
Finding Lightweight Opportunities for
Parallelism in .NET C#

Version 1.0

13 January 2014

By Richard Bos, Master’s degree student at University of Amsterdam
Contact: Mail@RichardBos.net

Supervised by Jurgen Vinju, CWI.

Contact: Jurgen.Vinju@cwi.nl

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 2

Abstract
Adding parallelism to .NET C# software programs has become a great option that can be used to enable

performance. But how can we find out if the existing large complex software programs are even suitable

for parallelism, other than investing a lot of time by checking it by hand? By using static analysis to find

dependencies in the source code of software programs, we are able to find actual opportunities for

parallelism. This list of generated opportunities for parallelism provides information needed to make the

decision whether it is worth the time and effort to implement parallelism to a software program, and

also provides guidance for the programmers when parallelism is implemented.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 3

Acknowledgements
First of all I would like to thank my tutor Jurgen Vinju. I have enjoyed our collaboration and many

discussions about the topic. Without this help and guidance I would not have been able to write this

thesis.

I would also like to thank my fellow students of the Software Engineering master at the University of

Amsterdam. We have shared many project hours, classes, laughs and beers.

My thanks for making it possible for me to do this master, goes out to my employer, Herke ICT Group,

my supervisor, Peter Overmeer, and my colleague’s for supporting me and conversing with me about my

topics.

Finally I would like to thank my girlfriend, my family and my friends for their mental support during this

master.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 4

Contents
Abstract ...2

Acknowledgements..3

Contents ..4

1. Introduction ...5

1.1 The Problem ... 5

1.1 Parallelism .. 5

1.2 Dependency ... 6

1.3 Opportunities for parallelism ... 9

1.4 Goals and structure of the thesis ... 9

2. Background .. 11

2.1 Pitfalls of parallelism .. 11

2.2 Existing Solutions ... 13

2.3 Extracting dependencies from source code ... 17

2.4 Sequential Consistency .. 17

2.5 Rascal ... 18

2.6 Dependencies in .NET C# ... 18

3. Architecture ... 22

3.1 Requirements ... 22

3.2 The Architecture .. 24

3.3 Conclusion .. 31

4. Evaluation .. 33

4.1 Evaluation questions .. 33

4.2 Goals... 33

4.3 Pitfalls of parallelism .. 34

4.4 The optimal case .. 35

4.5 Validating (in)dependencies ... 36

5. Conclusion .. 47

6. Future work / discussion ... 48

7. References ... 49

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 5

1. Introduction
During the last decade, CPU’s have stopped increasing in CPU frequency. Instead, CPU’s are now

equipped with more and more cores. To take full advantage of these many cores and to speed up the

software, there has to be support built into software programs to consume them. Unfortunately,

manual parallelization of software is time-consuming and error-prone for all but the most advanced

programmers. In this study, we will try to assist programmers that want to add parallelization to their

software.

1.1 The Problem
The problem we are trying to solve with this project, is that there is no quick way to determine if a non-

parallel .NET C# program could be transformed to use parallelism. Experience shows that many

programs in C# are not developed to use parallelism. Currently there are not many ways to check if a

program could be transformed to use parallelism other than doing it manually, (another) time

consuming and error-prone task that not all companies can afford to do.

1.1 Parallelism
To elaborate why adding parallelism to software is good, consider the following. A car has to be

assembled from parts and everything needed to assemble the car is present. Imagine if there was one

worker assembling the car. It would take the worker an certain amount of time. If there were 2 workers,

they could both be working on the car at the same time. Implying the 2 workers could finish the job

twice as fast, since they can both assemble different parts of the car. However, if the car would need

new paint, all other assembling has to stop and wait. This means that one of the workers will be waiting

for the paint job to complete. Another thing that comes into play when 2 workers are used is some

management on what the workers will be doing, so they will not interfere with each other. The point of

this story is that with more workers, the car can be finished faster. However, it is likely that sometimes

workers have to wait for each other. And there is also an overhead(management) when more than one

worker is used. This can be translated into software and CPU’s. In software there are a lot of tasks that

have to be done by the CPU’s. If the software only lets one CPU do the tasks, it would take longer than

when it uses 2 CPU’s(but not twice as fast!).

Parallelism can be defined as follows:

“Parallelism is executing multiple operations at the same time.”

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 6

Figure 1: An example of an AST[24]

The operations in this definition can origin from the same program or from multiple programs. Finding if

it is possible to achieve parallelism, and guiding programmers to implementing parallelism, is the goal of

this study. In .NET C#, this is done by creating threads1 in the code and running these threads at the

same time. A thread can be seen as an execution queue, the software programs adds operations to the

various threads that it uses. The operating system then divides these queued operations across the

various CPU’s. The biggest advantage of parallelism is that the program can be executed in less time.

The biggest pitfall of parallelism is corruption of shared memory by usage of the parallel threads,

causing incorrect behavior. This makes a program unreliable and therefore unusable.

Threads
There are various ways to achieve parallelism in a software program. Message Passing Interface (MPI)

[3] is an example of another implementation of parallelism. In this study, we will be focusing on

parallelism that will be implemented by using threads.

1.2 Dependency
Before we go into what dependencies are, we first need to understand a few other topics. We will use

Figure 1 to explain these topics.

AST - Abstract Syntax tree[24]
Figure 1 is an example of an AST. An AST is a way to represent a part(or all) of the source code of a

program. In an AST every element is shown as a child of another element, the parent. Every AST has a

single root. The root element is the only element that does not have a parent. The root of the abstract

syntax tree in Figure 1 represents an entire do-while loop. As we can see, the root element ‘do-while’ is

1 An extended description is found here: http://www.microsoft.com/en-us/download/details.aspx?id=7029

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 7

parent of 2 other elements. The left child of the root represents the body of the loop, and the right child

of the root represents the condition.

Statements
Statements in the source code can be compared to the sentences of a book. The statements in the

source code define what the source code does when what is executed. A statement can contain other

statements, we can see an example of this in Figure 1. The root of the AST is an do-while statement. The

do-while statement contains another statement (‘do i=i+1;’) in its body (the left child).

Dependencies
Now that we know about ASTs and statements, we can go into dependencies. In any programming

language there are a lot of dependencies between the statements in the source code of any given

program. Software programs contain various processes, and performing any kind of process means

doing it from start to end. Starting somewhere in the middle would mean the process did not perform

the actions from the beginning, and could mean that the middle can’t be performed at all because these

actions are required.

This translates into dependencies. A dependency in the source code of a software program is a

relationship between 2 statements, in which it is required for one of the statements to be executed

before the other statement can execute in order to guarantee the workings of the program. This means

all of the dependencies of a given statement have to be executed before the statement can be executed

itself. If all statements and their dependencies are taken into consideration, this can be seen as a

mandatory sequence of execution of the source code statements.

There are different types of dependencies;

 Call Dependency[1]

A Call Dependency represents the relationships between routines. A routine can be either a

method, a function or a constructor. This relationship is formed when a routine is invoked inside

the body of another routine. For example, if routine A has an invocation of routine B inside it’s

body, routine A has a call dependency to routine B.

 Data Dependency

Data dependency is about the values stored in variables in the program. Data dependencies can

be further divided in the following types[6]:

o Anti-dependency, occurs when Statement A reads a memory location that Statement B

later writes.

o Output dependency, occurs when Statement A writes a memory location that

Statement B later writes.

o Input dependency, occurs when Statement A reads a memory location that Statement B

later reads.

o True (flow) dependence, occurs when Statement A writes a memory location that

Statement B later reads.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 8

S1 var a = 1;
S2 var b = 1;
S3 if (a == 1)
S4 {
S5 b += 2;
S6 }
S7 b = b / 2;

Code block 1

For these descriptions of the types of data dependencies, we presume the use of a single thread

and no other statements interfere with the memory locations.

Anti-dependence, Output dependence, and True (flow) dependence are the types of data

dependence that we will keep track off. If two statements that share a dependency of either

one of these dependency types are executed in parallel it could break the workings of a

program.

The only dependency type that would not break the workings of a program in this situation is

Input dependence, and because of this will not be relevant for this study.

 Control Dependency

A Control dependency is about the structure of a program, and occurs if statements depend on

the outcome of other statements whether they will be executed or not. This will be elaborated

in the following example.

For an example of Data and Control dependencies, consider code block 1. It starts with 2 variable

declarations, followed by an if-statement. The 2 variable declarations have no dependency, they could

be placed anywhere in the code and they would still do the same, declare a variable and initialize it with

a static value. However, the if-statement has a condition in which it uses variable ‘a’. In order to execute

the if-statement, variable ‘a’ has to be declared. In other words, the if-statement depends on variable

declaration ‘a’, this is a Data Dependency. In the body of the if-statement, there is an assignment-

statement of variable ‘b’. In order to execute the assignment, variable ‘b’ has to be declared, the

assignment-statement depends on the declaration of ‘b’. The if-statement can only be executed if all of

the dependencies of the statements in the body of the if-statement have been executed. In other words,

the if-statement depends on its body statements. So the if-statement depends on the assignment

statement ‘b += 2’, which is in turn depended on the declaration of ‘b’. This means the if-statement is

indirectly dependent on variable declaration ‘b’. The assignment statement ‘b += 2’ will only be

executed if the condition of the if-statement holds. This means that it depends on the if-statement, this

is a Control Dependency. Another example of the control dependency is statement ‘b = b / 2;’,the

right-hand side of this statement depends on the value of ‘b’. The value of ‘b’ depends on both the

declaration statement ‘var b = 1;’(Data Dependency) and the if-statement(Control Dependency),

because ‘b’ could be assigned in the body of the if-statement.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 9

1.3 Opportunities for parallelism
During this study we will be trying to assist programmers who want to add parallelism to their software.

We will try to do this by creating a way for programmers to know if and where programs can be

parallelized. By doing this a programmer can save the time spend into looking where a program could be

parallelized, or even if a program can be parallelized at all. In other words, we will be looking for

opportunities for parallelism. These opportunities will tell if and where a given program can be

parallelized. It is important to note that we will not try to change the source code to eliminate any

dependencies. We will try to find the opportunities in the source code as it is given, without any

transformation of any kind. We define an opportunity as follows:

“An opportunity for parallelism are two or more blocks of source code from a program that can be run in

parallel without changing the output of the program.”

In this definition, a block of code is a number of statements that have the same parent. A parent can be

any kind of routine, property(getter or setter), if-statement, switch statement etc., all of these have

child statements. For example in code block 1, statement 5 is a child statement of the if-statement. The

statements of both blocks of code have to have the same parent. This is because we know that these

statements would normally be executed in sequence. However, this does not limit the statements that

could be run in parallel to only the statements with the same parent. For example, it can be possible for

the blocks of code to contain invocation statements to other routines or to contain statements which

have child statements. So this would mean that all of the statements in the called routine would also be

run in parallel.

The parallelization of the blocks may not change the output of the program. If they would change the

output of the program, the program could become unreliable and therefore unusable. In order to

ensure this we have to make sure there are no dependencies between both blocks of source code.

1.4 Goals and structure of the thesis
This study presents a technique to find opportunities for parallelism in .NET C# software programs. But

before we go into that, we will first discuss the background information in Chapter 2, handling topics

like pitfalls and existing solutions. After that we will work towards our solution by achieving the

following goals. Our main goal and solution to the problem is:

 Generate a list of valid opportunities for parallelism, that could improve performance, to guide

programmers while implementing parallelism.

To achieve our main goal, we will need to achieve the following sub-goals:

 Extract a dependency model from .NET C# code (Chapter 3).

 Analyze the dependencies and determine which elements in the source code are independent

(Chapter 3).

 Generate a list of opportunities for parallelism based on the independent elements (Chapter 3).

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 10

 Validate if the found opportunities can improve performance (Chapter 4).

 Validate that the found opportunities do not change the output of the program (Chapter 4).

In the final chapters we will draw a conclusion and give thought for further research on this topic.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 11

2. Background

2.1 Pitfalls of parallelism
Adding parallelism to a program can also introduce problems. We will have to try to avoid the biggest

pitfalls with our solution.

2.1.1 Shared Memory Problems
When sequential code is transformed into parallel code, some memory locations could be used in more

than one simultaneous thread and thus be shared between them. Because it is unpredictable and

inconsistent which thread will run first, the value of the variable at any given state is also unpredictable

and inconsistent. This can cause data races and race conditions, which are explained in the section

below.

Code block 2

Data races and Race Conditions
A data race can occur when multiple threads try to access a shared variable at the same time. There are

three cases in which a data race can occur:

1. When a thread writes to the variable while another thread reads it.

2. When more than one thread writes to the variable.

3. When more than one thread reads the same variable.

In the first case, the result can be two different states. The thread that is reading variable can either get

the value from before the write of the second thread or from after the write. The result depends on

which thread accesses the variable first.

In the second case, the result can again be two different states (assuming there are two threads). One of

the threads will be the last to perform the write action. The result will be that the value of the variable

will have the value of this action.

For example, consider code block 2. If S4 would be executed twice and in parallel, both executions could

first read the value of accountTo.Balance; perform the addition operation; and finally write the new

value to accountTo.Balance. In this example, the execution that would happen to perform its write

S1 bool Transfer (int amount, Account
 accountFrom, Account accountTo){
S2. if (accountFrom.Balance<amount)
S3. return false;
S4. accountTo.Balance += amount;
S2. accountFrom.Balance -= amount;
S6. return true;
S7.}

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 12

operation last will define the value of accountTo.Balance, and also overwrite the result of the other

execution. This means the resulting values on ‘accountTo.Balance’ and ‘accountFrom.Balance’ are

unpredictable and can be different every time.

In the third case there is no danger of corrupting the variable. It does not matter which of either threads

reads the variable first, the result will be the same.

Race Conditions can occur when a variable is shared between threads. Race Conditions occur when a

variable is changed between a ‘check’ and an ‘act’. For example, in code block 2, S2 would be the check,

and S3 or S4, S5 and S6 would be the acts. If the value of ‘accountFrom.balance’ is changed after the

check is executed, a corrupted state can be the result because the following statements can assume that

the check (still) holds. In this case, the value of ‘accountFrom.Balance’ can become negative.

Because we want to avoid this pitfall, we have to get insight on where the dependencies are in the code.

If the generated opportunities for parallelism do not compromise the dependencies, data races and race

conditions will not occur if they would be implemented correctly.

2.1.2 Over-parallelization
By introducing parallelism, you create an overhead to manage the threads. This could actually make

your application slower than without parallelism. It is recommended that you only parallelize expensive

operations, and make sure that the target machine contains more than one processor.

Another look at this pitfall is described in Amdahl’s law[2], the maximum performance increase of a

program when implementing parallelism is limited by the time needed for the sequential fraction of the

program. In other words, there are always parts of a program that cannot be executed in parallel.

Examples of these parts are:

 Introduced overhead by adding parallelism

 Code inside a lock

 Code with too many dependencies

Improving the performance of the program by implementing parallelism cannot be increased past the

time needed to execute these sequential parts.

2.1.3 Cross-thread operations
Some parts of .NET C# can only be accessed from the thread in which they were created. For example

this holds for all form-controls in Windows Forms applications. When parallelism is added and these

controls are accessed from a new thread, runtime exceptions can be generated. This pitfall can be seen

as a specific case of a Shared Memory Problem.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 13

2.1.4 Deadlocks

Figure 2: Deadlock
T1 & T2 are threads,

R1 & R2 are resources.

To enable parallelism, locks can be used. A lock can be made on a resource by a thread to make sure

other threads will not access it. A Deadlock is a state in a parallel program involving at least 2 threads

and 2 resources. Both of the threads have locked one of the resources, and are waiting on the other

resource to be freed from lock.

Consider Figure 2, T1 has a lock on R1 and is waiting on R2 to be freed from lock, which is locked by T2

and is waiting on R1 to be freed from lock. It can also involve more threads and resources, the threads

are then waiting in a circular pattern. Deadlocks do not only arise in parallel programs, deadlocks can

also arise in the real world. For example, in traffic.

Because we will not be implementing or give options on how to implement the found opportunities for

parallelism, we will not look into the possibility that the opportunities for parallelism can introduce

deadlocks. This study will show the programmers where parallelism can be implemented, but not how.

However, to implement the found opportunities for parallelism locks will not be needed. The blocks of

code from the opportunities will be completely independent from each other. In other words, because

locks are not required, implementing the found opportunities will not cause deadlocks.

2.2 Existing Solutions
This chapter will go into past research which relates to this study. First we will discuss the various

research topics on dependencies and parallelism. Then we will discuss how they relate to this study.

2.2.1 Dependencies
This section contains past research on dependency analysis.

Dependencies in loops
Banerjee et al. [4] provide an overview paper on automatic program parallelization techniques. They

also cover dependence analysis techniques, straight line code parallelization, do loop transformations,

and parallelization of recursive routines.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 14

Dependency analysis types
There are two kinds of dependency analysis: Dynamic and Static. Dynamic dependency analysis is done

by executing the code and analyzing how the code is run. Static dependency analysis is done by

analyzing the code without executing it. Ronen et al. [18] show research on the combination of Dynamic

and Static dependency analysis.

Program Dependence Graph
We have identified 3 types of dependencies: Call, Control and Data dependencies. J. Ferrante et al. [23]

have shown that Data and Control Dependencies can be combined to create a Program Dependence

Graph(PDG). They describe the PDG as follows: “The program dependence graph explicitly represents

both the essential data relationships, as present in the data dependence graph, and the essential control

relationships, without the unnecessary sequencing present in the control flow graph.”. They show that

the PDG can be used to perform transformations on the code. For instance, constant expression folding

can be applied using the PDG. Constant expression folding is a technique in which an operator having a

constant result can be replaced with a constant value. This could help reducing dependencies in a

program and possibly creating more opportunities for parallelism.

Tools to extract dependencies
There are a few tools already developed that can extract a number of dependencies from programs. An

example of such a tools is NDepend2. NDepend can calculate many code metrics for .NET programs, and

generate dependency graphs and dependency matrixes. Unfortunately NDepend, like most other tools,

is not open source.

Program slices
Program slices, coined by Mark Weiser[19], have a lot in common with our goal. A program slice can be

defined as follows: A program slice is the computation of the set of programs statements, the program

slice, that may affect the values at some point of interest, referred to as a slicing criterion.

An example of a program slicer is shown by Ricky E. Sward and A.T. Chamillard[7]. Program slices should

be able to run without complications. This means that the program slices are independent of all other

statements in the program. So in order to obtain the slices, the dependencies have to be known.

Compiler
Eva Burrows and Magne Haveraaen[5] illustrate that automatic dependency analysis is proven to be too

complex for the general case, and that a parallelizing compiler cannot help parallelizing every

dependency pattern. Instead they show a framework from which data dependency information and

placement information is created, which could be utilized by a compiler to create parallel code. This

placement information has to be provided by the programmers to indicate to the compiler which parts

of the program could be made parallel. An parallelizing compiler can than process this and generate the

parallel code.

2 http://www.ndepend.com/

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 15

2.2.2 Parallelization
This section goes into past research on parallelization.

Eliminate dependencies
Eliminating dependencies can be seen at part of parallelization. If dependencies can be eliminated in a

program, parallelization can become easier. An example of this is shown by Morita et al. [8] for divide-

and-conquer programs. In divide and conquer programs there are a lot of recursive functions. They

show that it is possible to transform the source code and eliminates the dependencies between the

recursive executions of the function so that parallelism can be added.

Parallelization of loops
Parallelization of loops is probably the oldest technique of automatic parallelization, because loops have

the most potential for performance gain. Goumas et al. [9] provide research on parallel code generation

for tiled nested loops. They created an experimental tool that transforms code into using parallelization.

Arquimedes Canedo et al. [11] introduce a technique for automatically parallelizing loops which have a

data dependencies. By breaking these dependencies without changing the semantics of the loop.

Compiler parallelization
When it comes to automating ways to achieve parallelization, the most well-known (and applied) kind is

probably compiler parallelization[20]. However the ways that parallelism is added is limited and might

require the programmer to refactor his code[21].

Guided Manual parallelization
Parallelization can also be done manual. Although, as mentioned before, this can be a time-consuming

and error-prone task. Diego Huang and J. Gregory Steffan [10] provide a middle way between automatic

parallelization and manual parallelization. They suggest interaction between the compiler and the

programmer, so the compiler can give feedback to the programmer while applying parallelism. This

feedback would be statements that are currently blocking the parallelization of certain parts of the

code.

Hardware parallelization
Another way to improve performance is called hardware parallelization. By improving the hardware to

enable even more parallel execution performance can be improved. An example to achieve this is called

MapReduce [12]. MapReduce is a solution for parallelization across multiple servers. MapReduce

programs divide the workload of a software program and distribute it across multiple servers, and have

one main process manage the results. Not every software program can be used for MapReduce, it is

required that the workload can be split into many pieces so different servers can execute it in parallel.

So in order to use MapReduce, the program has to be transformed to break all dependencies between

the tasks in the workload.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 16

2.2.3 Comparison with this study

Transformations
Some of the various solutions that we have just noted use code transformation to achieve parallelism.

For this study we have chosen to scope down to only analyzing the given source code for opportunities

for parallelism. We will not transform the source code to enable parallelism, so none of the algorithms

will change. The only part that would have to be added in order to introduce parallelism for the found

opportunities is the mechanisms to control the threads.

Loops
A loop executes the same piece of code multiple times, so this can have a high probability for

parallelism. However, most of the program is not executed inside of a loop, and thus will not be

checked. In this study we will not look for opportunities for parallelism in loops in particular. Instead, in

this study we look in all of the source code and produce opportunities for parallelism that will help

programmers to win performance gains. This also means we will not focus on loops in particular to be

sure we have extracted all dependencies.

Dependency analysis types
In this study we can settle for the use of static dependency analysis, because .NET C# is a highly

structured language. Unlike languages like JavaScript or PHP, in .NET C# we can determine the

dependencies in a static environment. Unlike with dynamic analysis, all source code can be analyzed.

This is because in dynamic analysis a program could be run without all of the code being executed. And

if some code is not executed, dynamic analysis does not analyze all of the code.

Program Dependence Graph
Like the PDG, we will also use Data and Control dependencies to determine the opportunities for

parallelism. We will have to analyze the code for Data, Control and Call dependencies to be able to know

if an opportunity for parallelism will not change the output of the program.

Program Slices
Like with program slices, we have to determine the dependencies of the program. With program slicing,

a criterion is chosen and from there on everything that the criterion is dependent on is added to the

slice. In this study, we will be calculating the dependencies just like with program slicing, only we do not

have a criterion and will calculate the dependencies of all the statements in the program. Another

property of the program slices is that they are independent from each other. This means that the

program slices could be run in parallel. Even though this sounds like it could be a solution for this study,

there is a down side. Because the program slices contain all dependencies from the chosen criterion,

some statements could be found in multiple program slices. If program slices are run in parallel but

contain many of the same statements, meaning these statements are executed multiple times,

performance increase could turn out to be very limited. Instead of using program slices, we will look for

independent blocks of code that can be executed in parallel.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 17

Guided Manual parallelization
The research performed by Diego Huang and J. Gregory Steffan has similarities with this study. They also

give information to the programmer about where their attention should be directed to. However, in

their research the aim is on compiler parallelization. And as described earlier, this can be limited. In

comparison, our approach is not limited to compiler parallelization and thus has a wider scope. The

downside of our approach is that the implementation of parallelization is not done automatically yet.

However, this could be added in a future research.

Compiler
Compiler parallelization analyzes the code for certain patterns (e.g. loops) and try to make them parallel.

In this study we look for opportunities for parallelism by analyzing all of the source code. Improvement

can be made on compiler parallelization by enabling feedback from the compiler to the programmer

about aspects in the code that need refactoring. This has some similarity with our study, as we will be

providing opportunities for parallelism that the programmer has to process in the code.

Hardware parallelization
The aim of this study will be applications that would be run on typical servers or PC’s. We will not be

aiming for applications that would run on supercomputers. The difference is that on supercomputers

any small parallelization could blow up into a huge gain because of the volume of CPU’s and number of

times the application is executed. Instead we will focus on making applications perform faster by finding

high-level opportunities for parallelism which on itself could cause serious performance increase.

2.3 Extracting dependencies from source code
To find the opportunities for parallelism we need the dependencies. However there is no static list of

the existing dependencies between the elements in the .NET Framework. To find the dependencies, we

have to analyze the source code and keep track of the dependencies when we locate them by reasoning

about the source code. Analyzing the source code will be done by using an AST. By visiting the AST, we

can analyze the source code and infer the dependencies from it.

2.4 Sequential Consistency
There are several levels of consistency that can be applied when introducing parallelism. In this study,

we have chosen to produce opportunities that would not change the output of the program, and try to

ensure sequential consistency. Sequential consistency is defined as follows:

“The result of any execution is the same as if the operations of all the processors were executed in some

sequential order, and the operations of each individual processor appear in this sequence in the order

specified by its program.”[16]

In sequential consistency, transformations are allowed as long as the output of the program remains the

same as the original program, and the operations executed on individual processors are in the same

sequence as defined in the program. The proposed solution of this study first calculates the

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 18

dependencies of all the statements in the program. Then it analyzes the dependencies for opportunities

for parallelism that do not break any of these dependencies. Breaking a dependency means that a

statement is executed before all of its dependencies have been executed. Breaking dependencies can

cause the output of the program to change or even cause exceptions to occur. Every opportunity that

does not break any dependency does not change the output of the program, and implementing the

opportunity would mean that 2 blocks of code would be run in parallel without changing the sequence

of the statements of those blocks. This means the proposed solution ensures sequential consistency is

achieved. However, this also means that even if there is an opportunity that would not change the

output of the program, but it does break a dependency, it will be excluded from the generated

opportunity lists. In other words, the proposed solution is stricter than sequential consistency.

2.5 Rascal
The main part of the proposed solution is done in Rascal[22], a domain specific language. Rascal is an

open source meta-programming language, it’s domain is programming languages. Rascal can easily be

extended to analyze new languages by introducing a language syntax for the new language. This is what

was done for the .NET C# language. This syntax was then used to analyze the language for dependencies

in the source code and to find opportunities for parallelism.

2.6 Dependencies in .NET C#
In this study we are interested in dependencies between all possible structures of statements in .NET C#.

In this section we will sum up which dependencies have been handled in this study. We will also sum up

which dependencies were found but were not handled. It is important to note that this does not mean

that this is a complete set of all dependencies in .NET C#. There are probably many more undiscovered

dependencies to be found. However, to give an insight on what is handled in the proposed solution,

they are summed up. We will also discuss some expectations about the dependencies which were not

handled.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 19

2.6.1 Handled dependencies

Kind Element Depends on Reason

Call Routine Routine In the body of one routine the other is
called.

Call Class Class Class calls a routine of other class

Call Object Creation
Statement

Class Constructor depends on class

Control If-Else statement Condition Assignments of used variables

Control If-Else statement Branch Statements Dependencies from the branch statements
have to be executed first

Control Child statement If-Else statement Branch statements depend on parent
condition

Control Do-While
statement

Condition Assignments of used variables

Control Child statement Do-While statement Branch statements depend on parent
condition

Control While Condition Assignments of used variables

Control While Statement Dependencies from the branch statements
have to be executed first

Control Child statement While statement Branch statements depend on parent
condition

Control For statement Condition Assignments of used variables

Control For statement Statement Dependencies from the branch statements
have to be executed first

Control Child statement For statement Branch statements depend on parent
condition

Control For Each
statement

Condition Assignments of used variables

Control For Each
statement

Statement Dependencies from the branch statements
have to be executed first

Control Child statement For Each statement Branch statements depend on parent
condition

Data Routine Property/field Routine uses property

Data Property/field Routine Routine sets property

Data Assignment Last Read Any assignment has to be executed after
the last read of the variable, the order of
read and writes on a variable has to remain
the same.

Data Read Last assignment Any read of a variable is dependent on the
last assignment of that variable.

Data Assignment Assignment Any assignment is depended on the
assignment before it, so the order remains.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 20

Data Assignment
statement and
variable
initialization

Last assignment of all right-
hand side variables, or the
definition of the variable
(e.g. parameters or
properties)

An assignment depends on the values of all
variables used in the right hand side of the
assignment/initialization. So this means it
depends on the last assignment of these
variables.

Data Return statement Last assignments of all
variables

A return statement depends on all values
of its used variables.

Data Unary statement Last assignment of variable The unary statement depends on the value
of its variable, and thus on the last
assignment of this value.

Table 1: An overview of all found and handled dependencies.

Order of assignments
To maintain the values of variables on any given moment during execution, the order of assignments on

a given variable have to remain the same. If the order is changed, the output of the program could be

changed.

Optional paths
The basic data dependency could be described as follows: A statement is dependent on the last

assignment of all used variables. A variation to this is found when the last assignment of a variable

happens to be inside an optional path. An optional path is a block of code with a number of statements

that will not always be executed. For example, the body of an If-statement. The body will only be

executed if the condition is met.

This means we do not know which assignment is the last assignment. So in order to be sure the output

of the program will remain the same, we have to add a dependence to both the assignment inside the

optional path and the assignment before this optional path. This will continue until an assignment is

found that is not inside an optional path.

However, this only holds if the usage of the variable is not in the same optional path as the last

assignment. If they are in the same optional path they will always either both be executed or not.

2.6.2 Unhandled dependencies
This chapter sums up the dependencies that were found during this study but were not implemented

into the solution yet.

 Object creation statement depends on one constructor

Currently, when an Object creation statement is encountered a dependency between the statement and

the class is added. However, this dependency should be between the statement and the corresponding

constructor instead of the class itself. This could introduce problems, for example when the constructor

takes ref or out-parameters and assigns the values of these parameters.

 Await and async keywords

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 21

Await and async keywords are recently added keywords to the .NET C# language and could introduce

more dependencies, or take them away. The async-keyword is used to mark a routine as asynchronous,

meaning execution does not have to wait when invocating the routine. The await-keyword causes the

execution to wait on an async-marked routine. This could mean that an async routine that is not awaited

on does not introduce any dependencies, because it is executed in a separate thread. More research is

required to be able to extract any dependencies and ensure the output of the program remains the

same when await and async are used in a program.

 Delegate/anonymous/lambda functions

Currently the bodies of delegate, anonymous and lambda functions are not yet analyzed. The

Dependency Extractor should be extended to analyze these bodies and keep track of the dependencies.

 Linq introduces more dependencies, for example in “Select”-bodies.

Currently, the operations that can be performed by using Linq are not analyzed. However, many

dependencies could be introduces when using Linq. For example, in a “Select”-operation any number

of statements can be performed and result in a value which is returned by the “Select”-operation.

 Struct

Support for usage of “Struct” has to be added. Because structs are a lightweight equivalent of classes,

the impact of adding support for Structs is probably limited.

 Loop dependencies

Inside loops a special kind of dependency can arise, a dependency to the previous execution of the loop.

This is currently not implemented in The Dependency Extractor and needs more research to be able to

add this expansion.

 Throw, return and continue

Keywords like throw, return and continue should not be made parallel because these keywords can

exclude other code from being executed. This means all the code after these keywords depend on them.

The proposed solution does not yet handle this problem. A solution would be to prevent that any of the

found opportunities for parallelism would contain return statements.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 22

3. Architecture
In this chapter we will discuss the architecture that was created in order to obtain our goal. We will look

at the requirements that the architecture has to fulfill and then we will look at how the architecture

turned out.

3.1 Requirements

3.1.1 Requirement 1
If the generated opportunities would be implemented in the code, it will not change the output of the

program.

Rationale
To maintain the original workings of the analyzed program, applying parallelism for the generated

opportunities should not change the output of the program. This could make the program unreliable

and unusable.

Challenge
This requirement is hard to achieve and hard to evaluate. To be able to be sure that the output does not

change for a given found opportunity, we would have to test this opportunity. However, there is not just

one test. Applying parallelism to an opportunity means there will be an astronomical amount of possible

execution scenarios how the threads could be executed. To illustrate why this amount of possibilities

can become astronomical, consider the following enumeration:

1. Every block of code contains multiple statements.

2. Every statement contains multiple instructions.

3. Instructions could be run:

o In parallel with any other instruction;

o Before every other instruction;

o After every other instruction;

4. Every instruction can run on multiple threads.

5. Every thread can run on multiple CPU’s.

In this enumeration, the blocks of code are the opportunities for parallelism we are trying to find.

Instructions are the (small) tasks that the CPU can execute. The main reason why the number of possible

execution scenarios is astronomical is the third in our enumeration. Consider that the number of

instructions per block of code can easily become very large. And in addition those instructions can be

executed in many different scenarios. Every other of the mentioned elements multiplies the possible

execution sequences even more.

This is why we chose to calculate the dependencies for the software programs. If none of the

dependencies are broken, the opportunities will be valid. This means we have to evaluate if our

dependencies are correct and complete. This results into the next requirement.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 23

3.1.2 Requirement 2
The architecture can calculate and output the dependencies for all statements in the source code.

Rationale
If all the dependencies between statements are calculated, the opportunities can be checked for not

breaking these dependencies. If no dependencies are broken in applying an opportunity, the output of

the program will not change.

Challenge
To achieve this requirement we have to cover every possible structure in the .NET C# language. To do

this in the given time is a serious challenge and it is likely we will not be able to cover all of the language.

The second challenge is that we will probably be calculating more dependencies then needed. There are

scenarios in which dependencies could be broken, while the output of the program remains the same.

For example, if two additions are made on the same variable, the sequence does not matter. They will

always result in the same value, as long as they are not executed at the same time. Executing them at

the same time could cause data races, as noted in 2.1.1 under pitfalls of parallelism.

For our definition of an opportunity, this kind of dependency should not be a dependency at all, because

these dependencies eliminate potential opportunities for parallelism.

3.1.3 Requirement 3
The Architecture can implement the generated opportunities for parallelism by applying

transformations to the source code.

Rationale
When requirement 1 and 2 have been fulfilled, we have a list of opportunities for parallelism. The next

step is to implement these opportunities by applying transformations to the source code.

Challenge
Being the final and last to achieve requirement, it is likely that we will not have the time to achieved this

requirement, but would still be a great addition.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 24

3.2 The Architecture

Figure 3: Component view of The Architecture

The pipelined-architecture(visualized in figure 3) that was created during this study is described in this

section.

3.2.1 The AST Extractor & Translator
The AST Extractor & Translator(AST E&T) is the start of the architecture. The AST E&T uses NRefactory3

to get the AST from the target program. Then the ASTs are translated into a format that The

Dependency Extractor can comprehend, and then written into text files. This translation is done by

visiting the entire AST and translating every node into the format.

NRefactory
NRefactory was chosen to use in The AST E&T because of its functionality and maturity. NRefactory is an

open source library to perform refactoring operations to .NET C# code. Another AST Extractor that was

considered was Roslyn4. However, while working with Roslyn several problems emerged, and some

essential functions were missing. NRefactory was chosen in favor of Roslyn because NRefactory did not

show any of the problems that Roslyn did. Also, because NRefactory is open source, if problems would

emerge there is a possibility to fix these problems independently of the manufacturers.

Separation
The AST E&T is separated from the rest of the architecture. This is because it uses an external library to

perform its main task. By separating it from the rest this dependency in the architecture is isolated.

Text files
The translated ASTs are written into files that The Dependency Extractor can comprehend. This is

because The AST E&T is written in a separate .NET C# program, and The Dependency Extractor is written

in Rascal. So text files are chosen to be the means for communication between them.

AST
Using AST’s to handle the source code was chosen because of the Rascal benefits. Rascal has many

implemented functions to deal with AST’s. For example pattern matching, which allows to visit a tree

and look for a specific pattern in all of the child nodes.

3 http://www.codeproject.com/Articles/408663/Using-NRefactory-for-analyzing-Csharp-code
4 http://msdn.microsoft.com/en-us/roslyn

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 25

3.2.3 The Dependency Extractor
The Dependency Extractor uses the produced text files and parses them into a Rascal-AST. The

Dependency Extractor will then visit the AST and analyze it to determine the dependencies and maps

them as they are found. The map has the form of: Node X depends on Node Y, in a 1:N relation. A node

can be any .NET C# element, for example a statement, property or routine.

Separation
The Dependency Extractor is separated from the AST Extractor & Translator, as mentioned before. But it

is also separated from the Analyzer. In this study we will be using the dependencies to look for

opportunities for parallelism. However, the dependencies could also be used for different goals. If the

Dependency Extractor and the Analyzer were merged, the dependencies could not be used for different

goals.

Rascal
The Dependency Extractor is created in Rascal. As mentioned before, Rascal is a meta-programming

language, designed to deal with other programming languages. Rascal was chosen because of the many

build in functions that help with analyzing source code. The recommendation of Jurgen Vinju and my

past experience with Rascal also contributed in the decision for Rascal.

Agile
During this study a point was reached where a pro-agile decision was made. We decided to go into the

depth instead of expanding over the width. In other words, the Dependency Extractor was not fully

completed before work started on the Analyzer. This decision had to be made because we realized time

was too limited to cover all possibilities in the .NET C# language, and we still wanted to obtain some sort

of result

The upside of this decision is that we were able to create a front to back study, able to generate results

and able to validate these results.

The downside of this decision is that the Dependency Extractor is not fully completed and does not take

all possible dependencies in the .NET C# language into account. This also means that the results we are

able to generate may not be valid and may break dependencies that are not mapped by the Dependency

Extractor.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 26

3.2.4 The Analyzer

Code block 3

The Analyzer uses the resulting dependency map from the Dependency Extractor and analyzes this map

to look for opportunities for parallelism. In the code block 3, the core functionality from the Analyzer is

shown: the “GetAllIndependentStatements” function. This function returns a relationship, from

statement to statement, containing all the statements that are independent of each other. Each

statement of this core function of the analyzer is described in table 2.

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11

S12
S13
S14
S15
S16

public rel[tuple[AstNode, loc],tuple[AstNode, loc]] GetAllIndependentStatements()
{
 relDependence = StartProcessing();
 relDeps = relDependence*;
 setAll = carrier(relDependence);
 relAll = (setAll * setAll);
 relPossible = (relAll - relDeps);
 rel[tuple[AstNode, loc],tuple[AstNode, loc]] relIndependentStatements = {};
 visit (Project) {
 case b:blockStatement(stats): {
 for([*_,x,*_,y,*_] := stats) {
 if(<<statement(x),x@location>,<statement(y),y@location>> in relPossible) {
 relIndependentStatements +=
 <<statement(x),x@location>,<statement(y),y@location>>;
 }
 }
 }
 }
 return relIndependentStatements;
}

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 27

S1 Get the map of dependencies from the Dependency Extractor.

S2 Create a new relationship of statement to statement that contains the dependencies
extended with the transitive closure.

S3 Creates a set containing all statements that are involved in any dependency.

S4 Creates relationship of statement to statement, containing all possible sequences of
statements.

S5 Creates a new relationship of statement to statement by deducting the dependencies from
the relationship containing all possible sequences.

S6 Declares “relIndependentStatements” as a relationship between two tuples, containing an
AstNode and a loc(location). An AstNode can be any element found in the source code AST.

S7-S8 Visits root(“Project”) of the AST for all “blockStatements”. A blockStatements-object is a
node that has child statements. For example, an If-Else statement has 2 child blockStatement-
nodes. One for the if-body and one for the else-body.

S9-S10 Loops over all the combinations of all found statements in the block, checking if the
combinations are present in the relationship “relPossible”.

S11 If a combination holds the check, it is added to the “relIndependentStatements”, which is
returned in the end.

Table 2: Description per statement for code block 3.

The generated relationship called relIndependentStatements is the result of the Analyzer. This

relationship contains every statement, linked to the statements of which it is not dependent. These

statements are always in the same block of code.

Transitive closure
The Analyzer extends the dependencies by doing a transitive closure on the map that is given from the

Dependency Extractor. To explain why this is needed, consider code block 4. If we follow the

dependencies, S3 depends on S2, which in turn depends on S1. Since a statement cannot execute before

its dependencies are executed, S1 has to be executed before S3 can be executed. This is also known as a

transitive closure, and is needed to ensure we fulfill requirement 2. If S1 is not executed before S2 the

output of the program would change, in this case an exception would be thrown.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 28

S1
S2
S3

void Foo() {
 int i = 1;
 i += 2;
 int j = i + 3;
}

Code block 4

Algorithm
The Analyzer goes through a few steps in order to generate the independent statements. To explain

these steps, let’s first take a look at the input of the Analyzer: the dependency map. The dependency

map can be compared to a mandatory sequence of execution; since, as noted in the transitive closure

section, it is only valid for a statement to executed after its dependencies have executed. In other

words, the dependency map can be compared to a blacklist of opportunities for parallelism. It states

which statements cannot be executed in parallel and must be executed in sequence. So in order to

produce the opportunities for parallelism, or whitelist, we need all the opportunities for parallelism

deducted by the blacklisted opportunities. Also consider the Example 1 for an example of this process.

Format:
Statement: Dependencies statements

Blacklist/Dependencies
S2: S1
S4: S3
S5: S3, S4

All opportunities
S2: S1
S3: S1, S2
S4: S1, S2, S3
S5: S1, S2, S3, S4

Whitelist
S3: S1, S2
S4: S1, S2
S5: S1, S2

Example 1: Construction of the Whitelist

Doing this produces the whitelist for opportunities. However, taking all opportunities for parallelism

means taking all combinations of any 2 statements. So this is not yet limited to statements that are in

the same code block. To do this we visit all the blocks of code in the source code and see which

combination of statements in our whitelist are in the same block of code. This results in the list of

opportunities for parallelism.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 29

var a = 1;
var b = 1;
if (a == 1)
 DoSomething();
if (a == 1 && b == 2)
 DoSomethingElse();

Code block 5

Sub paths
As a bit of a side track, there has been some research into sub paths. A sub path is an another type of

opportunity for parallelism. The algorithm shown above only results in totally independent statements,

while opportunities for parallelism could also be found in not totally independent statements.

Consider code block 5. In this code block, both if-statements depend on variable “a” and thus are not

considered an opportunity for parallelism by the previous algorithm. However, they do not depend on

each other(assuming both methods “DoSomething” and “DoSomethingElse” share no dependency).

To find these sub-paths, all blocks of code were re-analyzed. These blocks of code are looped through in

execution order to find the sub-paths. In this context, a sub-path is defined as follows:

“A sub-path is a set of statements with one statement as the key. The key-statement is not included in

the set. The key represents the statement after which the set of statements can be executed (in

parallel).”

The statements were divided into sub paths following these rules while looping through all of the

statements:

 If there are no sub paths yet, create a new sub path with this statement as key.

 If the statement has no dependencies, create a new sub path with this statement as key.

 If none of the dependencies of the statement are contained in a sub path, create a new sub path

with this statement as key.

 If one or more of the dependencies of the statement are all contained in one other sub path,

add the statement to that sub path.

 If dependencies of the statement are contained in more than one sub path, create a new sub

path with the last dependency(execution order) as key.

This will result in a map of sub paths, and each has a ‘Key’ statement after which the sub path can be

executed in parallel.

Working Example Case

To show what the results could be of the sub-path algorithm, an example is given. Consider code block

6, there are many dependencies to be found. The dependencies are summed up in table 2. Following the

rules of the algorithm, a list of sub-paths is found, displayed in the table 3.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 30

Overview of the example case:

class SubPathExample
{
 public SubPathExample()
 {
S1 var a = 1;
S2 var b = 2;
S3 var c = 3;
S4 var d = 4;
S5 if (b == 2)
S5.1 { d = 5; }
S6 if (a == 1 && b == 2)
S6.1 { c = 4; }
S7 var f = c;
S8 var g = d;
S9 var h = b;
S10 var i = c + d;
S11 var j = h + 1;
S12 var k = h + 10;
S13 var l = k + h;
 }
}

Code Block 6

Statement Depends on

S1 -

S2 -

S3 -

S4 -

S5 S2, S4, S5.1

S5.1 S2, S4, S5

S6 S1, S2, S3, S6.1

S6.1 S1, S2, S3, S6

S7 S1, S2, S3, S6, S6.1

S8 S2, S4, S5, S5.1

S9 S2

S10 S1, S2, S3, S4, S5, S5.1, S6,S6.1

S11 S2, S9

S12 S2, S9

S13 S2, S9, S12
Table 2: Dependencies

Key statement Contents

S1 -

S2 S9, S11, S,12, S13

S3 -

S3 S6

S4 -

S4 S5

S5 S8

S6 S7

S6 S10
Table 3: Sub-paths

The Sub-paths are opportunities for parallelism. The statements should be executed in order, and every

time a Key statement is executed, the contents of the Sub-path can be executed in a new thread. Figure

4 illustrates how this would look. After statements S2, S3 and S6 new threads are created. By executing

the statements like this, the 13 step long function can be executed in 6 steps. Of course an overhead will

be added by the implementation of threads which will make it bigger than 6 steps, but that is the trade-

off.

Figure 4: Visualization of applied threading

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 31

 class ExampleField
 {
F1 int counter = 0;
 public ExampleField()
 {
S1 var a = counter;
S2 Process();
S3 var b = counter;
 }

 public void Process()
 {
S4 counter += 1;
 }
 }

Code Block 7

A Problem

After some experimenting, a problem emerged. If properties or fields were used throughout the body of

a code block, it causes this algorithm to be far less effective. This is because fields and properties

introduce new dependencies. For example, see code block 7.

When field “counter” is read for variable “a”, it will return 0. When field “counter” is read for variable

“b”, it will return 1 because “Process” has incremented it. To ensure this behavior, this routine cannot

be made parallel. This means there is probably a dependency. There is no direct dependency between

S1 and S2. However, “counter” is assigned inside the body of “Process”. If we add a dependency

between “counter” and “Process”, any usage of “counter” can never be made parallel with the

invocation of “Process”, which is correct behavior. This also goes the other way around, “Process” uses

the value of “counter” and thus it is dependent on it. So no assignment of “counter” can be made

parallel with “Process”, which is again correct behavior.

Because of these dependencies, many of the identified the sub-paths from the algorithm became

connected by dependencies. And there for were not detected by the algorithm.

3.3 Conclusion
By creating the proposed solution, we have achieved most of our goals. We have found a way to analyze

.NET C# code by extracting an AST and translating the AST into Rascal format text files, which are then

picked up by Rascal for analysis. We have extracted a list of dependencies between various elements in

the source code. By analyzing the dependency list we were able to create a relationship between

statements representing statements that are independent of each other.

Even though the independent-statements relationship is close our next goal; generating a list of

opportunities for parallelism, it is not quite the same. The proposed solution does not yet combine the

independent-statements into code blocks that represent opportunities for parallelism. However,

transforming the independent-statement relationship to blocks of code is not expected to be hard to

achieve, but it will take some time.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 32

Instead of doing this, we would rather validate the dependencies and independent statements. We are

not sure that the found dependencies are correct, it could be possible that some dependencies are not

dependencies at all. Also we do not know if the independent statements that resulted from the analysis

of the dependencies are in fact independent from each other. We still have to validate both of them.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 33

4. Evaluation

4.1 Evaluation questions
In this chapter we will first look at the goals we have set in chapter 2.2. Then we will look at the pitfalls

of parallelism that have been summed up in chapter 2.1. And finally we will try to achieve our final 2 sub

goals:

 Validate if the found opportunities can improve performance.

 Validate that the found opportunities do not change the output of the program.

We will do this by answering the following evaluation questions.

1. Can the proposed solution generate opportunities that would improve performance?

2. Are the found independent statements really independent?

3. Are the found dependencies real dependencies?

4.2 Goals
In chapter 2.2 we have set a number of goals to achieve with this study. In this chapter we will validate if

these goals are achieved. We will first look at the sub goals before we look at the main goal.

4.2.1 Sub goals
These are the sub goals we have set up to work towards the main goal.

 Find a way to analyze .NET C# source code.

We achieved this sub goal by using NRefactory and creating The AST Extractor and Translator.

 Determine the dependencies between all elements in the source code.

The Dependency Extractor was created to achieve this sub goal, although we still have to validate if the

results are correct.

 Analyze the dependencies and determine which elements in the source code are independent.

This sub goal was achieved by creating The Analyzer. The results of the Analyzer will be validated in this

chapter.

 Generate a list of opportunities for parallelism based on the independent elements.

This sub goal was not achieved. However, to achieve this goal from the results of The Analyzer should

not be too hard.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 34

The following two goals will be handled in this chapter:

 Validate if the found opportunities can improve performance.

 Validate that the found opportunities do not change the output of the program.

4.2.2 Main goal
Our main goal for this study has been described as follows:

“Generate a list of valid opportunities for parallelism, that could improve performance, to guide

programmers while implementing parallelism.”

As noted in the previous section, not all sub goals have (yet) been achieved. And one of the sub goals

will not be achieved during this study. However, if the last 2 sub goals will be achieved in this chapter,

we will have achieved most of our main goal. Only leaving the transformation from independent

statements to independent code blocks, in order to meet our definition of an opportunity as described

in chapter 4, section 3.

4.3 Pitfalls of parallelism
In chapter 2.1 we have summed up the pitfalls of parallelism. In this section we will look at each of these

and evaluate if we have avoided them.

4.3.1 Shared Memory Problems
To avoid this pitfall we have analyzed the source code for dependencies, and excluded opportunities for

parallelism that would break one of these dependencies.

4.3.2 Over-parallelization
We have not avoided this pitfall with our proposed solution. Some opportunities for parallelism could

lower performance by implementing them. However, in section 4.4, we will show that the proposed

solution can also improve performance. A fairly simple solution to partly avoid this pitfall is to order the

opportunities for parallelism by the total lines of code that would be run in parallel. Opportunities with

bigger chances for performance increase would probably end up in the top.

4.3.3 Cross-thread operations
We have been unable to look into avoiding this pitfall. This means that the found opportunities for

parallelism could introduce runtime exceptions. Programmers that will implement the opportunities will

have to look out for cross-thread operations on .NET controls that do not support this.

4.3.4 Deadlocks
This pitfall for parallelism has to be avoided by the programmers that will implement the found

opportunities for parallelism. However, the found opportunities for parallelism are completely

independent of each other. To create deadlocks, there have to be shared resources amongst the

threads. Since they share no dependency, deadlocks cannot be the result of implementing the

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 35

opportunities. Aside from this, the opportunities still have to be implemented by a programmer. The

programmer could of course still chose to implement an opportunity by using locks, and in turn cause

deadlocks.

4.4 The optimal case
To answer the first evaluation question, we will handle a self-constructed case. In this case we expect

performance gain equal to almost twice the normal performance, because the overhead has to be

deducted.

4.4.1 The Code

class OptimalParalellizable
{
 public void OptimalParalellizableFunction() {
 FunctionOne();
 FunctionTwo();
 }
 private void FunctionOne () {
 for (int i = 0; i < 10; i++) {
 //Heavy load function
 Thread.Sleep(50);
 }
 }
 private void FunctionTwo () {
 for (int i = 0; i < 10; i++) {
 //Heavy load function
 Thread.Sleep(50);
 }
 }
}

Code Block 8

Code block 8 has been written to be optimal for parallelization. The results of The Analyzer is that the

following two lines could be parallelized:

 FunctionOne();

 FunctionTwo();

For this example, we will add the parallelization and validate if the performance will indeed go up for

our function called:

“OptimalParalellizableFunction”.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 36

4.4.2 Results

public void OptimalParalellizableFunctionThreading()
{
 var thread1 = new Thread(new ThreadStart(FunctionOne));
 var thread2 = new Thread(new ThreadStart(FunctionTwo));

 thread1.Start();
 thread2.Start();

 while (thread1.ThreadState == 0 || thread2.ThreadState == 0) //0 = running
 {
 Thread.Sleep(1);
 }
}

Code block 9

Code block 8 shows the modified function so it uses parallelization. In comparison to the function that

doesn’t use parallelism, it is easy to see how some pitfalls could be introduced. The modified function is

a lot bigger. It introduces overhead and increased the complexity of the function.

The results of the performance test are shown in table 4, and match our expectations. The function is

almost twice as fast with an performance increase of 49.5%. The overhead introduces a delay of 5

milliseconds but also a performance increase of 501 milliseconds. The overhead cost is nothing in

comparison with the performance gain for this case.

Number of runs 2008

Average time with
parallelization

511 milliseconds

Average time without
parallelization

1012 milliseconds

Table 4: The performance results of the applied opportunity.

4.5 Validating (in)dependencies
We will first try to validate the independencies and then do the same for the dependencies.

4.5.1 Applying parallelism
The obvious method to test if the found opportunities are valid is to apply parallelism for the given

opportunities and validate if the program still functions correctly. This method has been applied in

section 4.4, The optimal case, and has shown that the implemented opportunity has executed

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 37

successfully 2008 times. This has shown us that implementing an opportunity can introduce

performance increase.

However, as mentioned before, applying parallelism to an opportunity means there will be an

astronomical amount of possible execution scenarios how the threads could be executed. So by applying

parallelism and testing it a few times does not validate the results. For example, the same scenario could

occur run every time.

This method is a form of Random Testing[13]. The basics of Random Testing is generating a set amount

of random tests and validating them on a program. Applying Random Testing can only give an indication

based on the number of performed tests and, if possible, the number of possible tests.

To be able to gain a better indication if the found opportunities are valid opportunities, we will explore

another validation method.

4.5.2 Swapping

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2

1 1 3

2 3 1

 3 4 4

 4 2 2

1 3 3

 3 1 4

2 2 1

 4 4 2
Table 3: Possible sequences for 2 threads with 2 statements run in parallel.

The numbers indicate the execution order.

Another way to test if statements could be run in parallel is to swap them around. When 2 blocks of

code are run in parallel, the execution sequence is unpredictable. There for, the program should

produce the same result in any possible order of execution of the 2 blocks of code. We can simulate this

behavior by swapping statements in the source code. This method is a form of Mutation Testing[15]. We

will be creating mutations of the code and testing these mutations. Normally, these mutations should be

caught and rejected by tests. Indicating a level of test-coverage. For this study, the mutations should not

be caught. This is because we are trying to find out if there are dependencies between the parts of

mutated source code. For example, the 2 blocks of code could both contain 2 statements. If they would

be run in parallel. there are 6 possible sequences in which they can be executed. See table 3 for these

sequences. By using this method it is testable when the sets of statements that are run in parallel are

not too big. If they become too big, the astronomical amount of possibilities come back into play.

However, if there is a way to automate this test it could be plausible to use this method to test all the

possible sequences and thus prove that the opportunities are valid. Another advantage of this method is

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 38

that it does not require any overhead, unlike with applying parallelism. Also when applying the needed

overhead, errors could be introduced.

Condition
If 2 statements are independent of each other, it does not mean they can be swapped without changing

the output of the program. We have to check if the independent statements meet the following

condition:

“Two independent statements can be swapped if none of the statements between these two

statements depend on either of the statements, nor do the two statements depend on any of these

statements.”

This condition makes sure that a statement is not swapped past or in front of a dependency.

4.5.3 Applying the methods
The aim of applying our solution was on a complete software program, that included Unit testing.

However we stumbled upon a problem. Because the Dependency Extractor does not take all of the .NET

C# framework into account, it could not handle the complete software program that used unhandled

structures from the .NET C# language. The cause of this problem lies in our previous decision of not fully

completing the Dependency Extractor. Because the Dependency Extractor is not fully completed, our

solution cannot handle full software programs. Instead we will apply our solution on smaller cases and

analyze them for opportunities for parallelism.

4.5.4 Swapping independencies

Test 1
In this test we will start by swapping single statements with each other.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 39

Code:

Dependencies

The following dependencies are found in the code.

Statement Depends on statement(s)

1 4, 11

2 4, 9

4 1, 2, 3

8 2, 7

10 1, 6, 7

12 10

13 8

14 7

15 8, 10

16 3

17 15, 16

18 3,6,7,8,10,12,13,14,15,16,17

These dependencies are visualized in the following figure. In this figure, every number represents a

statement, and an arrow from statement 1 to statement 2 means statement 1 depends on statement 2.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

int field1 = 1;
int field2 = 2;
int field3 = 3;
public int Test1()
{
 var a = 1;
 var b = 2;
 if (b == 2)
 field2 = 2;
 if (a == 1 && b == 2)
 field1 = 2;
 var c = field1;
 var d = field2;
 var e = b;
 var f = field1 + field2;
 var g = field3;
 var h = f + g;
 return a + b + c + d + e + f + g + h + field1 + field2 + field3;
}

Output: 30

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 40

Figure 5: Dependencies between statements from Test 1.

Independent statements

The following independent statements are found in the code.

Statement Independent from statement(s)

6 7, 14, 16

7 16

8 14, 16

10 14, 16

12 13, 14, 15, 16, 17

13 14, 15, 16, 17, 18

14 15, 16, 17

Swappable statements

After applying the condition on the independent statements, the following statements have been found

suitable for swapping.

Statement Swapped with statement Output unchanged after swapping

6 7 Yes

12 13, 14, 15, 16 Yes

13 14, 15, 16 Yes

14 15, 16 Yes

15 16 Yes

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 41

Test 2

Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

public int Test2()
{
 var result1 = 1;
 while (result1 < 100)
 result1 += 15;
 var a = result1 / 2;
 if (a > 50)
 result1 += a;
 else
 result1 -= a;

 var result2 = 1;
 while (result2 < 100)
 result2 += 30;
 var b = result2 / 2;
 if (b < 50)
 result2 += b;
 else
 result2 -= b;

 return result1 + result2;
}

Output: 220

Dependencies

Statement Depends on statement(s)

4 3, 5

5 3, 4

6 3, 4

7 6, 8, 10

8 3, 4, 6, 7

10 3, 4, 6, 7

13 12, 14

14 12, 13

15 12, 13

16 15, 17, 19

17 12, 13, 15, 16

19 12, 13, 15, 16

21 3, 4, 7, 12, 13, 16

Figure 6 visualizes these dependencies. The same rules apply as the figure from Test 1.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 42

Figure 6: Dependencies between statements of Test 2.
The blue boxes represent the separated statement groups.

Independent statements5

Statement Independent from statement(s)

3 12, 13->14, 15, 16->19

4->5 12, 13->14, 15, 16->19

6 12, 13->14, 15, 16->19

7->10 12, 13->14, 15, 16->19

Swappable statements

Statement Swapped with statement Output unchanged after swapping

7->10 12 Yes

5 In this table, the ‘->’ sign in “1->5” means statements 1, 2, 3, 4 and 5.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 43

Mid-Conclusion
For Test 1 and 2, we have validated the independent statements by applying the swapping method.

However, the algorithm for finding swappable statements turned out to be lacking. Resulting in only 11

out of 21 independent statements were able to swap for test 1. For test 2 this was even worse: 1 out of

16.

To increase the number of swappable statements, we will extend our algorithm. When we find 2

statements suitable for swapping, we will keep checking the following statements until one is found that

is not suitable. This addition could help validate more independent statements, because a statement will

now be swapped with more than one other statement.

Test 3
For Test 3, we will retest the code of Test 2 with the new addition to our swapping method. The code of

Test 2 will remain the same, along with the dependencies and independent statements.

Swappable statements

Statement Swapped with statements Output unchanged after swapping

7->10 12, 13->14, 15, 16->19 Yes

This time the swappable statements resulted in a different result. Statement 7 was swapped with

statements 12, 13, 15 and 16. Meaning the If-statement of statement 7 was swapped to below the If-

statement of statement 16.

Since he output was not changed, this test proves that statement 7 is indeed independent from

statement 12, 13, 15 and 16.

Test 4
So we know that the proposed solution does not yet work on bigger programs. However, to see how it

would perform with larger amounts of code, we have created a function that would not break on

analyzing its dependencies. This function is shown in code block 12.

The function is called ‘LiveDay ‘ and represents how a typical day for ‘joe’ would go. This function is

bigger and more complex than the code blocks from the previous tests. It contains various structures

that the proposed solution can handle. It also contains deeper structures.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 44

Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

public static void LiveDay(ref Person joe)
{
 var isAlive = joe.IsAlive;

 while (joe.SleptForHours <= 8) {
 joe.SleepForHour();
 }

 if (joe.IsHungry) {
 var refrigerator = joe.Refrigerator;
 try {
 var foods = refrigerator.GetFavoriteFood(joe);
 foreach (var food in foods) {
 joe.Eat(food);
 }
 }
 catch (Exception ex) {
 if (refrigerator.IsEmpty)
 refrigerator.Fill(joe.DoGroceries(new Supermarket()));
 else //joe is no expert
 joe.CallMechanic();
 }
 }

 var work = joe.Work;
 if (work.HasToGoToWork(joe)) {
 var car = joe.Car;
 joe.Driving = joe.Position != work.Position;
 while (joe.Driving) {
 joe.Drive(car, work);
 joe.Driving = joe.Position != work.Position;
 var accident = joe.InCarAccident;
 if (accident == "deadly") {
 isAlive = false;
 joe.Driving = false;
 }
 }
 if (joe.IsAlive)
 joe.DoWork(work);
 }
 if (isAlive) {
 joe.DaysAlive += 1;
 if (joe.DaysAlive > 9000)
 isAlive = false;
 }
 joe.IsAlive = isAlive;
}

Dependencies

The amount of dependencies in this function is quite big. To illustrate how quickly the dependencies can

grow and become quite complicated, we will add the visualization of the dependencies that exist within

this function. Any dependencies to other parts in the code have been excluded.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 45

Figure 7: Dependency visualization for Test 4.

In figure 7, the blue boxes will be the swappable statements. A quick look at Figure 7 reveals a lot of

information. If we look at box 1 we can see that it has no dependencies to any statements outside the

box, except for statement 1. The same applies for box 2. If there are no dependencies between the

“blocks of statements”, they could be valid opportunities for parallelism. If we look at box 3, we can see

there are a few statements dependent on box 3. But if we look closely, we can see that these

dependencies are all from statement 34 and beyond. In other words, there are no dependencies

between box 3 and any statement until statement 34. Meaning box 3 can be executed in parallel until

statement 34 is executed.

The big knot at the bottom is statement 1. It could seem that this would get in the way of finding the

opportunities for parallelism. However, statement 1 is executed before all other statements. Meaning

dependencies to statement 1 from all other statements will not prevent valid opportunities for

parallelism.

Analyzing the dependencies like this is exactly what The Analyzer can do.

Swappable statements

Statement Swapped with statements Output unchanged after swapping

3 5->26 Yes

3 9->25 Yes

5->7 9->46 Yes

5->7 26->46 Yes

9->23 26 ->46 Yes

This function was tested by calling the mutated versions with different instances of “Person” with

different values for the properties. By doing this we achieved full code coverage.

Even though there appeared to be some problems with the dependencies of the code, the given results

turned out to be independent. This means that the proposed solution can indeed detect valid

opportunities for parallelism for more complex code.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 46

4.5.6 Validating dependencies
The third evaluation question is hard to answer. We could use the swapping method in the same way

we used it to validate the independent statements, but there is a difference between dependencies and

independencies. As we have noted before, some dependencies can be broken without breaking the

program or changing the output (chapter 6, section 1.3). An example of one of these dependencies is

when 2 statements perform an addition on the same variable. A change in the order of the additions

does not matter for the output nor does it break the program. And still, there are dependencies

between them. Another problem with testing dependencies with the swapping method is that

dependencies are not always between swappable statements. Dependencies can also be to routines, or

to properties. These structures cannot be swapped, and thus would not be able to validate using the

swapping method.

This means there might be some false positives in the list of dependencies, and would mean that the list

of independent statements is smaller than it could be. Fortunately, we have been able to validate the

independent statements. So the list of independent statements has a high precision, and will not contain

a many false positives.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 47

5. Conclusion
We started this thesis with the following problem: How can we quickly determine if a (large complex)

.NET C# program could be transformed to use parallelism. To find a solution we have set a main goal and

sub goals. The first sub goal we achieved was to extract a dependency model from .NET C# software

programs. We were able to achieve this by creating an AST of the code in Rascal using The AST Extractor

& Translator. Then we consumed the AST and created a dependency model with The Dependency

Extractor. The next sub goal was to analyze the dependency model and determine the independent

statements in the source code, which was achieved by creating The Analyzer. The next sub goal was to

generate a list of opportunities for parallelism based on the results of The Analyzer, but instead we

chose to validate the results we found so far(which are the final two sub goals). By validating the results,

we found that we can indeed find opportunities for parallelism that improve performance (up to at least

49.5%). And in all of our tests we have not been able to detect false positives in the found independent

statements, this means we have achieved high precision in the generated list of independent

statements.

Our main goal was to generate a list of valid opportunities for parallelism, that could improve

performance, to guide programmers while implementing parallelism. We have achieved most of our

main goal, we are able to generate a list of valid independent statements that can lead to improved

performance.

However, there are a few limitations to the proposed solution. Transforming the list of independent

statements into our definition of an opportunity for parallelism has not yet been achieved, even though

it is not expected to be hard to achieve if time is available. Unfortunately, time was short and lead to

another limitation: The proposed solution cannot handle the full .NET C# language, and thus it cannot

handle complete software programs. However, because we chose to start on the creation of The

Analyzer, we have been able to get and validate our results.

By using the technique presented in this thesis, opportunities for parallelism can be found in the source

code that can guide programmers to increase performance by implementing parallelism into software

programs. However, because this technique cannot handle the full .NET C# language (yet) we have not

been able to find a complete solution to the problem. The proposed technique can handle small .NET C#

programs. To be able to handle large complex programs, the proposed solution has to be expanded to

handle the full .NET C# language.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 48

6. Future work & Discussion
First of all, as future work I would recommend extending the Dependency Extractor to cover the full

.NET C# language. This will make the proposed solution able to be applied to complete programs.

Chapter 2, section 6.2: Unhandled dependencies, can be used as a start for this extension.

Secondly, completing the last step of transforming the list of independent statements into a list of

opportunities for parallelism would, in combination with the first recommendation, complete the

solution for the problem.

When the solution is completed, a great addition to this study would be to fulfill the third

requirement(stated in Chapter 3, section 1.3): adding a new module to consume the generated

opportunities to transform the code to apply the generated opportunities for parallelism.

Another topic that needs more research is sub path detection, discussed in Chapter 3, section 2.4. There

are probably a lot more opportunities for parallelism to be found in the source code than what we are

currently able to find. The sub path algorithm is an example of this. If this could be extended it would be

another great addition.

For this study we have chosen to create a list of opportunities with a high precision. This has the

advantage of providing accurate information about the analyzed program, and the results actually tell

the programmers where to implement parallelism. However, this could also be seen from another point

of view. If we would generate as many opportunities as possible, and maybe give the opportunities a

score to indicate the reliability, we would be helping the programmers even more. If the programmer

has more leads on where parallelism could be added, the program could gain more performance. Even if

not all the opportunities can actually be implemented, they might still be a valid opportunity after some

refactoring is done by the programmer.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 49

7. References
[1] A. Telea, H. Hoogendorp, O. Ersoy and D. Reniers. Extraction and visualization of call dependencies

for large C/C++ code bases: A comparative study. In Visualizing Software for Understanding and Analysis,

pages 81-88, 2009.

[2] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing

capabilities. In Proceedings of the spring joint computer conference (AFIPS '67 (Spring)), pages 483-485,

ACM, New York, NY, USA, 1967.

[3] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker and J. Dongarra. MPI: The Complete Reference,

volume 2, The MPI Extensions. MIT Press, Cambridge, MA, USA, 1998.

[4] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. Automatic program parallelization. In

proceedings of the IEEE, volume 81, issue 2, pages 211-243, 1993

[5] E. Burrows and M. Haveraaen. Programmable data dependencies and placements. In Proceedings of

the 7th workshop on Declarative aspects and applications of multicore programming (DAMP '12), pages

31-40, ACM, New York, NY, USA, 2012.

[6] G. Goff, K. Kennedy, and C. Tseng. Practical Dependence Testing. In Proceedings of the ACM SIGPLAN

conference on Programming language design and implementation (PLDI '91), pages 15-29, ACM, New

York, NY, USA, 1991.

[7] R. E. Sward and A.T. Chamillard. AdaSlicer: an Ada program slicer. In Proceedings of the annual ACM

SIGAda international conference on Ada (SigAda '03), pages 10-16, ACM, New York, NY, USA, 2003.

[8] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu and Masato Takeichi. Automatic inversion generates

divide-and-conquer parallel programs. In proceedings of the ACM SIGPLAN conference on Programming

language design and implementation, volume 42, issue 6, pages 146-155, 2007.

[9] G. Goumas, N. Drosinos, M. Athanasaki and N. Koziris. Automatic parallel code generation for tiled

nested loops. In Proceedings of the ACM symposium on Applied computing (SAC '04), pages 1412-1419,

ACM, New York, NY, USA, 2004.

[10] D. Huang and J. G. Steffan. Programmer-assisted automatic parallelization. In Proceedings of the

Conference of the Center for Advanced Studies on Collaborative Research (CASCON '11), pages 84-98,

IBM Corp., Riverton, NJ, USA, 2011.

[11] A. Canedo, T. Yoshizawa and H. Komatsu. Automatic parallelization of simulink applications. In

Proceedings of the 8th annual IEEE/ACM international symposium on Code generation and optimization

(CGO '10), pages 151-159, ACM, New York, NY, USA, 2010.

[12] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib and J. Wang. Introducing map-reduce to high end

computing. Petascale Data Storage Workshop. PDSW '08, volume 3, pages 1-6, 2008.

Richard Bos, Universiteit van Amsterdam January 13, 2014 Page 50

[13] T.Y. Chen. Adaptive Random Testing. Quality Software QSIC '08, The Eighth International

Conference, page 443, 2008.

[14] N. Sangal, E. Jordan, V. Sinha and D. Jackson. Using dependency models to manage complex

software architecture. In Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages and applications (OOPSLA '05), pages 167-176, ACM, New York, NY,

USA, 2005.

[15] M. R. Woodward. Mutation testing-an evolving technique. In Software Testing for Critical Systems,

IEE Colloquium, pages 3/1-3/6, 1990.

[16] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess

Programs. Computers, IEEE Transactions, volume C-28, pages 690-691, 1979.

[17] E. G. Coffman, M. Elphick and A. Shoshani. System Deadlocks. ACM Computing Surveys, volume 3,

issue 2, pages 67-78, 1971.

[18] I. Ronen, N. Dor, S. Porat and Y. Dubinsky. Combined static and dynamic analysis for inferring

program dependencies using a pattern language. In Proceedings of the conference of the Center for

Advanced Studies on Collaborative research (CASCON '06), Hakan Erdogmus, Eleni Stroulia, and Darlene

Stewart (Eds.), article 3, IBM Corp., Riverton, NJ, USA, 2006.

[19] M. Weiser. Program slicing. In Proceedings of the 5th international conference on Software

engineering (ICSE '81), pages 439-449, IEEE Press, Piscataway, NJ, USA, 1981.

[20] B. Franke and M.F.P. Oboyle. Compiler parallelization of C programs for multi-core DSPs with

multiple address spaces. Hardware/Software Codesign and System Synthesis, First IEEE/ACM/IFIP

International Conference, pages 219-224, 2003.

[21] P. Larsen, R. Ladelsky, J. Lidman, S.A. McKee, S. Karlsson and A. Zaks. Parallelizing more Loops with

Compiler Guided Refactoring. Parallel Processing (ICPP), 2012 41st International Conference, pages 410-

419, 2012.

[22] P. Klint, T. van der Storm and J. Vinju. EASY meta-programming with Rascal. In Proceedings of the

3rd international summer school conference on Generative and transformational techniques in software

engineering III (GTTSE'09), pages 222-289, Springer-Verlag, Berlin, Heidelberg, 2009.

[23] J. Ferrante, K. J. Ottenstein and J. D. Warren. The program dependence graph and its use in

optimization. ACM Transactions on Programming Languages and Systems (TOPLAS), volume 9, issue 3,

pages 319-349, 1987.

[24] A. Aho, R. Sethi and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1986.

