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Abstract 
Adding parallelism to .NET C# software programs has become a great option that can be used to enable 

performance. But how can we find out if the existing large complex software programs are even suitable 

for parallelism, other than investing a lot of time by checking it by hand? By using static analysis to find 

dependencies in the source code of software programs, we are able to find actual opportunities for 

parallelism. This list of generated opportunities for parallelism provides information needed to make the 

decision whether it is worth the time and effort to implement parallelism to a software program, and 

also provides guidance for the programmers when parallelism is implemented. 
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1. Introduction 
During the last decade, CPU’s have stopped increasing in CPU frequency. Instead, CPU’s are now 

equipped with more and more cores. To take full advantage of these many cores and to speed up the 

software, there has to be support built into software programs to consume them. Unfortunately, 

manual parallelization of software is time-consuming and error-prone for all but the most advanced 

programmers. In this study, we will try to assist programmers that want to add parallelization to their 

software. 

1.1 The Problem 
The problem we are trying to solve with this project, is that there is no quick way to determine if a non-

parallel  .NET C# program could be transformed to use parallelism. Experience shows that many 

programs in C# are not developed to use parallelism. Currently there are not many ways to check if a 

program could be transformed to use parallelism other than doing it manually, (another) time 

consuming and error-prone task that not all companies can afford to do. 

1.1 Parallelism 
To elaborate why adding parallelism to software is good, consider the following. A car has to be 

assembled from parts and everything needed to assemble the car is present. Imagine if there was one 

worker assembling the car. It would take the worker an certain amount of time. If there were 2 workers, 

they could both be working on the car at the same time. Implying the 2 workers could finish the job 

twice as fast, since they can both assemble different parts of the car. However, if the car would need 

new paint, all other assembling has to stop and wait. This means that one of the workers will be waiting 

for the paint job to complete. Another thing that comes into play when 2 workers are used is some 

management on what the workers will be doing, so they will not interfere with each other. The point of 

this story is that with more workers, the car can be finished faster. However, it is likely that sometimes 

workers have to wait for each other. And there is also an overhead(management) when more than one 

worker is used. This can be translated into software and CPU’s. In software there are a lot of tasks that 

have to be done by the CPU’s. If the software only lets one CPU do the tasks, it would take longer than 

when it uses 2 CPU’s(but not twice as fast!).  

Parallelism can be defined as follows: 

“Parallelism is executing multiple operations at the same time.” 
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Figure 1:  An example of an AST[24] 

 

The operations in this definition can origin from the same program or from multiple programs. Finding if 

it is possible to achieve parallelism, and guiding programmers to implementing parallelism, is the goal of 

this study. In .NET C#, this is done by creating threads1 in the code and running these threads at the 

same time. A thread can be seen as an execution queue, the software programs adds operations to the 

various threads that it uses. The operating system then divides these queued operations across the 

various CPU’s. The biggest advantage of parallelism is that the program can be executed in less time. 

The biggest pitfall of parallelism is corruption of shared memory by usage of the parallel threads, 

causing incorrect behavior. This makes a program unreliable and therefore unusable. 

Threads 
There are various ways to achieve parallelism in a software program. Message Passing Interface (MPI) 

[3] is an example of another implementation of parallelism. In this study, we will be focusing on 

parallelism that will be implemented by using threads. 

1.2 Dependency 
Before we go into what dependencies are, we first need to understand a few other topics. We will use 

Figure 1 to explain these topics. 

AST - Abstract Syntax tree[24] 
Figure 1 is an example of an AST. An AST is a way to represent a part(or all) of the source code of a 

program. In an AST every element is shown as a child of another element, the parent. Every AST has a 

single root. The root element is the only element that does not have a parent. The root of the abstract 

syntax tree in Figure 1 represents an entire do-while loop. As we can see, the root element ‘do-while’ is 

                                                           
1 An extended description is found here: http://www.microsoft.com/en-us/download/details.aspx?id=7029 
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parent of 2 other elements. The left child of the root represents the body of the loop, and the right child 

of the root represents the condition. 

Statements 
Statements in the source code can be compared to the sentences of a book. The statements in the 

source code define what the source code does when what is executed. A statement can contain other 

statements, we can see an example of this in Figure 1. The root of the AST is an do-while statement. The 

do-while statement contains another statement (‘do i=i+1;’) in its body (the left child). 

Dependencies 
Now that we know about ASTs and statements, we can go into dependencies. In any programming 

language there are a lot of dependencies between the statements in the source code of any given 

program. Software programs contain various processes, and performing any kind of process means 

doing it from start to end. Starting somewhere in the middle would mean the process did not perform 

the actions from the beginning, and could mean that the middle can’t be performed at all because these 

actions are required.  

This translates into dependencies. A dependency in the source code of a software program is a 

relationship between 2 statements, in which it is required for one of the statements to be executed 

before the other statement can execute in order to guarantee the workings of the program. This means 

all of the dependencies of a given statement have to be executed before the statement can be executed 

itself. If all statements and their dependencies are taken into consideration, this can be seen as a 

mandatory sequence of execution of the source code statements. 

There are different types of dependencies; 

 Call Dependency[1] 

A Call Dependency represents the relationships between routines. A routine can be either a 

method, a function or a constructor. This relationship is formed when a routine is invoked inside 

the body of another routine. For example, if routine A has an invocation of routine B inside it’s 

body, routine A has a call dependency to routine B. 

 Data Dependency 

Data dependency is about the values stored in variables in the program. Data dependencies can 

be further divided in the following types[6]: 

o Anti-dependency, occurs when Statement A reads a memory location that Statement B 

later writes. 

o Output dependency, occurs when Statement A writes a memory location that 

Statement B later writes. 

o Input dependency, occurs when Statement A reads a memory location that Statement B 

later reads. 

o True (flow) dependence, occurs when Statement A writes a memory location that 

Statement B later reads. 
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S1    var a = 1; 
S2    var b = 1; 
S3    if (a == 1) 
S4    { 
S5        b += 2; 
S6    } 
S7    b = b / 2; 

Code block 1 

 

For these descriptions of the  types of data dependencies, we presume the use of a single thread 

and no other statements interfere with the memory locations. 

Anti-dependence, Output dependence, and True (flow) dependence are the types of data 

dependence that we will keep track off. If two statements that share a dependency of either 

one of these dependency types are executed in parallel it could break the workings of a 

program. 

The only dependency type that would not break the workings of a program in this situation is 

Input dependence, and because of this will not be relevant for this study. 

 Control Dependency 

A Control dependency is about the structure of a program, and occurs if statements depend on 

the outcome of other statements whether they will be executed or not. This will be elaborated 

in the following example. 

For an example of Data and Control dependencies, consider code block 1. It starts with 2 variable 

declarations, followed by an if-statement. The 2 variable declarations have no dependency, they could 

be placed anywhere in the code and they would still do the same, declare a variable and initialize it with 

a static value. However, the if-statement has a condition in which it uses variable ‘a’. In order to execute 

the if-statement, variable ‘a’ has to be declared. In other words, the if-statement depends on variable 

declaration ‘a’, this is a Data Dependency. In the body of the if-statement, there is an assignment-

statement of variable ‘b’. In order to execute the assignment, variable ‘b’ has to be declared, the 

assignment-statement depends on the declaration of ‘b’. The if-statement can only be executed if all of 

the dependencies of the statements in the body of the if-statement have been executed. In other words, 

the if-statement depends on its body statements. So the if-statement depends on the assignment 

statement ‘b += 2’, which is in turn depended on the declaration of ‘b’. This means the if-statement is 

indirectly dependent on variable declaration ‘b’. The assignment statement ‘b += 2’ will only be 

executed if the condition of the if-statement holds. This means that it depends on the if-statement, this 

is a Control Dependency. Another example of the control dependency is statement ‘b = b / 2;’,the 

right-hand side of this statement depends on the value of ‘b’. The value of ‘b’ depends on both the 

declaration statement ‘var b = 1;’(Data Dependency) and the if-statement(Control Dependency), 

because ‘b’ could be assigned in the body of the if-statement. 
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1.3 Opportunities for parallelism 
During this study we will be trying to assist programmers who want to add parallelism to their software. 

We will try to do this by creating a way for programmers to know if and where programs can be 

parallelized. By doing this a programmer can save the time spend into looking where a program could be 

parallelized, or even if a program can be parallelized at all. In other words, we will be looking for 

opportunities for parallelism. These opportunities will tell if and where a given program can be 

parallelized. It is important to note that we will not try to change the source code to eliminate any 

dependencies. We will try to find the opportunities in the source code as it is given, without any 

transformation of any kind. We define an opportunity as follows: 

“An opportunity for parallelism are two or more blocks of source code from a program that can be run in 

parallel without changing the output of the program.” 

In this definition, a block of code is a number of statements that have the same parent. A parent can be 

any kind of routine, property(getter or setter), if-statement, switch statement etc., all of these have 

child statements. For example in code block 1, statement 5 is a child statement of the if-statement. The 

statements of both blocks of code have to have the same parent. This is because we know that these 

statements would normally be executed in sequence. However, this does not limit the statements that 

could be run in parallel to only the statements with the same parent. For example, it can be possible for 

the blocks of code to contain invocation statements to other routines or to contain statements which 

have child statements. So this would mean that all of the statements in the called routine would also be 

run in parallel. 

The parallelization of the blocks may not change the output of the program. If they would change the 

output of the program, the program could become unreliable and therefore unusable. In order to 

ensure this we have to make sure there are no dependencies between both blocks of source code. 

1.4 Goals and structure of the thesis 
This study presents a technique to find opportunities for parallelism in .NET C# software programs. But 

before we go into that, we will first discuss the background information in Chapter 2, handling  topics 

like pitfalls and existing solutions. After that we will work towards our solution by achieving the 

following goals. Our main goal and solution to the problem is: 

 Generate a list of valid opportunities for parallelism, that could improve performance, to guide 

programmers while implementing parallelism. 

To achieve our main goal, we will need to achieve the following sub-goals: 

 Extract a dependency model from .NET C# code (Chapter 3). 

 Analyze the dependencies and determine which elements in the source code are independent 

(Chapter 3). 

 Generate a list of opportunities for parallelism based on the independent elements (Chapter 3). 
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 Validate if the found opportunities can improve performance (Chapter 4). 

 Validate that the found opportunities do not change the output of the program (Chapter 4). 

In the final chapters we will draw a conclusion and give thought for further research on this topic. 
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2. Background 
 

2.1 Pitfalls of parallelism 
Adding parallelism to a program can also introduce problems. We will have to try to avoid the biggest 

pitfalls with our solution. 

2.1.1  Shared Memory Problems 
When sequential code is transformed into parallel code, some memory locations could be used in more 

than one simultaneous thread and thus be shared between them. Because it is unpredictable and 

inconsistent which thread will run first, the value of the variable at any given state is also unpredictable 

and inconsistent. This can cause data races and race conditions, which are explained in the section 

below. 

 

 

 

 

Code block 2 

Data races and Race Conditions 
A data race can occur when multiple threads try to access a shared variable at the same time. There are 

three cases in which a data race can occur: 

1. When a thread writes to the variable while another thread reads it. 

2. When more than one thread writes to the variable. 

3. When more than one thread reads the same variable. 

In the first case, the result can be two different states. The thread that is reading variable can either get 

the value from before the write of the second thread or from after the write. The result depends on 

which thread accesses the variable first. 

In the second case, the result can again be two different states (assuming there are two threads). One of 

the threads will be the last to perform the write action. The result will be that the value of the variable 

will have the value of this action.  

For example, consider code block 2. If S4 would be executed twice and in parallel, both executions could 

first read the value of accountTo.Balance; perform the addition operation; and finally write the new 

value to accountTo.Balance. In this example, the execution that would happen to perform its write 

S1 bool Transfer (int amount, Account  
        accountFrom, Account accountTo){ 
S2.  if (accountFrom.Balance<amount)       
S3.     return false; 
S4.  accountTo.Balance += amount; 
S2.  accountFrom.Balance -= amount; 
S6.  return true; 
S7.} 
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operation last will define the value of accountTo.Balance, and also overwrite the result of the other 

execution. This means the resulting values on ‘accountTo.Balance’ and ‘accountFrom.Balance’ are 

unpredictable and can be different every time. 

In the third case there is no danger of corrupting the variable. It does not matter which of either threads 

reads the variable first, the result will be the same. 

Race Conditions can occur when a variable is shared between threads. Race Conditions occur when a 

variable is changed between a ‘check’ and an ‘act’. For example, in code block 2, S2 would be the check, 

and S3 or S4, S5 and S6 would be the acts. If the value of ‘accountFrom.balance’ is changed after the 

check is executed, a corrupted state can be the result because the following statements can assume that 

the check (still) holds. In this case, the value of ‘accountFrom.Balance’ can become negative. 

Because we want to avoid this pitfall, we have to get insight on where the dependencies are in the code. 

If the generated opportunities for parallelism do not compromise the dependencies, data races and race 

conditions will not occur if they would be implemented correctly. 

2.1.2  Over-parallelization 
By introducing parallelism, you create an overhead to manage the threads. This could actually make 

your application slower than without parallelism. It is recommended that you only parallelize expensive 

operations, and make sure that the target machine contains more than one processor. 

Another look at this pitfall is described in Amdahl’s law[2], the maximum performance increase of a 

program when implementing parallelism is limited by the time needed for the sequential fraction of the 

program. In other words, there are always parts of a program that cannot be executed in parallel. 

Examples of these parts are: 

 Introduced overhead  by adding parallelism 

 Code inside a lock 

 Code with too many dependencies 

Improving the performance of the program by implementing parallelism cannot be increased past the 

time needed to execute these sequential parts. 

2.1.3  Cross-thread operations 
Some parts of .NET C# can only be accessed from the thread in which they were created. For example 

this holds for all form-controls in Windows Forms applications. When parallelism is added and these 

controls are accessed from a new thread, runtime exceptions can be generated. This pitfall can be seen 

as a specific case of a Shared Memory Problem.  



Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 13 

2.1.4  Deadlocks 

 

Figure 2: Deadlock 
T1 & T2 are threads, 

R1 & R2 are resources. 

 

To enable parallelism, locks can be used. A lock can be made on a resource by a thread to make sure 

other threads will not access it. A Deadlock is a state in a parallel program involving at least 2 threads 

and 2 resources. Both of the threads have locked one of the resources, and are waiting on the other 

resource to be freed from lock.  

Consider Figure 2, T1 has a lock on R1 and is waiting on R2 to be freed from lock, which is locked by T2 

and is waiting on R1 to be freed from lock. It can also involve more threads and resources, the threads 

are then waiting in a circular pattern. Deadlocks do not only arise in parallel programs, deadlocks can 

also arise in the real world. For example, in traffic. 

Because we will not be implementing or give options on how to implement the found opportunities for 

parallelism, we will not look into the possibility that the opportunities for parallelism can introduce 

deadlocks. This study will show the programmers where parallelism can be implemented, but not how. 

However, to implement the found opportunities for parallelism locks will not be needed. The blocks of 

code from the opportunities will be completely independent from each other. In other words, because 

locks are not required, implementing the found opportunities will not cause deadlocks. 

2.2 Existing Solutions 
This chapter will go into past research which relates to this study. First we will discuss the various 

research topics on dependencies and parallelism. Then we will discuss how they relate to this study. 

2.2.1  Dependencies 
This section contains past research on dependency analysis. 

Dependencies in loops 
Banerjee  et al. [4] provide an overview paper on automatic program parallelization techniques. They 

also cover dependence analysis techniques, straight line code parallelization, do loop transformations, 

and parallelization of recursive routines. 
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Dependency analysis types 
There are two kinds of dependency analysis: Dynamic and Static. Dynamic dependency analysis is done 

by executing the code and analyzing how the code is run. Static dependency analysis is done by 

analyzing the code without executing it. Ronen et al. [18] show research on the combination of Dynamic 

and Static dependency analysis. 

Program Dependence Graph 
We have identified 3 types of dependencies: Call, Control and Data dependencies.  J. Ferrante et al. [23] 

have shown that Data and Control Dependencies can be combined to create a Program Dependence 

Graph(PDG). They describe the PDG as follows: “The program dependence graph explicitly represents 

both the essential data relationships, as present in the data dependence graph, and the essential control 

relationships, without the unnecessary sequencing present in the control flow graph.”. They show that 

the PDG can be used to perform transformations on the code. For instance, constant expression folding 

can be applied using the PDG. Constant expression folding is a technique in which an operator having a 

constant result can be replaced with a constant value. This could help reducing dependencies in a 

program and possibly creating more opportunities for parallelism. 

Tools to extract dependencies 
There are a few tools already developed that can extract a number of dependencies from programs. An 

example of such a tools is NDepend2. NDepend can calculate many code metrics for .NET programs, and 

generate dependency graphs and dependency matrixes. Unfortunately NDepend, like most other tools, 

is not open source. 

Program slices 
Program slices, coined by Mark Weiser[19], have a lot in common with our goal. A program slice can be 

defined as follows: A program slice is the computation of the set of programs statements, the program 

slice, that may affect the values at some point of interest, referred to as a slicing criterion.  

An example of a program slicer is shown by Ricky E. Sward and A.T. Chamillard[7]. Program slices should 

be able to run without complications. This means that the program slices are independent of all other 

statements in the program. So in order to obtain the slices, the dependencies have to be known. 

Compiler 
Eva Burrows and Magne Haveraaen[5] illustrate that automatic dependency analysis is proven to be too 

complex for the general case, and that a parallelizing compiler cannot help parallelizing every 

dependency pattern. Instead they show a framework from which data dependency information and 

placement information is created, which could be utilized by a compiler to create parallel code. This 

placement information has to be provided by the programmers to indicate to the compiler which parts 

of the program could be made parallel. An parallelizing compiler can than process this and generate the 

parallel code. 

                                                           
2 http://www.ndepend.com/ 
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2.2.2  Parallelization 
This section goes into past research on parallelization. 

Eliminate dependencies 
Eliminating dependencies can be seen at part of parallelization. If dependencies can be eliminated in a 

program, parallelization can become easier. An example of this is shown by Morita et al. [8] for divide-

and-conquer programs. In divide and conquer programs there are a lot of recursive functions. They 

show that it is possible to transform the source code and eliminates the dependencies between the 

recursive executions of the function so that parallelism can be added. 

Parallelization of loops 
Parallelization of loops is probably the oldest technique of automatic parallelization, because loops have 

the most potential for performance gain. Goumas et al. [9] provide research on parallel code generation 

for tiled nested loops. They created an experimental tool that transforms code into using parallelization. 

Arquimedes Canedo et al. [11] introduce a technique for automatically parallelizing loops which have a 

data dependencies. By breaking these dependencies without changing the semantics of the loop. 

Compiler parallelization 
When it comes to automating ways to achieve parallelization, the most well-known (and applied) kind is 

probably compiler parallelization[20]. However the ways that parallelism is added is limited and might 

require the programmer to refactor his code[21]. 

Guided Manual parallelization 
Parallelization can also be done manual. Although, as mentioned before, this can be a time-consuming 

and error-prone task. Diego Huang and J. Gregory Steffan [10] provide a middle way between automatic 

parallelization and manual parallelization. They suggest interaction between the compiler and the 

programmer, so the compiler can give feedback to the programmer while applying parallelism. This 

feedback would be statements that are currently blocking the parallelization of certain parts of the 

code.  

Hardware parallelization 
Another way to improve performance is called hardware parallelization. By improving the hardware to 

enable even more parallel execution performance can be improved. An example to achieve this is called 

MapReduce [12]. MapReduce is a solution for parallelization across multiple servers. MapReduce 

programs divide the workload of a software program and distribute it across multiple servers, and have 

one main process manage the results. Not every software program can be used for MapReduce, it is 

required that the workload can be split into many pieces so different servers can execute it in parallel. 

So in order to use MapReduce, the program has to be transformed to break all dependencies between 

the tasks in the workload. 
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2.2.3  Comparison with this study 

Transformations 
Some of the various solutions that we have just noted use code transformation to achieve parallelism. 

For this study we have chosen to scope down to only analyzing the given source code for opportunities 

for parallelism. We will not transform the source code to enable parallelism, so none of the algorithms 

will change. The only part that would have to be added in order to introduce parallelism for the found 

opportunities is the mechanisms to control the threads. 

Loops 
A loop executes the same piece of code multiple times, so this can have a high probability for 

parallelism. However, most of the program is not executed inside of a loop, and thus will not be 

checked. In this study we will not look for opportunities for parallelism in loops in particular. Instead, in 

this study we look in all of the source code and produce opportunities for parallelism that will help 

programmers to win performance gains. This also means we will not focus on loops in particular to be 

sure we have extracted all dependencies. 

Dependency analysis types 
In this study we can settle for the use of static dependency analysis, because .NET C# is a highly 

structured language. Unlike languages like JavaScript or PHP, in .NET C# we can determine the 

dependencies in a static environment. Unlike with dynamic analysis, all source code can be analyzed. 

This is because in dynamic analysis a program could be run without all of the code being executed. And 

if some code is not executed, dynamic analysis does not analyze all of the code. 

Program Dependence Graph 
Like the PDG, we will also use Data and Control dependencies to determine the opportunities for 

parallelism. We will have to analyze the code for Data, Control and Call dependencies to be able to know 

if an opportunity for parallelism will not change the output of the program. 

Program Slices 
Like with program slices, we have to determine the dependencies of the program. With program slicing, 

a criterion is chosen and from there on everything that the criterion is dependent on is added to the 

slice. In this study, we will be calculating the dependencies just like with program slicing, only we do not 

have a criterion and will calculate the dependencies of all the statements in the program. Another 

property of the program slices is that they are independent from each other. This means that the 

program slices could be run in parallel. Even though this sounds like it could be a solution for this study, 

there is a down side. Because the program slices contain all dependencies from the chosen criterion, 

some statements could be found in multiple program slices. If program slices are run in parallel but 

contain many of the same statements, meaning these statements are executed multiple times, 

performance increase could turn out to be very limited. Instead of using program slices, we will look for 

independent blocks of code that can be executed in parallel. 
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Guided Manual parallelization 
The research performed by Diego Huang and J. Gregory Steffan has similarities with this study. They also 

give information to the programmer about where their attention should be directed to. However, in 

their research the aim is on compiler parallelization. And as described earlier, this can be limited. In 

comparison, our approach is not limited to compiler parallelization and thus has a wider scope. The 

downside of our approach is that the implementation of parallelization is not done automatically yet. 

However, this could be added in a future research. 

Compiler 
Compiler parallelization analyzes the code for certain patterns (e.g. loops) and try to make them parallel. 

In this study we look for opportunities for parallelism by analyzing all of the source code. Improvement 

can be made on compiler parallelization by enabling feedback from the compiler to the programmer 

about aspects in the code that need refactoring. This has some similarity with our study, as we will be 

providing opportunities for parallelism that the programmer has to process in the code. 

Hardware parallelization 
The aim of this study will be applications that would be run on typical servers or PC’s. We will not be 

aiming for applications that would run on supercomputers. The difference is that on supercomputers 

any small parallelization could blow up into a huge gain because of the volume of CPU’s and number of 

times the application is executed. Instead we will focus on making applications perform faster by finding 

high-level opportunities for parallelism which on itself could cause serious performance increase. 

2.3 Extracting dependencies from source code 
To find the opportunities for parallelism we need the dependencies. However there is no static list of 

the existing dependencies between the elements in the .NET Framework. To find the dependencies, we 

have to analyze the source code and keep track of the dependencies when we locate them by reasoning 

about the source code. Analyzing the source code will be done by using an AST. By visiting the AST, we 

can analyze the source code and infer the dependencies from it. 

2.4 Sequential Consistency 
There are several levels of consistency that can be applied when introducing parallelism. In this study, 

we have chosen to produce opportunities that would not change the output of the program, and try to 

ensure sequential consistency. Sequential consistency is defined as follows: 

“The result of any execution is the same as if the operations of all the processors were executed in some 

sequential order, and the operations of each individual processor appear in this sequence in the order 

specified by its program.”[16] 

In sequential consistency, transformations are allowed as long as the output of the program remains the 

same as the original program, and the operations executed on individual processors are in the same 

sequence as defined in the program. The proposed solution of this study first calculates the 
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dependencies of all the statements in the program. Then it analyzes the dependencies for opportunities 

for parallelism that do not break any of these dependencies. Breaking a dependency means that a 

statement is executed before all of its dependencies have been executed. Breaking dependencies can 

cause the output of the program to change or even cause exceptions to occur. Every opportunity that 

does not break any dependency does not change the output of the program, and implementing the 

opportunity would mean that 2 blocks of code would be run in parallel without changing the sequence 

of the statements of those blocks. This means the proposed solution ensures sequential consistency is 

achieved. However, this also means that even if there is an opportunity that would not change the 

output of the program, but it does break a dependency, it will be excluded from the generated 

opportunity lists. In other words, the proposed solution is stricter than sequential consistency. 

2.5 Rascal 
The main part of the proposed solution is done in Rascal[22], a domain specific language. Rascal is an 

open source meta-programming language, it’s domain is programming languages. Rascal can easily be 

extended to analyze new languages by introducing a language syntax for the new language. This is what 

was done for the .NET C# language. This syntax was then used to analyze the language for dependencies 

in the source code and to find opportunities for parallelism. 

2.6 Dependencies in .NET C# 
In this study we are interested in dependencies between all possible structures of statements in .NET C#. 

In this section we will sum up which dependencies have been handled in this study. We will also sum up 

which dependencies were found but were not handled. It is important to note that this does not mean 

that this is a complete set of all dependencies in .NET C#.  There are probably many more undiscovered 

dependencies to be found. However, to give an insight on what is handled in the proposed solution, 

they are summed up. We will also discuss some expectations about the dependencies which were not 

handled. 
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2.6.1  Handled dependencies 

Kind Element Depends on Reason 

Call Routine Routine In the body of one routine the other is 
called. 

Call Class Class Class calls a routine of other class 

Call Object Creation 
Statement 

Class Constructor depends on class 

Control If-Else statement Condition Assignments of used variables 

Control If-Else statement Branch Statements Dependencies from the branch statements 
have to be executed first 

Control Child statement If-Else statement Branch statements depend on parent 
condition 

Control Do-While 
statement 

Condition Assignments of used variables 

Control Child statement Do-While statement Branch statements depend on parent 
condition 

Control While Condition Assignments of used variables 

Control While Statement Dependencies from the branch statements 
have to be executed first 

Control Child statement While statement Branch statements depend on parent 
condition 

Control For statement Condition Assignments of used variables 

Control For statement Statement Dependencies from the branch statements 
have to be executed first 

Control Child statement For statement Branch statements depend on parent 
condition 

Control For Each 
statement 

Condition Assignments of used variables 

Control For Each 
statement 

Statement Dependencies from the branch statements 
have to be executed first 

Control Child statement For Each statement Branch statements depend on parent 
condition 

Data Routine Property/field Routine uses property 

Data Property/field Routine Routine sets property 

Data Assignment Last Read Any assignment has to be executed after 
the last read of the variable, the order of 
read and writes on a variable has to remain 
the same. 

Data Read Last assignment Any read of a variable is dependent on the 
last assignment of that variable. 

Data Assignment Assignment Any assignment is depended on the 
assignment before it, so the order remains. 
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Data Assignment 
statement and 
variable 
initialization 

Last assignment of all right-
hand side variables, or the 
definition of the variable 
(e.g. parameters or 
properties) 

An assignment depends on the values of all 
variables used in the right hand side of the 
assignment/initialization. So this means it 
depends on the last assignment of these 
variables. 

Data Return statement Last assignments of all 
variables 

A return statement depends on all values 
of its used variables. 

Data Unary statement Last assignment of variable The unary statement depends on the value 
of its variable, and thus on the last 
assignment of this value. 

Table 1: An overview of all found and handled dependencies. 

Order of assignments 
To maintain the values of variables on any given moment during execution, the order of assignments on 

a given variable have to remain the same. If the order is changed, the output of the program could be 

changed. 

Optional paths 
The basic data dependency could be described as follows: A statement is dependent on the last 

assignment of all used variables. A variation to this is found when the last assignment of a variable 

happens to be inside an optional path. An optional path is a block of code with a number of statements 

that will not always be executed. For example, the body of an If-statement. The body will only be 

executed if the condition is met. 

This means we do not know which assignment is the last assignment. So in order to be sure the output 

of the program will remain the same, we have to add a dependence to both the assignment inside the 

optional path and the assignment before this optional path. This will continue until an assignment is 

found that is not inside an optional path. 

However, this only holds if the usage of the variable is not in the same optional path as the last 

assignment. If they are in the same optional path they will always either both be executed or not. 

2.6.2  Unhandled dependencies 
This chapter sums up the dependencies that were found during this study but were not implemented 

into the solution yet. 

 Object creation statement depends on one constructor 

Currently, when an Object creation statement is encountered a dependency between the statement and 

the class is added. However, this dependency should be between the statement and the corresponding 

constructor instead of the class itself. This could introduce problems, for example when the constructor 

takes ref or out-parameters and assigns the values of these parameters. 

 Await and async keywords 
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Await and async keywords are recently added keywords to the .NET C# language and could introduce 

more dependencies, or take them away. The async-keyword is used to mark a routine as asynchronous, 

meaning execution does not have to wait when invocating the routine. The await-keyword causes the 

execution to wait on an async-marked routine. This could mean that an async routine that is not awaited 

on does not introduce any dependencies, because it is executed in a separate thread. More research is 

required to be able to extract any dependencies and ensure the output of the program remains the 

same when await and async are used in a program. 

 Delegate/anonymous/lambda functions 

Currently the bodies of delegate, anonymous and lambda functions are not yet analyzed. The 

Dependency Extractor should be extended to analyze these bodies and keep track of the dependencies. 

 Linq introduces more dependencies, for example in “Select”-bodies. 

Currently, the operations that can be performed by using Linq are not analyzed. However, many 

dependencies could be introduces when using Linq. For example, in a “Select”-operation any number 

of statements can be performed and result in a value which is returned by the “Select”-operation.  

 Struct 

Support for usage of “Struct” has to be added. Because structs are a lightweight equivalent of classes, 

the impact of adding support for Structs is probably limited. 

 Loop dependencies 

Inside loops a special kind of dependency can arise, a dependency to the previous execution of the loop. 

This is currently not implemented in The Dependency Extractor  and needs more research to be able to 

add this expansion. 

 Throw, return and continue 

Keywords like throw, return and continue should not be made parallel because these keywords can 

exclude other code from being executed. This means all the code after these keywords depend on them. 

The proposed solution does not yet handle this problem. A solution would be to prevent that any of the 

found opportunities for parallelism would contain return statements. 
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3. Architecture 
In this chapter we will discuss the architecture that was created in order to obtain our goal. We will look 

at the requirements that the architecture has to fulfill and then we will look at how the architecture 

turned out. 

3.1 Requirements 

3.1.1  Requirement 1 
If the generated opportunities would be implemented in the code, it will not change the output of the 

program. 

Rationale 
To maintain the original workings of the analyzed program, applying parallelism for the generated 

opportunities should not change the output of the program. This could make the program unreliable 

and unusable. 

Challenge 
This requirement is hard to achieve and hard to evaluate. To be able to be sure that the output does not 

change for a given found opportunity, we would have to test this opportunity. However, there is not just 

one test. Applying parallelism to an opportunity means there will be an astronomical amount of possible 

execution scenarios how the threads could be executed. To illustrate why this amount of possibilities 

can become astronomical, consider the following enumeration: 

1. Every block of code contains multiple statements. 

2. Every statement contains multiple instructions. 

3. Instructions could be run: 

o In parallel with any other instruction; 

o Before every other instruction; 

o After every other instruction; 

4. Every instruction can run on multiple threads. 

5. Every thread can run on multiple CPU’s. 

In this enumeration, the blocks of code are the opportunities for parallelism we are trying to find. 

Instructions are the (small) tasks that the CPU can execute. The main reason why the number of possible 

execution scenarios is astronomical is the third in our enumeration. Consider that the number of 

instructions per block of code can easily become very large. And in addition those instructions can be 

executed in many different scenarios. Every other of the mentioned elements multiplies the possible 

execution sequences even more. 

This is why we chose to calculate the dependencies for the software programs. If none of the 

dependencies are broken, the opportunities will be valid. This means we have to evaluate if our 

dependencies are correct and complete. This results into the next requirement. 
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3.1.2  Requirement 2 
The architecture can calculate and output the dependencies for all statements in the source code. 

Rationale 
If all the dependencies between statements are calculated, the opportunities can be checked for not 

breaking these dependencies. If no dependencies are broken in applying an opportunity, the output of 

the program will not change. 

Challenge 
To achieve this requirement we have to cover every possible structure in the .NET C# language. To do 

this in the given time is a serious challenge and it is likely we will not be able to cover all of the language. 

The second challenge is that we will probably be calculating more dependencies then needed. There are 

scenarios in which dependencies could be broken, while the output of the program remains the same. 

For example,  if two additions are made on the same variable, the sequence does not matter. They will 

always result in the same value, as long as they are not executed at the same time. Executing them at 

the same time could cause data races, as noted in 2.1.1 under pitfalls of parallelism. 

For our definition of an opportunity, this kind of dependency should not be a dependency at all, because 

these dependencies eliminate potential opportunities for parallelism. 

3.1.3  Requirement 3 
The Architecture can implement the generated opportunities for parallelism by applying 

transformations to the source code. 

Rationale 
When requirement 1 and 2 have been fulfilled, we have a list of opportunities for parallelism. The next 

step is to implement these opportunities by applying transformations to the source code. 

Challenge 
Being the final and last to achieve requirement, it is likely that we will not have the time to achieved this 

requirement, but would still be a great addition. 
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3.2 The Architecture 

 
Figure 3: Component view of The Architecture 

 

The pipelined-architecture(visualized in figure 3) that was created during this study is described in this 

section. 

3.2.1  The AST Extractor & Translator 
The AST Extractor & Translator(AST E&T) is the start of the architecture. The AST E&T uses NRefactory3 

to get the AST from the target program. Then the ASTs are translated into a format that The 

Dependency Extractor can comprehend, and then written into text files. This translation is done by 

visiting the entire AST and translating every node into the format. 

NRefactory 
NRefactory was chosen to use in The AST E&T because of its functionality and maturity. NRefactory is an 

open source library to perform refactoring operations to .NET C# code. Another AST Extractor that was 

considered was Roslyn4. However, while working with Roslyn several problems emerged, and some 

essential functions were missing. NRefactory was chosen in favor of Roslyn because NRefactory did not 

show any of the problems that Roslyn did. Also, because NRefactory is open source, if problems would 

emerge there is a possibility to fix these problems independently of the manufacturers. 

Separation 
The AST E&T is separated from the rest of the architecture. This is because it uses an external library to 

perform its main task. By separating it from the rest this dependency in the architecture is isolated. 

Text files 
The translated ASTs are written into files that The Dependency Extractor can comprehend. This is 

because The AST E&T is written in a separate .NET C# program, and The Dependency Extractor is written 

in Rascal. So text files are chosen to be the means for communication between them. 

AST 
Using AST’s to handle the source code was chosen because of the Rascal benefits. Rascal has many 

implemented functions to deal with AST’s. For example pattern matching, which allows to visit a tree 

and look for a specific pattern in all of the child nodes. 

                                                           
3 http://www.codeproject.com/Articles/408663/Using-NRefactory-for-analyzing-Csharp-code 
4 http://msdn.microsoft.com/en-us/roslyn 
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3.2.3  The Dependency Extractor 
The Dependency Extractor uses the produced text files and parses them into a Rascal-AST. The 

Dependency Extractor will then visit the AST and analyze it to determine the dependencies and maps 

them as they are found. The map has the form of: Node X depends on Node Y, in a 1:N relation. A node 

can be any .NET C# element, for example a statement, property or routine. 

Separation 
The Dependency Extractor is separated from the AST Extractor & Translator, as mentioned before. But it 

is also separated from the Analyzer. In this study we will be using the dependencies to look for 

opportunities for parallelism. However, the dependencies could also be used for different goals. If the 

Dependency Extractor and the Analyzer were merged, the dependencies could not be used for different 

goals. 

Rascal 
The Dependency Extractor is created in Rascal. As mentioned before, Rascal is a meta-programming 

language, designed to deal with other programming languages. Rascal was chosen because of the many 

build in functions that help with analyzing source code. The recommendation of Jurgen Vinju and my 

past experience with Rascal also contributed in the decision for Rascal. 

Agile 
During this study a point was reached where a pro-agile decision was made. We decided to go into the 

depth instead of expanding over the width. In other words, the Dependency Extractor was not fully 

completed before work started on the Analyzer. This decision had to be made because we realized time 

was too limited to cover all possibilities in the .NET C# language, and we still wanted to obtain some sort 

of result 

The upside of this decision is that we were able to create a front to back study, able to generate results 

and able to validate these results. 

The downside of this decision is that the Dependency Extractor is not fully completed and does not take 

all possible dependencies in the .NET C# language into account. This also means that the results we are 

able to generate may not be valid and may break dependencies that are not mapped by the Dependency 

Extractor. 
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3.2.4  The Analyzer 

Code block 3 

The Analyzer uses the resulting dependency map from the Dependency Extractor and analyzes this map 

to look for opportunities for parallelism. In the code block 3, the core functionality from the Analyzer is 

shown: the “GetAllIndependentStatements” function. This function returns a relationship, from 

statement to statement, containing all the statements that are independent of each other. Each 

statement of this core function of the analyzer is described in table 2. 

  

 
 
S1 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
S10 
S11 
 
S12 
S13 
S14 
S15 
S16 
 

public rel[tuple[AstNode, loc],tuple[AstNode, loc]] GetAllIndependentStatements() 
{ 
  relDependence = StartProcessing();  
  relDeps = relDependence*; 
  setAll = carrier(relDependence); 
  relAll = (setAll * setAll); 
  relPossible = (relAll - relDeps); 
  rel[tuple[AstNode, loc],tuple[AstNode, loc]] relIndependentStatements = {}; 
  visit (Project) { 
    case b:blockStatement(stats): { 
      for([*_,x,*_,y,*_] := stats) { 
        if(<<statement(x),x@location>,<statement(y),y@location>> in relPossible) { 
          relIndependentStatements +=  
            <<statement(x),x@location>,<statement(y),y@location>>; 
        } 
      } 
    } 
  } 
  return relIndependentStatements; 
} 
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S1 Get the map of dependencies from the Dependency Extractor. 
 

S2 Create a new relationship of statement to statement that contains the dependencies 
extended with the transitive closure. 
 

S3 Creates a set containing all statements that are involved in any dependency. 
 

S4 Creates relationship of statement to statement, containing all possible sequences of 
statements. 
 

S5 Creates a new relationship of statement to statement by deducting the dependencies from 
the relationship containing all possible sequences. 
 

S6 Declares “relIndependentStatements” as a relationship between two tuples, containing an 
AstNode and a loc(location). An AstNode can be any element found in the source code AST. 
 

S7-S8 Visits root(“Project”) of the AST for all “blockStatements”. A blockStatements-object is a 
node that has child statements. For example, an If-Else statement has 2 child blockStatement-
nodes. One for the if-body and one for the else-body. 
 

S9-S10 Loops over all the combinations of all found statements in the block, checking if the 
combinations are present in the relationship “relPossible”. 
 

S11 If a combination holds the check, it is added to the “relIndependentStatements”, which is 
returned in the end. 
 

Table 2: Description per statement for code block 3. 

The generated relationship called relIndependentStatements is the result of the Analyzer. This 

relationship contains every statement, linked to the statements of which it is not dependent. These 

statements are always in the same block of code. 

Transitive closure 
The Analyzer extends the dependencies by doing a transitive closure on the map that is given from the 

Dependency Extractor. To explain why this is needed, consider code block 4. If we follow the 

dependencies, S3 depends on S2, which in turn depends on S1. Since a statement cannot execute before 

its dependencies are executed, S1 has to be executed before S3 can be executed. This is also known as a 

transitive closure, and is needed to ensure we fulfill requirement 2. If S1 is not executed before S2 the 

output of the program would change, in this case an exception would be thrown. 
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S1 
S2 
S3 

void Foo() { 
 int i = 1; 
 i += 2; 
 int j = i + 3; 
} 

Code block 4 

 

Algorithm 
The Analyzer goes through a few steps in order to generate the independent statements. To explain 

these steps, let’s first take a look at the input of the Analyzer: the dependency map. The dependency 

map can be compared to a mandatory sequence of execution; since, as noted in the transitive closure 

section, it is only valid for a statement to executed after its dependencies have executed. In other 

words, the dependency map can be compared to a blacklist of opportunities for parallelism. It states 

which statements cannot be executed in parallel and must be executed in sequence. So in order to 

produce the opportunities for parallelism, or whitelist, we need all the opportunities for parallelism 

deducted by the blacklisted opportunities. Also consider the Example 1 for an example of this process. 

 

Format: 
Statement: Dependencies statements 
 
Blacklist/Dependencies 
S2: S1 
S4: S3 
S5: S3, S4 
 
All opportunities 
S2: S1 
S3: S1, S2 
S4: S1, S2, S3 
S5: S1, S2, S3, S4 
 
Whitelist 
S3: S1, S2 
S4: S1, S2 
S5: S1, S2 

Example 1: Construction of the Whitelist 

 

Doing this produces the whitelist for opportunities. However, taking all opportunities for parallelism 

means taking all combinations of any 2 statements. So this is not yet limited to statements that are in 

the same code block. To do this we visit all the blocks of code in the source code and see which 

combination of statements in our whitelist are in the same block of code. This results in the list of 

opportunities for parallelism. 
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var a = 1; 
var b = 1; 
if (a == 1) 
    DoSomething(); 
if (a == 1 && b == 2) 
    DoSomethingElse(); 

Code block 5 

 

Sub paths 
As a bit of a side track, there has been some research into sub paths. A sub path is an another type of 

opportunity for parallelism. The algorithm shown above only results in totally independent statements, 

while opportunities for parallelism could also be found in not totally independent statements.  

Consider code block 5. In this code block, both if-statements depend on variable “a” and thus are not 

considered an opportunity for parallelism by the previous algorithm. However, they do not depend on 

each other(assuming both methods “DoSomething” and “DoSomethingElse” share no dependency). 

To find these sub-paths, all blocks of code were re-analyzed. These blocks of code are looped through in 

execution order to find the sub-paths. In this context, a sub-path is defined as follows: 

“A sub-path is a set of statements with one statement as the key. The key-statement is not included in 

the set. The key represents the statement after which the set of statements can be executed (in 

parallel).” 

The statements were divided into sub paths following these rules while looping through all of the 

statements: 

 If there are no sub paths yet, create a new sub path with this statement as key. 

 If the statement has no dependencies, create a new sub path with this statement as key. 

 If none of the dependencies of the statement are contained in a sub path, create a new sub path 

with this statement as key. 

 If one or more of the dependencies of the statement are all contained in one other sub path, 

add the statement to that sub path. 

 If dependencies of the statement are contained in more than one sub path, create a new sub 

path with the last dependency(execution order) as key. 

This will result in a map of sub paths, and each has a ‘Key’ statement after which the sub path can be 

executed in parallel. 

Working Example Case 

To show what the results could be of the sub-path algorithm, an example is given. Consider code block 

6, there are many dependencies to be found. The dependencies are summed up in table 2. Following the 

rules of the algorithm, a list of sub-paths is found, displayed in the table 3.  
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Overview of the example case: 

 

class SubPathExample 
{ 
    public SubPathExample() 
    { 
S1      var a = 1; 
S2      var b = 2; 
S3      var c = 3; 
S4      var d = 4; 
S5      if (b == 2) 
S5.1    { d = 5; } 
S6      if (a == 1 && b == 2) 
S6.1    { c = 4; } 
S7      var f = c; 
S8      var g = d; 
S9      var h = b; 
S10     var i = c + d; 
S11     var j = h + 1; 
S12     var k = h + 10; 
S13     var l = k + h; 
    } 
} 

Code Block 6 

 
 

Statement Depends on 

S1 - 

S2 - 

S3 - 

S4 - 

S5 S2, S4, S5.1 

S5.1 S2, S4, S5 

S6 S1, S2, S3, S6.1 

S6.1 S1, S2, S3, S6 

S7 S1, S2, S3, S6, S6.1 

S8 S2, S4, S5, S5.1 

S9 S2 

S10 S1, S2, S3, S4, S5, S5.1, S6,S6.1 

S11 S2, S9 

S12 S2, S9 

S13 S2, S9, S12 
Table 2: Dependencies 

 

Key statement Contents 

S1 - 

S2 S9, S11, S,12, S13 

S3 - 

S3 S6 

S4 - 

S4 S5 

S5 S8 

S6 S7 

S6 S10 
Table 3: Sub-paths 

 

 

The Sub-paths are opportunities for parallelism. The statements should be executed in order, and every 

time a Key statement is executed, the contents of the Sub-path can be executed in a new thread. Figure 

4 illustrates how this would look. After statements S2, S3 and S6 new threads are created. By executing 

the statements like this, the 13 step long function can be executed in 6 steps. Of course an overhead will 

be added by the implementation of threads which will make it bigger than 6 steps, but that is the trade-

off.  

Figure 4: Visualization of applied threading 
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    class ExampleField 
    { 
F1      int counter = 0; 
        public ExampleField() 
        { 
S1          var a = counter; 
S2          Process(); 
S3          var b = counter; 
        } 
         
        public void Process() 
        { 
S4          counter += 1; 
        } 
    } 

Code Block 7 

 

A Problem 

After some experimenting, a problem emerged. If properties or fields were used throughout the body of 

a code block, it causes this algorithm to be far less effective. This is because fields and properties 

introduce new dependencies. For example, see code block 7. 

When field “counter” is read for variable “a”, it will return 0. When field “counter” is read for variable 

“b”, it will return 1 because “Process” has incremented it. To ensure this behavior, this routine cannot 

be made parallel. This means there is probably a dependency. There is no direct dependency between 

S1 and S2. However, “counter” is assigned inside the body of “Process”. If we add a dependency 

between “counter” and “Process”, any usage of “counter” can never be made parallel with the 

invocation of “Process”, which is correct behavior. This also goes the other way around, “Process” uses 

the value of “counter” and thus it is dependent on it. So no assignment of “counter” can be made 

parallel with “Process”, which is again correct behavior. 

Because of these dependencies, many of the identified the sub-paths from the algorithm became 

connected by dependencies. And there for were not detected by the algorithm. 

3.3 Conclusion 
By creating the proposed solution, we have achieved most of our goals. We have found a way to analyze 

.NET C# code by extracting an AST and translating the AST into Rascal format text files, which are then 

picked up by Rascal for analysis. We have extracted a list of dependencies between various elements in 

the source code. By analyzing the dependency list we were able to create a relationship between 

statements representing statements that are independent of each other. 

Even though the independent-statements relationship is close our next goal; generating a list of 

opportunities for parallelism, it is not quite the same. The proposed solution does not yet combine the 

independent-statements into code blocks that represent opportunities for parallelism. However, 

transforming the independent-statement relationship to blocks of code is not expected to be hard to 

achieve, but it will take some time. 
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Instead of doing this, we would rather validate the dependencies and independent statements. We are 

not sure that the found dependencies are correct, it could be possible that some dependencies are not 

dependencies at all. Also we do not know if the independent statements that resulted from the analysis 

of the dependencies are in fact independent from each other. We still have to validate both of them. 
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4. Evaluation 

4.1 Evaluation questions 
In this chapter we will first look at the goals we have set in chapter 2.2. Then we will look at the pitfalls 

of parallelism that have been summed up in chapter 2.1. And finally we will try to achieve our final 2 sub 

goals: 

 Validate if the found opportunities can improve performance. 

 Validate that the found opportunities do not change the output of the program. 

We will do this by answering the following evaluation questions. 

1. Can the proposed solution generate opportunities that would improve performance? 

2. Are the found independent statements really independent? 

3. Are the found dependencies real dependencies? 

4.2 Goals 
In chapter 2.2 we have set a number of goals to achieve with this study. In this chapter we will validate if 

these goals are achieved. We will first look at the sub goals before we look at the main goal. 

4.2.1  Sub goals 
These are the sub goals we have set up to work towards the main goal. 

 Find a way to analyze .NET C# source code. 

We achieved this sub goal by using NRefactory and creating The AST Extractor and Translator. 

 Determine the dependencies between all elements in the source code. 

The Dependency Extractor was created to achieve this sub goal, although we still have to validate if the 

results are correct.  

 Analyze the dependencies and determine which elements in the source code are independent. 

This sub goal was achieved by creating The Analyzer. The results of the Analyzer will be validated in this 

chapter. 

 Generate a list of opportunities for parallelism based on the independent elements. 

This sub goal was not achieved. However, to achieve this goal from the results of The Analyzer should 

not be too hard. 
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The following two goals will be handled in this chapter: 

 Validate if the found opportunities can improve performance. 

 Validate that the found opportunities do not change the output of the program. 

4.2.2  Main goal 
Our main goal for this study has been described as follows: 

“Generate a list of valid opportunities for parallelism, that could improve performance, to guide 

programmers while implementing parallelism.” 

As noted in the previous section, not all sub goals have (yet) been achieved. And one of the sub goals 

will not be achieved during this study. However, if the last 2 sub goals will be achieved in this chapter, 

we will have achieved most of our main goal. Only leaving the transformation from independent 

statements to independent code blocks, in order to meet our definition of an opportunity as described 

in chapter 4, section 3. 

4.3 Pitfalls of parallelism 
In chapter 2.1 we have summed up the pitfalls of parallelism. In this section we will look at each of these 

and evaluate if we have avoided them. 

4.3.1  Shared Memory Problems 
To avoid this pitfall we have analyzed the source code for dependencies, and excluded opportunities for 

parallelism that would break one of these dependencies. 

4.3.2  Over-parallelization 
We have not avoided this pitfall with our proposed solution. Some opportunities for parallelism could 

lower performance by implementing them. However, in section 4.4, we will show that the proposed 

solution can also improve performance. A fairly simple solution to partly avoid this pitfall is to order the 

opportunities for parallelism by the total lines of code that would be run in parallel. Opportunities with 

bigger chances for performance increase would probably end up in the top. 

4.3.3  Cross-thread operations 
We have been unable to look into avoiding this pitfall. This means that the found opportunities for 

parallelism could introduce runtime exceptions. Programmers that will implement the opportunities will 

have to look out for cross-thread operations on .NET controls that do not support this. 

4.3.4  Deadlocks 
This pitfall for parallelism has to be avoided by the programmers that will implement the found 

opportunities for parallelism. However, the found opportunities for parallelism are completely 

independent of each other. To create deadlocks, there have to be shared resources amongst the 

threads. Since they share no dependency, deadlocks cannot be the result of implementing the 
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opportunities. Aside from this, the opportunities still have to be implemented by a programmer. The 

programmer could of course still chose to implement an opportunity by using locks, and in turn cause 

deadlocks. 

4.4 The optimal case 
To answer the first evaluation question, we will handle a self-constructed case. In this case we expect 

performance gain equal to almost twice the normal performance, because the overhead has to be 

deducted. 

4.4.1  The Code 
 

class OptimalParalellizable 
{ 
    public void OptimalParalellizableFunction() { 
        FunctionOne(); 
        FunctionTwo(); 
    } 
    private void FunctionOne () { 
        for (int i = 0; i < 10; i++) { 
            //Heavy load function 
            Thread.Sleep(50); 
        } 
    } 
    private void FunctionTwo () { 
        for (int i = 0; i < 10; i++) { 
            //Heavy load function 
            Thread.Sleep(50); 
        } 
    } 
} 

Code Block 8 

 

Code block 8 has been written to be optimal for parallelization. The results of The Analyzer is that the 

following two lines could be parallelized: 

 FunctionOne(); 

 FunctionTwo(); 

For this example, we will add the parallelization and validate if the performance will indeed go up for 

our function called: 

“OptimalParalellizableFunction”. 
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4.4.2  Results 
 

public void OptimalParalellizableFunctionThreading() 
{ 
    var thread1 = new Thread(new ThreadStart(FunctionOne)); 
    var thread2 = new Thread(new ThreadStart(FunctionTwo)); 
 
    thread1.Start(); 
    thread2.Start(); 
 
    while (thread1.ThreadState == 0 || thread2.ThreadState == 0) //0 = running 
    { 
        Thread.Sleep(1); 
    } 
} 

Code block 9 

 

Code block 8 shows the modified function so it uses parallelization. In comparison to the function that 

doesn’t use parallelism, it is easy to see how some pitfalls could be introduced. The modified function is 

a lot bigger. It introduces overhead and increased the complexity of the function.  

The results of the performance test are shown in table 4, and match our expectations. The function is 

almost twice as fast with an performance increase of 49.5%. The overhead introduces a delay of 5 

milliseconds but also a performance increase of 501 milliseconds. The overhead cost is nothing in 

comparison with the performance gain for this case. 

 

Number of runs 2008 

Average time with 
parallelization 

511 milliseconds 

Average time without 
parallelization 

1012 milliseconds 

Table 4: The performance results of the applied opportunity. 

 

4.5  Validating (in)dependencies 
We will first try to validate the independencies and then do the same for the dependencies. 

4.5.1  Applying parallelism 
The obvious method to test if the found opportunities are valid is to apply parallelism for the given 

opportunities and validate if the program still functions correctly. This method has been applied in 

section 4.4, The optimal case, and has shown that the implemented opportunity has executed 
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successfully 2008 times. This has shown us that implementing an opportunity can introduce 

performance increase. 

However, as mentioned before, applying parallelism to an opportunity means there will be an 

astronomical amount of possible execution scenarios how the threads could be executed. So by applying 

parallelism and testing it a few times does not validate the results. For example, the same scenario could 

occur run every time. 

This method is a form of Random Testing[13]. The basics of Random Testing is generating a set amount 

of random tests and validating them on a program. Applying Random Testing can only give an indication 

based on the number of performed tests and, if possible, the number of possible tests.  

To be able to gain a better indication if the found opportunities are valid opportunities, we will explore 

another validation method. 

4.5.2  Swapping 
 

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2 

1  1   3 

2   3 1  

 3  4  4 

 4 2  2  

1   3  3 

 3 1   4 

2  2  1  

 4  4 2  
Table 3: Possible sequences for 2 threads with 2 statements run in parallel. 

The numbers indicate the execution order. 

 

Another way to test if statements could be run in parallel is to swap them around. When 2 blocks of 

code are run in parallel, the execution sequence is unpredictable. There for, the program should 

produce the same result in any possible order of execution of the 2 blocks of code. We can simulate this 

behavior by swapping statements in the source code. This method is a form of Mutation Testing[15]. We 

will be creating mutations of the code and testing these mutations. Normally, these mutations should be 

caught and rejected by tests. Indicating a level of test-coverage. For this study, the mutations should not 

be caught. This is because we are trying to find out if there are dependencies between the parts of 

mutated source code. For example, the 2 blocks of code could both contain 2 statements. If they would 

be run in parallel. there are 6 possible sequences in which they can be executed. See table 3 for these 

sequences. By using this method it is testable when the sets of statements that are run in parallel are 

not too big. If they become too big, the astronomical amount of possibilities come back into play. 

However, if there is a way to automate this test it could be plausible to use this method to test all the 

possible sequences and thus prove that the opportunities are valid. Another advantage of this method is 
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that it does not require any overhead, unlike with applying parallelism. Also when applying the needed 

overhead, errors could be introduced. 

Condition 
If 2 statements are independent of each other, it does not mean they can be swapped without changing 

the output of the program. We have to check if the independent statements meet the following 

condition:  

“Two independent statements can be swapped if none of the statements between these two 

statements depend on either of the statements, nor do the two statements depend on any of these 

statements.” 

This condition makes sure that a statement is not swapped past or in front of a dependency. 

4.5.3  Applying the methods 
The aim of applying our solution was on a complete software program, that included Unit testing. 

However we stumbled upon a problem. Because the Dependency Extractor does not take all of the .NET 

C# framework into account, it could not handle the complete software program that used unhandled 

structures from the .NET C# language. The cause of this problem lies in our previous decision of not fully 

completing the Dependency Extractor. Because the Dependency Extractor is not fully completed, our 

solution cannot handle full software programs. Instead we will apply our solution on smaller cases and 

analyze them for opportunities for parallelism. 

4.5.4  Swapping independencies 

Test 1 
In this test we will start by swapping single statements with each other. 
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Code: 

 

Dependencies 

The following dependencies are found in the code. 

Statement Depends on statement(s) 

1 4, 11 

2 4, 9 

4 1, 2, 3 

8 2, 7 

10 1, 6, 7 

12 10 

13 8 

14 7 

15 8, 10 

16 3 

17 15, 16 

18 3,6,7,8,10,12,13,14,15,16,17 

 

These dependencies are visualized in the following figure. In this figure, every number represents a 

statement, and an arrow from statement 1 to statement 2 means statement 1 depends on statement 2. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
 

int field1 = 1; 
int field2 = 2; 
int field3 = 3; 
public int Test1() 
{ 
    var a = 1; 
    var b = 2; 
    if (b == 2) 
        field2 = 2; 
    if (a == 1 && b == 2) 
        field1 = 2; 
    var c = field1; 
    var d = field2; 
    var e = b; 
    var f = field1 + field2; 
    var g = field3; 
    var h = f + g; 
    return a + b + c + d + e + f + g + h + field1 + field2 + field3; 
}  
 
Output: 30 



Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 40 

 

Figure 5: Dependencies between statements from Test 1. 

 

Independent statements 

The following independent statements are found in the code. 

Statement Independent from statement(s) 

6 7, 14, 16 

7 16 

8 14, 16 

10 14, 16 

12 13, 14, 15, 16, 17 

13 14, 15, 16, 17, 18 

14 15, 16, 17 

Swappable statements 

After applying the condition on the independent statements, the following statements have been found 

suitable for swapping. 

Statement Swapped with statement Output unchanged after swapping 

6 7 Yes 

12 13, 14, 15, 16 Yes 

13 14, 15, 16 Yes 

14 15, 16 Yes 

15 16 Yes 
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Test 2 

Code 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

public int Test2() 
{ 
    var result1 = 1; 
    while (result1 < 100) 
        result1 += 15; 
    var a = result1 / 2; 
    if (a > 50) 
        result1 += a; 
    else 
        result1 -= a; 
 
    var result2 = 1; 
    while (result2 < 100) 
        result2 += 30; 
    var b = result2 / 2; 
    if (b < 50) 
        result2 += b; 
    else 
        result2 -= b; 
 
    return result1 + result2; 
} 
 

Output: 220 

 

Dependencies 

Statement Depends on statement(s) 

4 3, 5 

5 3, 4 

6 3, 4 

7 6, 8, 10 

8 3, 4, 6, 7 

10 3, 4, 6, 7 

13 12, 14 

14 12, 13 

15 12, 13 

16 15, 17, 19 

17 12, 13, 15, 16 

19 12, 13, 15, 16 

21 3, 4, 7, 12, 13, 16 

Figure 6 visualizes these dependencies. The same rules apply as the figure from Test 1. 
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Figure 6: Dependencies between statements of Test 2. 
The blue boxes represent the separated statement groups. 

 

Independent statements5 

Statement Independent from statement(s) 

3 12, 13->14, 15, 16->19 

4->5 12, 13->14, 15, 16->19 

6 12, 13->14, 15, 16->19 

7->10 12, 13->14, 15, 16->19 

Swappable statements 

Statement Swapped with statement Output unchanged after swapping 

7->10 12 Yes 

                                                           
5 In this table, the ‘->’ sign in “1->5” means statements 1, 2, 3, 4 and 5. 
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Mid-Conclusion 
For Test 1 and 2, we have validated the independent statements by applying the swapping method. 

However, the algorithm for finding swappable statements turned out to be lacking. Resulting in only 11 

out of 21 independent statements were able to swap for test 1. For test 2 this was even worse: 1 out of 

16. 

To increase the number of swappable statements, we will extend our algorithm. When we find 2 

statements suitable for swapping, we will keep checking the following statements until one is found that 

is not suitable. This addition could help validate more independent statements, because a statement will 

now be swapped with more than one other statement. 

Test 3 
For Test 3, we will retest the code of Test 2 with the new addition to our swapping method. The code of 

Test 2 will remain the same, along with the dependencies and independent statements. 

Swappable statements 

Statement Swapped with statements Output unchanged after swapping 

7->10 12, 13->14, 15, 16->19 Yes 

 

This time the swappable statements resulted in a different result. Statement 7 was swapped with 

statements 12, 13, 15 and 16. Meaning the If-statement of statement 7 was swapped to below the If-

statement of statement 16. 

Since he output was not changed, this test proves that statement 7 is indeed independent from 

statement 12, 13, 15 and 16. 

Test 4 
So we know that the proposed solution does not yet work on bigger programs. However, to see how it 

would perform with larger amounts of code, we have created a function that would not break on 

analyzing its dependencies. This function is shown in code block 12. 

The function is called ‘LiveDay ‘ and represents how a typical day for ‘joe’ would go. This function is 

bigger and more complex than the code blocks from the previous tests. It contains various structures 

that the proposed solution can handle. It also contains deeper structures.  
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Code 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

public static void LiveDay(ref Person joe) 
{ 
    var isAlive = joe.IsAlive; 
 
    while ( joe.SleptForHours <= 8 ) { 
        joe.SleepForHour(); 
    } 
 
    if ( joe.IsHungry ) { 
        var refrigerator = joe.Refrigerator; 
        try { 
            var foods = refrigerator.GetFavoriteFood(joe); 
            foreach ( var food in foods ) { 
                joe.Eat(food); 
            } 
        } 
        catch ( Exception ex ) { 
            if ( refrigerator.IsEmpty )  
                refrigerator.Fill(joe.DoGroceries(new Supermarket())); 
            else //joe is no expert 
                joe.CallMechanic(); 
        } 
    } 
 
    var work = joe.Work; 
    if ( work.HasToGoToWork(joe) ) { 
        var car = joe.Car; 
        joe.Driving = joe.Position != work.Position; 
        while ( joe.Driving ) { 
            joe.Drive(car, work); 
            joe.Driving = joe.Position != work.Position; 
            var accident = joe.InCarAccident; 
            if ( accident == "deadly" ) { 
                isAlive = false; 
                joe.Driving = false; 
            } 
        } 
        if ( joe.IsAlive ) 
            joe.DoWork(work); 
    } 
    if ( isAlive ) { 
        joe.DaysAlive += 1; 
        if ( joe.DaysAlive > 9000 ) 
            isAlive = false; 
    } 
    joe.IsAlive = isAlive; 
} 

 

Dependencies 

The amount of dependencies in this function is quite big. To illustrate how quickly the dependencies can 

grow and become quite complicated, we will add the visualization of the dependencies that exist within 

this function. Any dependencies to other parts in the code have been excluded. 
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Figure 7: Dependency visualization for Test 4. 

In figure 7, the blue boxes will be the swappable statements. A quick look at Figure 7 reveals a lot of 

information. If we look at box 1 we can see that it has no dependencies to any statements outside the 

box, except for statement 1. The same applies for box 2. If there are no dependencies between the 

“blocks of statements”, they could be valid opportunities for parallelism. If we look at box 3, we can see 

there are a few statements dependent on box 3. But if we look closely, we can see that these 

dependencies are all from statement 34 and beyond. In other words, there are no dependencies 

between box 3 and any statement until statement 34. Meaning box 3 can be executed in parallel until 

statement 34 is executed. 

The big knot at the bottom is statement 1. It could seem that this would get in the way of finding the 

opportunities for parallelism. However, statement 1 is executed before all other statements. Meaning 

dependencies to statement 1 from all other statements will not prevent valid opportunities for 

parallelism. 

Analyzing the dependencies like this is exactly what The Analyzer can do.  

Swappable statements 

Statement Swapped with statements Output unchanged after swapping 

3 5->26 Yes 

3 9->25 Yes 

5->7 9->46 Yes 

5->7 26->46 Yes 

9->23 26 ->46 Yes 

 

This function was tested by calling the mutated versions with different instances of “Person” with 

different values for the properties. By doing this we achieved full code coverage. 

Even though there appeared to be some problems with the dependencies of the code, the given results 

turned out to be independent. This means that the proposed solution can indeed detect valid 

opportunities for parallelism for more complex code. 
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4.5.6  Validating dependencies 
The third evaluation question is hard to answer. We could use the swapping method in the same way 

we used it to validate the independent statements, but there is a difference between dependencies and 

independencies. As we have noted before, some dependencies can be broken without breaking the  

program or changing the output (chapter 6, section 1.3). An example of one of these dependencies is 

when 2 statements perform an addition on the same variable. A change in the order of the additions 

does not matter for the output nor does it break the program. And still, there are dependencies 

between them. Another problem with testing dependencies with the swapping method is that 

dependencies are not always between swappable statements. Dependencies can also be to routines, or 

to properties. These structures cannot be swapped, and thus would not be able to validate using the 

swapping method. 

This means there might be some false positives in the list of dependencies, and would mean that the list 

of independent statements is smaller than it could be. Fortunately, we have been able to validate the 

independent statements. So the list of independent statements has a high precision, and will not contain 

a many false positives. 
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5. Conclusion 
We started this thesis with the following problem: How can we quickly determine if a (large complex) 

.NET C# program could be transformed to use parallelism. To find a solution we have set a main goal and 

sub goals. The first sub goal we achieved was to extract a dependency model from .NET C# software 

programs. We were able to achieve this by creating an AST of the code in Rascal using The AST Extractor 

& Translator. Then we consumed the AST and created a dependency model with The Dependency 

Extractor. The next sub goal was to analyze the dependency model and determine the independent 

statements in the source code, which was achieved by creating The Analyzer. The next sub goal was to 

generate a list of opportunities for parallelism based on the results of The Analyzer, but instead we 

chose to validate the results we found so far(which are the final two sub goals). By validating the results, 

we found that we can indeed find opportunities for parallelism that improve performance (up to at least 

49.5%). And in all of our tests we have not been able to detect false positives in the found independent 

statements, this means we have achieved high precision in the generated list of independent 

statements.  

Our main goal was to generate a list of valid opportunities for parallelism, that could improve 

performance, to guide programmers while implementing parallelism. We have achieved most of our 

main goal, we are able to generate a list of valid independent statements that can lead to improved 

performance. 

However, there are a few limitations to the proposed solution. Transforming the list of independent 

statements into our definition of an opportunity for parallelism has not yet been achieved, even though 

it is not expected to be hard to achieve if time is available. Unfortunately, time was short and lead to 

another limitation: The proposed solution cannot handle the full .NET C# language, and thus it cannot 

handle complete software programs. However, because we chose to start on the creation of The 

Analyzer, we have been able to get and validate our results. 

By using the technique presented in this thesis, opportunities for parallelism can be found in the source 

code that can guide programmers to increase performance by implementing parallelism into software 

programs. However, because this technique cannot handle the full .NET C# language (yet) we have not 

been able to find a complete solution to the problem. The proposed technique can handle small .NET C# 

programs. To be able to handle large complex programs, the proposed solution has to be expanded to 

handle the full .NET C# language. 
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6. Future work & Discussion 
First of all, as future work I would recommend extending the Dependency Extractor to cover the full 

.NET C# language. This will make the proposed solution able to be applied to complete programs. 

Chapter 2, section 6.2: Unhandled dependencies, can be used as a start for this extension. 

Secondly, completing the last step of transforming the list of independent statements into a list of 

opportunities for parallelism would, in combination with the first recommendation, complete the 

solution for the problem. 

When the solution is completed, a great addition to this study would be to fulfill the third 

requirement(stated in Chapter 3, section 1.3): adding a new module to consume the generated 

opportunities to transform the code to apply the generated opportunities for parallelism. 

Another topic that needs more research is sub path detection, discussed in Chapter 3, section 2.4. There 

are probably a lot more opportunities for parallelism to be found in the source code than what we are 

currently able to find. The sub path algorithm is an example of this. If this could be extended it would be 

another great addition. 

For this study we have chosen to create a list of opportunities with a high precision. This has the 

advantage of providing accurate information about the analyzed program, and the results actually tell 

the programmers where to implement parallelism. However, this could also be seen from another point 

of view. If we would generate as many opportunities as possible, and maybe give the opportunities a 

score to indicate the reliability, we would be helping the programmers even more. If the programmer 

has more leads on where parallelism could be added, the program could gain more performance. Even if 

not all the opportunities can actually be implemented, they might still be a valid opportunity after some 

refactoring is done by the programmer. 
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