual effort after log transformation, from which allows to construct
the Bland-Altman plot and hence, to evaluate the level of agreement between the measurements. In
the first column, a series of expected effort is shown, obtained by LAT. The second column shows
the actual effort obtained from video recordings. Therefore, each line shows paired data. Column 4
shows the differences. An ideal model would claim that the measurements obtained by LAT or video
recording gave the same results. So, all the differences would be equal to zero. However, that is not
the case. Figure 3.8 shows a small degree of error. Figure 3.8 shows a scatter plot XY, in which the
Y-axis shows the difference between the two paired measurements (expected effort - actual effort) and
the X-axis represents the average of these measures ((expected effort + actual effort)/2). In other
words, the difference between the two paired measurements is plotted against the mean of the two
measurements. The Bland-Altman plots 95% of the data points within 4+1.96 standard deviation of
the mean difference. The Bland-Altman plot does not say if the agreement is sufficient or suitable, it
is up for personal interpretation. With that in mind, examining Figure 3.8, there is a small bias, but
the 95% limits of agreement can be accepted for the goal of this thesis. Figure 3.7 also depicts the
differences in the two methods. The expected effort is more often than not underestimated. There
is a few reason for these differences: Mylyn IDE activity logs sometimes miss the recording of some
events, the manual transcript of the videos could suffer from human error and the idle time measure
of 10 minutes can be considered rather subjective (or arbitrary).
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Table 3.5: Data of an agreement between two methods (Expected and Actual effort).

log(expected effort) log(actual effort) Mean (expected+actual)/2  Difference
(expected-actual)

1.00 0.00 0.50 1.00
2.32 2.00 2.16 0.32
6.04 6.38 6.21 -0.33
2.32 2.00 2.16 0.32
3.32 4.25 3.78 -0.93
1.00 2.00 1.50 -1.00
0.00 1.58 0.79 -1.58
1.00 0.00 0.50 1.00
1.58 1.58 1.58 0.00
1.58 1.58 1.58 0.00
2.32 2.32 2.32 0.00
1.58 0.00 0.79 1.58
1.00 1.00 1.00 0.00
0.00 1.00 0.50 -1.00
1.58 0.00 0.79 1.58
1.00 1.00 1.00 0.00
3.70 4.17 3.94 -0.47
3.00 3.32 3.16 -0.32
5.75 5.88 5.82 -0.13
1.58 1.58 1.58 0.00
1.00 1.00 1.00 0.00
2.00 1.58 1.79 0.42
0.00 1.58 0.79 -1.58
2.81 3.91 3.36 -1.10
3.58 3.46 3.52 0.13
2.00 3.32 2.66 -1.32
3.00 3.17 3.08 -0.17
1.00 1.58 1.29 -0.58

mean -0.15

standard deviation 0.83
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Figure 3.8: Results of the Bland-Altman Plot
Conclusion

There have been many problems in measuring effort from logs. Problems such as 0 duration and
overlapping events have been reported. This chapter uses video recordings to measure the accuracy
of LAT. We used cosine similarity, adjusted R? and Bland-Altman Plot as methods for validating
LAT. The cosine similarity showed a similarity index of 87%. The adjusted R? produced a result of
75%. Finally, the Bland-Altman Plot showed only a small degree of bias in the differences between
the two methods. This evidence suggests that LAT can potentially be used for further analysis of
effort extraction from IDE activity logs.

3.3 Empirical study

This section describes the study that was used to answer research question 2: Can we effectively use
previously measured SLOC and CC of a class to estimate/predict future maintenance effort on source
code at class level?.

3.3.1 Hypothesis

As explained by Visser et al. [58, Chap. 6], small size classes provide a direct path toward loose
coupling between classes. Loose coupling means that the class level design will be much more flexible
to facilitate future changes. By "flexibility” Visser et al. [58, Chap. 6] means that changes can
be made by limiting unexpected effects of those changes. This means that small size classes allow
developers to work on an isolated part of a codebase. Hence, the larger the class, the higher the
effort needed for maintainability. Based on Visser et al. [58, Chap. 6] above information, we have the
following hypothesis.

Hypothesis 1 There is strong linear correlation between total SLOC and effort metrics at a file level.

26



Visser et al. [58, Chap. 3] explained that a simple unit is easier to understand, and thus modify, than
a complex one. At a file level, WMC is used to measure the overall complexity of a class. Rosenberg
et al. [47] noted that a class with a low WMC usually points to greater polymorphism. A class with
a high WMC tends to be complex and therefore harder to reuse and maintain. Based on Visser et al.
[58], Rosenberg et al. [47, Chap. 3] above information, we have the following working hypothesis.

Hypothesis 2 There is strong linear correlation between total WMC' and effort metrics at a file level.

3.3.2 Research method

To evaluate the effect of CC and SLOC on the effort required during maintenance activities, we
answer the following research question: Can we effectively use previously measured SLOC, CC to es-
timate/predict future maintenance effort? To do this, we used the same modeling analysis (e.i.
histograms, descriptive statistics and scatter plots) from Landman et al. [35]’s study to understand
the data. Then, we use Pearson correlation to answer hypothesis 1 and 2. Finally, we use stepwise
regression just as Soh et al. [55] to assess how SLOC and CC could explain maintenance effort.

Distributions: Before answering the research question, we describe the distributions in our data us-
ing histograms and descriptive statistics (median, mean, min and max). Landman et al. [35] explained
how the shape of distributions can have an impact on the correlation measures used. It should be
noted that to fit best a linear model, the variables should be close to a normal distribution. We apply
log transformation method to compensate for the skewness of the distribution just as it was in the
evaluation of LAT. This previous studies [55, 35, 19, 30, 27] used the log transformation method as well.

Scatter plots: A scatter plot matrix will be used to illustrate the relationship between total SLOC,
WMC and effort.

Correlation: We use Pearson correlation to measure the degree of linear relationship between two
variables. The square of Pearson correlation is called the coefficient of determination (R?).R? esti-
mates the variance in the power of one variable to predict the other using linear regression. According
to Rumsey [48], if the R? is more than .70 then we will accept hypothesis 1 and 2.

Type Variable

Independent Static Metrics (SLOC, CC)

Dependent Effort (minutes spend on maintaining a file)
Control Developer and Round

Table 3.6: Variables involved in the study

We used stepwise regression to assess how SLOC and CC could explain maintenance effort. We build
a model for each independent variables. We started with Model 0 where SLOC is used to explain
maintenance effort. In Model 1, we add the WMC to Model 0 to measure how WMC contributes
to explaining maintenance effort. We put NA (Not Applicable) in case a variable is not used in a
model. By incrementally adding variables to the model, we assess the contribution of each variable
to explaining maintenance effort. Table 3.6 further illustrates variables that will be involved in the
study to estimate maintenance effort.

27



Dataset

Systems A B C D
Java 8,205 26,679 4,983 9,960
JSP 2,527 2,018 4,591 1,572

Others 371 1,183 1,241 1,018
Total 11,103 29,880 10,815 12,550
Figure 3.9: SLOC Per file type for all four systems.
Soh et al. [55]
Developer

1 2 3 4 5

Round['lABCDC
2| DJA|D|C| B

A
3

Figure 3.10: Assignment of systems to developers in the case study rounds.
Soh et al. [55]

To perform the study in this research, we use the same dataset from two previous studies from
Soh et al. [55] and Sjgberg et al. [52] in which the impact of code smell on maintenance effort was
studied. Both of these studies used the same dataset. However, the difference is that Sjgberg et al.
[52] measured sheer effort and Soh et al. [55] measured effort by type of activity. This dataset was
acquired from Soh et al. [55]. Sjsberg et al. [52] generated this dataset by the following means: Six
professional developers were hired to perform three maintenance tasks on four functionally equivalent
Java Systems. Each developer performed two rounds of maintenance tasks as seen in figure 3.10.
During maintenance task, Mimec [36] was used to record the IDE activity logs.

Measuring effort

We ran LAT on the IDE activity logs from Soh et al. [55] and Sjgberg et al. [52]. The tool calculates
effort (in minutes) at file level and stores it in a comma-separated value (CSV) file as it is illustrated
in table 3.3.

Measuring SLOC and CC

To precisely control the definition of both SLOC and CC, we use the same method as performed
in Landman et al. [35] study. The the M3 framework from Izmaylova et al. [29] was used, which is
based on the Eclipse JDT!, to parse the full Java source code. To compute Source lines of code, a
grammar in RASCAL? was defined to tokenize Java input into newlines, whitespace, comments and
other words. The parser produces a list of these tokens which we filter to find the lines of code that
contain anything else but whitespace or comments. SLOC and CC are stored in a comma-separated
value (CSV) file as it is illustrated in table 3.7.

Thttp:/ /www.eclipse.org/jdt
2Klint et al. [34] provide more information about Rascal
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(a) SLOC (b) CC

name sloc name cc
Formatter.java 106 LocationInfo.java 2
OptionHandler.java 4 NewVsSetLen.java 3
CategoryNode.java 100 LoadXMLAction.java 1
Roller.java 62 Loader.java 5
AbsoluteTimeDateFormat.java 65 LogTableColumn.java 2
StudyDAO.java 971 LogLevel.java 3
DeleteStudyHandler.java 20 NTEventLogAppender.java 1
FindPublicationsCommand.java 22 LogLog.java 3
AdminPrivilegesBean.java 18 LogManager.java 7
ReloadingPropertyConfigurator.java 13 Parser.java 2
UserReportCommand.java 19 Parser.java 2
CategoryNodeEditorRenderer.java 19 Parser.java 5
ListVsVector.java 61 Parser.java 1
Logger.java 29 Parser.java 5

Table 3.7: Example of a) SLOC and b) CC measurements.

Mapping SLOC and CC to the effort data

To analyze the SLOC, CC and effort data, they are merged into a single dataset. Each line in table
3.8, represents a file. Each line contains the file name (file), total SLOC, a Weighted Methods per
Class (WMC) and the effort. The data consists of 680 files in total.

Table 3.8: Example of the dataset saved after merging 3.3 and 3.7.

file sloc wmc effort
Driver.java 9 1 3
PropertyConfigurator.java 271 44 1
StudyDAO.java 971 132 628
PeopleDAO.java 261 48 361
PublicationDAO.java 179 37 255
ViewUserReportHandler.java 34 5 118
WebConstants.java 72 1 101
StudyListSortTag.java 36 4 84
DAOQO .java 99 20 77
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Chapter 4

Results and discussion

In this chapter, we present the results and discussion of the empirical study described in Section 3.3.
The first section contains the results and the second section presents the discussion concerning the
results.

4.1 Results

Distributions

Figures 4.1, 4.2 and 4.3 show the distribution of total SLOC, CC and effort per class. Table 4.1
describes their distributions. Figure 4.1a, 4.2a and 4.3a show skewed distributions with a long tail.
The skewness is 5.10, 3.58 and 5.15 respectively. According to Bai and Ng [4], skewness greater than
zero shows large skewed distribution. After log transformation of SLOC, CC and effort, figure 4.1b,
4.2b and 4.3b showed a skewness of 0.10, -0.08 and 0.27 respectively.
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Figure 4.1: Histogram of total SLOC per class.
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Figure 4.2: Histogram of Weighted Methods per Class (WMC).
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Figure 4.3: Histogram of effort spent per class.

Table 4.1: Descriptive statistic of total SLOC, WMC and effort per file .

Variable | Min. | Max. | Mean | Median
SLOC 3 1492 94 56
WMC 0 239 19 11
Effort 1 897 40 11

Scatter plots

Figure 4.4 illustrates graphs of the relationships between SLOC, CC and effort. Figure 4.4b shows a
graph of the relationship with the raw data. The raw plot shows a widely scattered and noisy field,
with a high concentration of points in the left corner. At first glance, the relationship between the
variables seems to be weak. Figure 4.4b shows a graph of the relationship after power transformation
of the raw data. The power transformation plot also shows a widely scattered and noisy field. It
appears that there is no relationship between the variables.

Pearson correlation

Pearson’s correlation was run to determine the relationship between 680 files’ SLOC, WMC and ef-
fort values. There was a weak positive correlation between SLOC and effort adj.R? = .21, N = 680,
p < .001). A 0.21 adjusted R? presented in figure 4.2 indicates 21% of effort can be explained by
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Figure 4.4: Scatter plot of total SLOC, CC and effort per file.

our predictor variable, SLOC. According to the p-value (0.001) with confidence interval of 95%, this
result is significant because it is lower than 0.5.

There was a weak positive correlation between WMC and effort adj.R?> = .16, N = 680, p < .001).
A 0.16 adjusted R? presented in figure 4.2 indicates 16% of effort can be explained by our predictor
variable, WMC. According to the p-value (0.001) with confidence interval of 95%, this result is sig-
nificant because it is lower than 0.5.

There was a strong positive correlation between WMC and SLOC adj.R?> = .79, N = 680, p < .001).
A 0.79 adjusted R? presented in figure 4.2 indicates 79% of SLOC can be explained by our predic-
tor variable, WMC. According to the p-value (0.001) with confidence interval of 95%, this result is
significant because it is lower than 0.5 .

Table 4.2: The adjusted R? of the variables in this study

Effort SLOC WMC

Effort 1 0.21 0.16
SLOC 0.21 1 0.79
WMC 0.16 0.79 1

Step-wise linear regression

Tables 4.3 present the results of regression analysis. The first model (Model 0) uses the independent
variable SLOC to model maintenance effort. SLOC does not explain maintenance effort (adj. R? =
.21), which shows that SLOC is not enough to show differences in maintenance effort. When adding
WMC to Model 0, Table 4.3 (Model 1) shows that WMC had zero effect on maintenance effort. The
adjusted R? (0.21) shows that WMC and SLOC can account for 21% of the variation in maintenance
effort.

Table 4.3: Results for regression analysis for effort.

Model 0 Model 1
Adjusted R?> Significance Adjusted R?> Significance
SLOC 0.21 0.001 0.21 0.001
WMC NA NA 0.000 0.72
Adjusted R? 0.21 0.21
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4.2 Discussion

Hypothesis 1 - Correlation between SLOC and effort

The relatively low adjusted R? of 0.21 is reason enough to reject the hypothesis. There is no evidence
of a strong linear correlation between total SLOC and effort metrics at a file level. The assumption
that larger classes require more maintenance effort can be challenged. Other external factors influence
maintenance effort more than SLOC. Factors such as experience and familiarity can affect maintenance
effort more than SLOC.

Finding 3: SLOC and effort have a weak positive correlation (adj.R?> = .21, N = 680,
p < .001).

Hypothesis 2 - Correlation between WMC and effort

The relatively low adjusted R? of 0.16 is reason enough to reject the hypothesis. There is no evidence of
a strong linear correlation between total CC (WMC) and effort metrics at a file level. The assumption
that more complex classes require more maintenance effort can also be challenged. Other external
factors influence maintenance effort more than total CC (WMC). Factors such as experience and
familiarity can affect maintenance effort more than total CC (WMC).

Finding 4: WMC and effort have a low positive correlation (adj.R*> = .16, N = 680,
p < .001).

Answer to Research Question 2

Can we effectively use previously measured SLOC, CC, and effort to estimate/predict future mainte-
nance effort?

The results from the empirical study suggests that neither SLOC nor MWC are enough to pre-
dict maintenance effort. The result from hypothesis 1 and 2 indicate the relationship between these
variables are not strong enough. When predicting effort, many factors are omitted which may affect
more the overall prediction. Factors such as experience and familiarity may play a big role. The
assumption that bigger class or more complex class increases maintenance effort is not true. Many
more class properties are needed before attempting to build such predictive model. The results from
this thesis, alongside previous studies (Sjgberg et al. [52], Soh et al. [55]) suggest that prediction
models based on a combination of previous effort and code smells could provide better results.

In the stepwise regression, there was no difference in Model 0 and Model 1. Using SLOC by it-
self or together with WMC result in the same adjusted R? of 0.21. WMC did not add any value to
Model 0. WMC lack of added value could be a result of multicollinearity. According to Field and
Miles [20], multicollinearity exists when there is a strong correlation between two or more predictors
in a regression model. Table 4.2 shows a strong relationship between SLOC and WMC. Many other
studies have also reported this strong correlation between SLOC and WMC [61, 15, 35]. However,
when aggregating source code metrics such as CC over larger units of Java code, the dominating
factor quickly becomes the number of units rather than the metric itself. Since the number of units
is a factor of system size, aggregated CC indeed measures system size more than anything else [50].

Finding 5: SLOC and WMC are not enough to predict maintenance effort

Finding 6: SLOC ~ SLOC + WMC. Using SLOC by itself or together with WMC produces
the same adjusted R? of 0.21.
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4.3 Threats to validity

This section discusses the threats to validity of our studies following common guidelines for empirical
studies presented by Runeson and Host [49]. Tt also provides preliminary recommendations.

Threats to construct validity - concern the design of our study. In our study, we used the data
from the Sjgberg et al. [52]’s study. Developers were asked to perform their tasks in multiple rounds,
which could lead them to learn. Learning bias can be an issue because we did not include it in our
model.

Threats to conclusion validity - pertain to our correct use of mathematical tools. We used natu-
ral logarithm and Regression models to build our models. We use the implementation provided by
python. Therefore, we believe that our results do not suffer from threats to their conclusion. However,
future work should explore using other predictive models.

Threats to internal validity - concern our selection of systems, tools, and analysis method. LAT
was validated for accuracy. The results from the accuracy assessment analysis suggest that we can be
confident on the accuracy of the tool.. We have tested our tools that measure SLOC and CC but to
mitigate any unknown issues we published our data and scripts.

Threats to reliability validity - concern the possibility of replicating this study. Every result ob-
tained through empirical studies is threatened by potential bias from the used data sets[40]. To
mitigate these threats, Sjoberg et al. [52] performed their study using six developers that developed
and maintained independently four systems. Apart from that, it is possible to replicate this study,
and the data' of this study is also available for replication.

Threats to external validity - concern the generalization of our findings. Because Sjgberg et al. [52]
used six companies and four systems, we cannot claim that our results would apply to any software
company or any systems with similar characteristics and context to those described in the study by
Sjoberg et al. [52]. However, we are bringing new, interesting information regarding effort estimation.

Lhttp://bit.ly/2wiyTIS
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Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis, we analyzed the extent of which past effort, total CC and SLOC of classes can be
used to predict future maintenance effort. First, we created a tool (LAT) that extracts effort from
developers IDE activity logs. Then, LAT is validated empirically in terms of accuracy. Using the
dataset of a previous study, we conducted an empirical analysis to examine the relationships between
WMC, SLOC and maintenance effort. The results from our analysis suggests that:

e WMC has no strong linear correlation with effort
e SLOC has no strong linear correlation with effort

The results of this thesis suggests that neither SLOC nor MWC is enough to predict maintenance
effort. So the assumption that bigger classes or more complex classes increases maintenance effort
can be challenged.

5.2 Future work

In the future, it should be noted that more modern logging tool such as FLUORITE should be used
to conduct new experiments. FLUORITE will enable better accuracy. LAT should be tested more
extensively for accuracy with more data. Furthermore, replication of Sjgberg et al. [52] and Soh et al.
[55] study should be done using LAT to confirm or refute their results.
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