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Abstract

Fault-proneness prediction models uses techniques from machine learning and statistics in order to
indicate parts of the software system that are likely to be fault-prone. These models can be used
to improve the fault discovery strategy by pointing out fault-prone parts of the software system. If
accurate enough, they could be applied in the industry to reduce the resources needed for reviewing
or testing software systems. A number of researchers succeeded in building accurate fault-proneness
prediction models which were trained and validated using a single-system. However, there is little
known about the e↵ect on fault-proneness prediction model accuracy when applied across systems;
let alone the factors that influence the model’s accuracy.
In this study, we assess the e↵ectiveness of regression-based fault-proneness prediction models ap-

plied across systems. Three axes are proposes along which fault-proneness prediction models could
be improved: (i) By changing the included fault-proneness predictors; (ii) by tuning or altering
fault-proneness prediction modelling techniques; (iii) or by considering the context in which the fault-
-proneness prediction model operates. 13 commercial systems active in the financial sector were used
to test the e↵ect of these improvements.
Based on our discoveries, it seems to be possible to build e↵ective fault-proneness prediction models

that could be applied across systems; our best cross-system fault-proneness prediction models obtained
on average an accuracy of 92%. However, building stable fault-proneness prediction models is far from
straightforward, there is still little known about which factors influence the prediction models and
which predictors actually correlates with class fault-proneness. In our opinion, we do not think that
(regression-based) fault-proneness prediction could e↵ectively applied in practice at this point.
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Chapter 1

Introduction

1.1 Problem Statement

The claim that a large part of the faults reside in a small part of a software system [1, 2] triggered
many researchers to find ways to discover parts of the system that are likely to contain faults. A
number of these researchers focused on building fault-proneness prediction models that are able to
separate fault-prone modules from non fault-prone modules [3]. These models can be used to improve
the fault discovery strategy by pointing out the modules that are likely to contain a larger part of the
faults. If accurate enough, they could be applied in the industry to reduce the resources needed for
reviewing or testing software systems.
A number of studies claimed they build highly accurate fault-proneness prediction models, using

regression analysis techniques and product measures, that find between the 70% and 90% of all the
fault-prone modules with an accuracy around 80% [4, 5, 6, 7, 8]. However, these models are build
and verified on the same software system, assuming the fault-proneness prediction model will only be
used on that particular system. This assumption a↵ects the quality and the generalisability of the
model: (i) The quality is a↵ected by the limited data a single system is able to provide for training
the model. If there is too little data available for the model to be trained with, it will influence the
prediction accuracy negatively by overgeneralising the training data. As a result, the current system
must be mature enough before any prediction model can be used with reasonable accuracy, and even
then the data is still limited to a single system. (ii) The generalisability is a↵ected by only considering
the current system in the validation process. The validation of the prediction model will only provide
insights in the accuracy of the model regarding that particular system, but it tells nothing about
the performance of the model on other systems. As a result, the model is tied to that system and
cannot be used with confidence on other systems. Also, because the model needs to be rebuild for
each system, the model is unable to evolve over time.
The latter two limitations could be resolved by using fault-proneness prediction models that are

trained and validated using multiple systems. By using more than one mature system to build the
fault-proneness prediction model, it should solve the constraint on the training data and makes it
possible to apply the model new or small software systems. Moreover, if the factors that influence the
quality of a prediction model are known and can could be controlled, that model could be reused on
similar systems with reasonable accuracy (the ratio of true positives and negatives to all predictions).
However, there is little known about the e↵ect on the model’s accuracy when applied across systems;
let alone the factors that influence the model’s accuracy (e.g. does team composition influences
prediction accuracy).
A realistic condition when applying fault-proneness prediction models in practice is that they could

be used across systems and trained using multiple-systems datasets. If not, models will be usable
on a single system of substantial size. If it is the case that fault-proneness prediction models are
incapable of predicting accurately across systems, it will have serious ramifications for the utility of
fault-proneness prediction models in practice.
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1.2 Initial Study

Briand et al. [4] stated that previous studies on fault-proneness prediction modelling “can be char-
acterized as feasibility studies”, this is because these studies were not applied under “realistic condi-
tions”. In their opinion “the purpose of building such [fault-proneness prediction] models is to apply
them to other systems”, for this reason they assessed the applicability of fault-proneness models across
object-oriented software projects.
Briand et al. build a fault-proneness prediction model based on a medium size Java system and

applied the model to a di↵erent Java system developed by the same team (only di↵erent project
manager), using similar technologies (OO-design, and Java), and in a similar environment. The
systems varied in coding standards and design strategies. The two systems used were Xpose and
Jwriter. Xpose is an application for displaying and showing XML documents and has 144 Java classes
with a total of 1.774 methods. Although this application was developed after Jwriter, it was used to
build the model because it was the the larger of the two systems. Jwriter is a component that provides
basic word processing capabilities and has 68 classes with a total of 933 methods. This component
was used to validate the model on.
The model of Briand et al. used a set of measurements extracted from a static analyser, called

Jmetrics [9]. The static analyser measured a subset of coupling measures described in [10, 11], a set
of measures related to polymorphism [12], a subset of of the Chidamber & Kemerer OO metric-suite
[13], and some simple size measures based on counts of class methods and attributes. The data about
faults found in the field by customers were collected and used as input for the prediction model, and
to verify the model’s prediction accuracy.
For the analysis of the data, a subset of the measurements was used. The metrics in this subset were

selected using a mixed stepwise selection procedure. Also, a Principal Component Analysis (PCA)
was used to find groups of measurements that measure the same underlying concept. Briand et al.
conducted three regression analyses: an univariate regression analysis, and two multivariate analysis:

• The univariate regression analysis was used for each individual measure against the dependent
variable – fault/no-fault to detect if the measure is an useful predictor of fault proneness.

• A logical regression analysis with raw metrics as its input and the assumption of a linear rela-
tionship with the dependent variable was used to select a subset of variables that tend to explain
the fault-proneness for that system.

• A logical regression analysis in combination with the MARS basic functions, assuming a more
complex relationship between the independent variables and the dependent variable, was used
to create a composite function of measurements that tend to explain the fault-proneness for that
system best.

For a more detailed description of the data analysis methodology, Briand et al. refers to a previous
study [14].
The fault-proneness prediction models were validated in terms of precision, percent of correctly

classified faulty classes out all faulty classes identified by the model; and recall, percent of correctly
classified faulty classes out all faulty classes in the system. The models were evaluated using v-cross-
validation and cross-system validation techniques.
The results indicate that “a model built on one system can be accurately used to rank classes within

another system according to their fault proneness” but that “applying the models across systems is
far from straightforward”. Their two multivariate regression fault-proneness prediction models had
“completeness and correctness values of about 60% for both models”. To obtain these values they had
to adjusted the cut-o↵ values to 0.22 for the linear model and 0.06 for the MARS model. Briand
et al concluded that both the multivariate models perform better than chance and models based on
size measures. They speculated that changes in the distribution of measures and system factors (e.g.
experience, design method) a↵ects fault-proneness prediction when used between systems.
This thesis continues the work done by Briand et al. on cross-system fault-proneness prediction

models. We will replicate their study and verify the results. Finally, new research goals will be added
based on the outcomes of the replication study.
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1.3 Literature Overview

Various methods are used in research for building fault-proneness predictions models [3], including:
genetic programming [15], neutral networks [16], case-based reasoning [17], fuzzy logic [18], Dempster-
Shafer networks [19], decision trees [20], Naive Bayes [21], and regression analysis [5, 6, 22, 23, 7, 24, 8].
In order to replicate the study done by Briand et al. [4], we focus regression-based fault-proneness

prediction models. The following paragraphs present the work of other researchers on logistic regres-
sion based fault prediction. An overview of the literature can be found in Table 1.1. The table presents
the study, the precision and recall of their best performing prediction model, and the predictors used
by the model. We refer to Chapter 2 for more information on precision, recall, and predictors.
Denaro et al. [5] used logistic regression to relate software measures to class fault-proneness of

homogeneous software products. They also promote the use of cross-validation techniques to validate
prediction models that use small datasets. The predictors used in their best prediction model were:
eLOC, Comm, Lines, FP, LFC, EXEC. This model was able to find 89% of all faults in the system
with an accuracy of 77%. They concluded that it is possible to build statistical models based on
historical data for estimating fault proneness of software modules.
Khoshgoftaar et al. [22] developed a fault-proneness prediction model based solely on process-

history variables like module age ( Age), new modules (IsNew), and changed modules (IsChg). They
investigated if a module its history prior to integration could help predict the likelihood of fault
discovery during integration and testing. They used logistic regression to build the classification
model with a cost-weighted classification rule. Their model found on average 79 % of all faults in the
system with an accuracy of 65%. They drew the following conclusions: (i) Modules that had faults in
the past are likely to have faults in the future. (ii) Unplanned requirements changes result in faults.
(iii) Faults are more likely when code is changed. (iv) Software-quality models can be useful to help
target reliability improvement.
Nagappan and Ball [23] presented an empirical approach for early prediction of pre-release defect

density based on the defects found using static analysis tools. They showed that there exist a strong
positive correlation between static analysis defect density and the pre-release defect density determined
by testing; with static analysis defect density the number of defects found per KLOC, and pre-release
defect density as the number of defects per KLOC found by other methods before the component
is released. Their model used the input of their in-house fault detection tools, Prefix and Prefast,
as predictors and classified 83% of the components correctly (the model’s precision and recall were
omitted to protect proprietary information).
Schneidewind [7] investigated logistic regression as a discriminant of software quality. He used

Logistic Regression Functions (LRFs) and Boolean Discriminant Functions (BDFs) to predict the
probability of the occurrence of discrepancy reports (drcount ; reports of deviations between require-
ments and implementation). He used two unrelated systems, one system for validation and another
system for application. He concluded that very high quality classification accuracy can be obtained
while reducing the inspection cost incurred in achieving high quality. His best model, using a com-
bination of LRFs and BDFs and C, S, E1, E2, N, L as predictors, classified modules with at least a
drcount of 1 from modules with no drcount with an accuracy of 98.75%.
Ostrand and Weyuker [24] summarized their work of ten years of software fault-proneness prediction

research. Their model, called the standard model, is a negative binomial regression model that predicts
faults in a release of a system based on the predictors: LOC, Faults in Release N-1, Changes Releases
N-1 and N-2, Files status, File-age, File-type. The model predicted the top 20% of most fault-
prone files over releases of nine industrial systems. Averaging over the releases of nine systems, their
standard model was able to correctly identify files that accounted for between 75% and 93% of the
actual defects. They also found that in spite of the di↵ering functionality of the systems, development
and testing personnel, corporation that wrote and maintained them, development methodologies,
and level of maturity, their standard model always behaved very well (these conclusions were drawn
from observations made between releases of a same system). Finally they concluded that Negative
Binomial Regression performed better than other models, Recursive Partitioning, Random Forests,
and Bayesian Additive Regression Trees.
Munson and Khoshgoftaar [8] used discriminant analysis as tool for detection of fault-prone pro-

grams. They used mostly size measures as predictors: PROCS, COM, LOC, BLNK, ELOC, VG1,
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VG2, N1, N2, n1, N, V, E. They state that linear regression models are of limited value for the detec-
tion of fault-prone modules. They also investigated multivariate regression analysis techniques and
argue that the distribution of faults are heavily skewed in favour of programs that have no or a small
number of faults. Instead they used the discriminant analysis which was able to correctly identify
75% of the modules. They concluded the following (i) There is a relationship between program faults
and certain orthogonal complexity domains (ii) That predictive models could possibly be used for the
determination of program faults and program modifications. (iii) The complexity metrics are strongly
intercorrelated which could lead to unreliable predictive quality of models used.
Briand et al. [14] explored the relationship between existing object-oriented coupling, cohesion, and

inheritance measures and the probability of fault detection in system classes during testing. They
used a dataset consisting out of eight systems developed by students as part of an assignment and
found that their best model classified 92% of the classes as fault prone with a precision of 78%.
NOP, RFC1 L, NMI, FMMEC, NIH-ICP L, CLD were the predictors used in their fault-proneness
prediction model. Beside the size of a class, the frequency of method invocation and the depth of
inheritance hierarchies seems to be the main driving factors of fault-proneness.

Table 1.1: Literature overview of regression-based fault-proneness prediction modelling
Predictor-set Recall Precision

Briand et al. [4] † NIP, OCMIC, OCMEC ±60% ±60%
Briand et al. [14] RFC1, NOP, RFC1 L, NMI, FM-

MEC, NIH-ICP L, CLD
92% 78%

Ostrand and Weyuker [24] LOC, Faults in Release N-1, Changes
Releases N-1 and N-2, Files status,
File-age, File-type

- 75%-93%

Denaro et al. [5] eLOC, Comm, Lines, FP, LFC,
EXEC

89% 77%

Khoshgoftaar et al [22] IsNew, IsChg, Age 79% 65%
Nagappan and Ball [23] PREfix tool, PREfast tool - 83%
Schneidewind [7] C, S, E1, E2, N, L - 99%
Munson and Khoshgoftaar [8] PROCS, COM, LOC, BLNK, ELOC,

VG1, VG2, N1, N2, n1, N, V, E
75% 82%

† initial study (see Section 1.2)

1.4 Research Questions

This thesis continues the work on cross-system fault-proneness prediction models done by Briand et
al [4]. The goal of this thesis is to asses the e↵ectiveness of fault-proneness prediction models when
used across systems. Formulating this goal lead to the following research question. This question
stands central in our research.

RQ1: Is it possible to build an e↵ective fault-proneness prediction model that could be
applied across systems?

To answer our main research question (RQ1), we will start by investigating the e↵ectiveness of fault-
proneness prediction models in general. Fault-proneness prediction models depend on the assumption
that faults are inequality distributed over the system. If this assumption does not hold, then fault-
proneness prediction models are not useful because every class in the system is equally fault-prone.
The following research question will be used to learn more about fault distributions in software systems
and will aid the assessment of the practical e↵ectiveness of fault-proneness prediction models.

RQ2: Are faults within a software system unequally distributed over its classes?

Next, we will replicate the research of Briand et al. [4], and reassess the applicability of fault
proneness models across software projects. The initial study is described in Section 1.2.
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RQ3: Can fault-proneness prediction models e↵ectively be used across systems developed
by the same team?

In our replication study, we proposed three axes along which we think cross-system fault-proneness
prediction models could be improved. Improvements along two of the axes requires optimizations
to the prediction model itself. The goal of this study is to alter the model construction method as
proposed by Briand et al., in order to increase the accuracy of the current regression-based fault-
proneness prediction models.

RQ4: Can Briand et al. their cross-system fault-proneness prediction model be improved?

Finally, we will investigate which factors influence fault-proneness prediction models when they are
applied across systems. Briand et al. suspects that system factors like experience and design method
a↵ect the prediction models. But other factors could be thought of like team composition, process
protocols and standards, and system type and function.

RQ5: Which factors influence the fault-proneness prediction model’s accuracy when used
across systems?

To answer the main research question, we will use the findings from our preliminary research to
scope the domain in which the fault-proneness prediction models could be e↵ectively used. Next, we
use the improved model construction process to build our best fault-proneness prediction models, and
apply those on datasets with idealistic similarities.

• If we are not able to construct a fault-proneness prediction model with a reasonable accuracy
under these circumstances, then changes are that fault-proneness prediction models are not
e↵ective across systems and thereby answering our main research question. If this tends to
be true, then we strongly advise against using regression-based prediction models for fault
prediction in practice.

• If we are able to create one or more fault-proneness prediction models with reasonable accuracy,
then we conclude that it is possible to build cross-system fault-proneness prediction models and
that additional research is required to fully answer the main research question. If this is the
case, we advice that future research focusses on the factors whom influence the fault prediction
models.

1.5 Contributions

Contribution #1: Java metric-suite

In e↵ort to replicate Briand et al. their study [4], a metric-suite was build to replace the non-public and
closed source JMetrics metric-suite. Our metric-suite contains a subset of Briand et al. their cohesion
metrics [25], Benlarbi & Melo their polymorphism measures [12], all metrics from the Chidamber &
Kemerer metric suite [13], all metrics proposed by Li & Henry [26], and some size metrics. Besides
from the byte-code metrics, an extension of the tool contains also process metrics: change metrics
based on Koshgoftaar et al. [22] their change measurements, a subset of Ostrand & Weyuker their
’optimal’ standard model measures [27], and a class-author count. The implementation of the metrics
are described in detail (see Appendix A) and the tool is open-source and publicly available1.

Contribution #2: Empirical knowledge

One part of this thesis was to replicate the study done by Briand et al. regarding cross-system fault-
proneness prediction models [4]. We successfully replicated their study by using both the initial study
and their exploratory study [14]. The validation data is based on 4 observations, using 6 large active
commercial systems. The results provide a small contributes to the body of empirical knowledge.

1
https://github.com/scrot/mt
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Contribution #3: Prediction model improvements

We proposed three improvements regarding regression-based fault-proneness prediction models. The
improvements cover three axes: (i) altering the collection of predictors to choose from; (ii) the mod-
elling technique by considering the state of the system during measurement; (iii) improve the model
by controlling the context of the systems. The first two improvements were validated using 6 large
active commercial systems, the latter improvement was validated using 13 commercial systems. Two
out of the three improvements (ii and iii) drastically increased the accuracy of the fault-proneness
prediction models. The average accuracy of the 100 prediction models that were build using 13 com-
mercial systems was 92%; with an average precision and recall of 92% and 93%, respectively. This is
an increase in accuracy of 36% compared to the fault-proneness prediction models from the replication
study; which had an average accuracy of 56%, an average precision 76%, and an average recall of 60%.

Contribution #4: Factor analysis

In the final part of this thesis we did extensive research into the influence of environmental and system
related factors on fault-proneness prediction models. The study was supported by 13 large commercial
systems. Although, we did not found factors whom influence prediction models, we provided evidence
that people, technology, or process related factors are not likely to influence the fault prediction model.

1.6 Recommendations

Our recommendations are based on the results from the preliminary research (see Chapter 3), the
replication study (see Chapter 4), the improvement study (see Chapter 5), the factor study (see
Chapter 6), and the knowledge obtained from the literature study (see Section 1.3).
Based on our discoveries, it seems to be possible to build e↵ective fault-proneness prediction models

that could be applied across systems; All our cross-system fault-proneness prediction models obtained
on average an accuracy of 92%. However, building stable fault-proneness prediction models is far from
straightforward, there is still little known about which factors influence the prediction models and
which predictors actually correlates with class fault-proneness. In our opinion, we do not think that
(regression-based) fault-proneness could e↵ectively applied in practice at this point. More research is
necessary in order to build e↵ective and reliable prediction models.
During our research, we improved commonly used methods, which are often used in regression-based

fault-proneness prediction modelling. Comparing the average model accuracy from the replication
study with the average model accuracy from our factor study, an improvement of 35% was observed.
In our opinion, the increase was mainly caused by three things:

• The used predictor-set. The predictors used in the fault-proneness prediction models must be
simple and have a clear relation to fault-proneness. Also, prevent using predictors that measure
the same underlying concept and make sure that they measure various aspects of a class (e.g.
include process measures and product measures).

• State-aware measurements. To correctly measure the properties of a fault-prone class, the state
of the whole system considered. Preferably, revert the system-state to a version which contains
a particular fault. The measurements will represent fault-prone classes more accurately and will
result in better fault-proneness prediction models.

• System-pools as dataset. Build models using system pools, that are collections of systems which
are taken from a similar context. The model is more likely to fit its function to generalizable
fault-prone patterns rather than to the patterns of single system.

1.7 Outline

This thesis is divided in the following chapters: Chapter 2 provides information on the relevant topics;
Chapter 3 is the summary of the preliminary research; In Chapter 4 we summarize the replication
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study; Chapter 5 we propose our improvements to the prediction model construction method; Chap-
ter 6 contains the exploratory study regarding factors whom might influence the prediction model.

11



Chapter 2

Background

2.1 Fault Detection

The interpretation of a fault specifies what the fault-proneness prediction model actually predicts. In
this thesis we consider a fault the cause of an error that might lead to a system failure and could
cause part of the system state to behave di↵erently than expected [28].

2.1.1 Issue-trackers

Discovered faults could be stored in an issue-tracker system. An issue-tracker system is a database
that contains issue-reports with information on faults that are currently in the system or faults that
were fixed in the past. These reports could be classified into categories: Fault-reports, enhancements
to the system, updates of the documentation, improvements of current system functionality, code
re-factorings, and others (see Herzig et al. [29] for more information on issue-report categories). A
class contained a single fault if it is changed by a commit that resolves an issue in the issue tracker.
Only the fault-reports in the issue-tracker are considered.

2.1.2 Selection bias

“Selection bias refers to systematic di↵erences between baseline characteristics of the groups that are
compared” [30]. When issue-reports are used to extract system faults, the resulting dataset will be
a↵ected by selection bias. This is because the issue-reports could be incorrect; Herzig et al. [29] found
that 33.8% of al bug reports are misclassified. Also, the issue-reports could be incomplete because of
faults that are not (yet) in the issue-tracker. As a result, the conclusions drawn from these datasets
are subjective.

2.2 Fault Distribution

The distribution of faults tells something about how faults are spread out over a system. The inequality
of fault distributions is one of the reasons to build fault(-proneness) prediction models. Important to
notice is that fault distributions are in most cases estimations of the actual fault distributions, this
is because they are subjected to selection bias. The fault distributions in this thesis are therefore
biased and the conclusions drawn are subjective. Two measures of inequality are used in this thesis
and described in this section: Pareto principle and the Gini-coe�cient.

2.2.1 Pareto principle

The Pareto Principle describes the notion of the vital few, where a small part of the observations are
responsible for a large part of the e↵ect [31].
It seems like the distribution of faults follows the Pareto Principle. Studies from di↵erent envi-

ronments over many years confirmed the claim that a large number of the defects are caused by a
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part of the system. In the Software Defect Reduction Top-10 List [1], Boehm and Basili state that
“About 80% of the defects comes from 20% of the modules and about half the modules are defect free”.
Fenton and Ohlsson hypothesized that “A small number of modules contain most of the faults” [32]
and found evidence for this hypothesis. The latter study is replicated with the same results [33, 34].
Weyuker & Ostrand also found strong evidence for the same statement [35].
Although the support for the Pareto Principle indicates an unbalanced distribution of faults within

components, it could be easily explained by the fact that the code within the modules are also
unequally distributed. In other words, the small number of modules that contain most of the faults
also makes up most of the system’s source-code. Fenton & Ohlsson tested the hypothesis “If a small
number of modules contain most of the faults [...] then this is simply because those modules constitute
most of the code size” [32] and found no evidence that supported the hypothesis, they even found
strong evidence of a converse hypothesis. Also, the replication studies found no support for this
hypothesis [33, 34]. However, there are studies that confirmed this hypothesis [36, 37].
The results of the studies related to the Pareto Principle and fault distribution in software systems

are summarized in Table 2.1. The table contains the studies and the results of the two hypotheses:
“Few modules contain most faults” and “Few faulty modules constitute most of the size”. These
hypotheses are the same as in Fenton and Ohlsson their study, but it does not separate faults found
post-release and faults found pre-release. During the analysis we did not take the definition of a fault
in consideration.
Based on the literature from Table 2.1, it seems that it is true that few modules contain most of

the faults (most distributions are around 20-80, with a lowest extreme of 20-60). However, there is
some support for the hypothesis that few fault modules constitute most of the total system size.

Table 2.1: Fault distribution literature
Few modules contain most faults Few faulty modules constitute

most of the size

Fenton & Ohlsson
[32]

Confirmed (20-60; 10-80; 10-100) No support (20-30; 100-12; 60-6)

Andersson &
Runeson [33]

Confirmed (20-63; 20-70; 20-70) No support (20-38; 20-25; 20-39)

Grbac & Runeson
[34]

Confirmed (20-67; 20-66; 20-77; 20-63;
20-80)

No support (20-32; 20-29; 20-22;
20-26; 20-23)

Munson et al. [8] Confirmed (20-65) -
Ohlsson & Alberg
[6]

Confirmed (20-60) -

Compton &
Withrow [36]

Confirmed (12-75) Confirmed (12-63)

Kaaniche &
Kanoun [37]

Confirmed (38-80) Confirmed (38-54)

Weyuker &
Ostrand [35]

Confirmed (20-83; 20-83; 20-75 ;20-81;
20-93; 20-76)

-

2.2.2 Gini Coe�cient

The Gini-coe�cient is a measure of statistical dispersion and commonly used to measure inequality
[38]. The Gini-coe�cient measures the inequality among values of any frequency distribution. The
value ranges between 0 and 1 where 0 implies complete inequality and 1 complete equality.
A graphical representation of the Gini-coe�cient is shown in Figure 2.1 and can be calculated as

follows [39]:
G = A/(A+B) (2.1)

A+B is the area under the line of equality and A can be calculated using Equation 2.2. Where A
is the lowest and B is the highest value of the variable y, and F (y) is the cumulative distribution of
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y.

A =

bZ

a

f(y)[1� f(y)]dy (2.2)

To relate the Gini-coe�cient to the Pareto Principle, we will use a simplified version of the 20-80
rule. Instead of the fault-proneness prediction following a smooth distribution, we say that 20% of the
system components contain 80% of the faults and that these faults are distributed equally over these
20%. The remaining 20% faults are also equally divided over the rest of the system components. The
space between the equality line and the Lorenz curve is equal to (0.5� (0.8 + 0.8 + 0.4))/0.5 = 0.6.

Figure 2.1: Gini coe�cient (diagram based on [40])

2.3 Software Measurement

As predictors for the fault-proneness prediction models we will use a subset of product and process
measures. Based on a subset of these metrics and their relation with fault-proneness, the fault-
proneness prediction model may or may not classify components as fault prone.
A metric captures information about an attribute or entity [41]. A software metric captures a

certain aspect of a software system. The goal of a considerable number of software metrics is to
provide insight in the quality of the source-code of the system but there are also metrics that measure
di↵erent aspects of the system. Based on the measurement goal of a metric, software metrics could
be categorized into roughly two groups [42]:

• Product metrics, also known as quality metrics, measure the properties of the system itself. The
product metrics includes reliability metrics, functionality metrics, performance metrics, usability
metrics, and style metrics.

• Process metrics, also known as management metrics, measure the properties of the process which
is used to obtain the software. It includes cost metrics, e↵orts metrics, advancement metrics,
and reuse metrics.

The following subsections cover the research related to product metrics and process metrics.

2.3.1 Chidamber-Kemerer metrics

Chidamber and Kemerer proposed a metric suite consisting out of six object oriented design metrics
based on the ontology of Bunge and validated them using Weyuker’s proposed set of measurement
principles [13]. The metric-suite holds the following product metrics:

14



• Weighted Methods per Class (WMC). the sum of the complexity of all methods within a class.
For a class C1, with methods M1...Mn

defined in C1 and c1...cn the complexity of these methods:

WMC =
nX

i=1

c1 (2.3)

This metric is a predictor on how much time and e↵ort is required to develop and maintain
classes. In case of inheritance, these methods could also impact the sub-classes.

• Depth of Inheritance Tree (DIT). The depth of inheritance of a class. In cases of multiple
inheritance, the maximum length from a node to the root of the tree. Classes that are deep in
the inheritance tree are likely to inherit a greater number of methods, making it more complex
to predict its behaviour.

• Number of Children (NOC). Number of immediate sub-classes subordinated to a class in the
class hierarchy. A large number of child classes imply more code reuse, higher change of improper
abstraction of the parent class, and more method testing on the parent class. The number of
children also give an idea of the potential influence a class has on the design.

• Coupling between Object Classes (CBO). Number of other classes the class is coupled to. High
coupling of classes tend to result in low modularity preventing code reuse. It also a↵ects encap-
sulation of the classes making the code more sensitive to changes in other parts of the design,
making maintenance more di�cult.

• Response for a Class (RFC). The number of all methods that can be invoked in response to a
message to an object of the class or some method in the class.

RFC = |RS| where RS is the response set of the class. (2.4)

The response set for the class can be expressed as the equation below, where {M} is the set of
all methods in the class and {R

i

} is the set of methods called by method i.

RS = {M} \
alli

{R
i

} (2.5)

This metric indicates the complexity of a class and the e↵ort to test or debug a class. A high
number of possible methods that can be evoked in response to a message complicates testing
and debugging because a higher level of understanding is necessary.

• Lack of Cohesion Methods (LCOM). The count of the number of method pairs whose similarity
is null minus the pairs whose similarity is not null. For a class C1, with methods M1...Mn

and instance variables {I
j

} used by method M
i

. Let P = {(I
i

, I
j

)|I
i

\ I
j

= ;} and Q =
{(I

i

, I
j

)|I
i

\ I
j

6= ;}. If all n sets are ; then let P = ;.

LCOM =

(
|P |� |Q|, if |P | > |Q|
0, otherwise

(2.6)

The measure of cohesion gives an indication of the complexity of a class. Low cohesion means
that a class does more than one thing making it more di�cult to understand.

2.3.2 Li-Henry metrics

Li and Henry revised and extended the Chidamber and Kemerer metric suite [26]. They removed the
CBO metric which measures the non-inheritance related coupling and added three coupling metrics:
coupling through inheritance, coupling though message passing, coupling though abstract data types; a
class increment metric, number of local methods (NOM); and two size metrics: lines of code of a class
(SIZE1), and the number of class properties (SIZE2).
Objects could be coupled to each other through certain communication mechanisms. There are

three form of coupling: coupling through inheritance, coupling through message passing, and coupling
through data abstraction.
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• Coupling through Inheritance (CTI). Measured using depth of inheritance (DIT) or number of
children of a class(NOC). Inheritance promotes reuse but also creates the possibility of violating
encapsulation and information hiding. Incorrect use of inheritance or improper design may
introduce extra complexity to a system, making it more fault-prone.

• Coupling through Message Passing (CTM). Measured using the MPC metric, that is the number
of send statements defined in a class. Message passing occurs when an objects needs some service
that another object provides. The number of messages send from a class may indicate how
dependent the implementation is on other classes. One needs to keep the classes the program
depends on in mind, increasing the complexity of the class. Also, if the other class contains
a bug it is probable it could a↵ect the classes that depend on it (e.g. when a class throws a
null-pointer exception, the dependent classes must deal with this exception accordingly).

• Coupling through Abstract Data Types (CTA). Measured using the DAC metric, the number
of abstract data types (ADTs) in a class. A class can declare a variable that has the type of
the ADT (e.g. extensions and implementations of the ADT). This type of coupling may cause
violation of encapsulation if private properties could be accessed directly, which could result in
faults. Moreover, the more ADTs a class has the more complex the coupling of that class.

Measures related to class interface increment:

• Number of local methods (NOM). The number of local methods. Gives an indication of the
complexity on an interface of a class. This metric may indicate the operation property of a
class; the more methods a class has, the more complex the class its interface.

Measures related to size:

• Class lines of code (SIZE1). measured as number of semicolons in a class. The size of a procedure
or function could be an indication of the complexity of a class. Also a class is more likely to
contain bugs if it contains more code.

• Number of class properties (SIZE2). The sum of the total number of attributes and the total
number of local methods. This gives a more high level indication of the size of a class. The
higher the measure the more likely it is that the class contains faults.

2.3.3 Briand et al. coupling metrics

Briand et al. devised a suite for measures to quantify the level of class coupling [25]. The suite includes
di↵erent measures of OO specific coupling mechanisms. They analysed the relationship between the
measures and the probability of fault detection across classes. The results show that some of the
coupling measures may be useful as early quality indicators of OO design. Moreover, they found that
the measures are conceptually di↵erent from the Chidamber & Kemerer metric suite and could be
used to complement the CK-metric suite.
The metric suite contains 18 metrics: IFCAIC, ACAIC, OCAIC, FCAEC, DCAEC, OCAEC,

IFCMIC, ACMIC, OCMIC, FCMEC, DCMEC, OCMEC, OMMIC, IFMMIC, AMMIC,
OMMEC, FMMEC, DMMEC. The coupling metrics are counts for interactions between classes
and distinguish the relationship between the classes, the locus of impact, and the type of interaction.
The acronyms for the metrics indicates what interactions are counted:

• The first or first two letters indicate the relationship between the classes, that is the relation
of an arbitrary class C

i

to the considered class C. The following relationships are taken into
account: A, coupling to ancestor class; D, coupling to descendant classes; F, coupling to friend
classes; IF, coupling to inverse friend classes; and O, any other coupling relationship.

• The next two letters indicate the type of interaction: CA, there is a class-attribute interaction
between class C and C

i

if C has an attribute of type C
i

; CM, there is a class-method interaction
between class C and C

i

if C has a method with a parameter of type C
i

; MM, there is a method-
method interaction between class C and C

i

if C invokes a method of C
i

, or if a method of class
C

i

is passed as parameter to a method of class C.
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• The last two letters indicate the locus of impact: IC, import coupling, the measure counts for a
class C all interactions where C is using another class; EC, export coupling, counts interactions
where class C is the used class.

2.3.4 Benlarbi-Melo polymorphism metrics

Benlarbi & Melo defined an empirically investigation into the quality impact of polymorphism on
OO design [12]. They described two aspects of polymorphism: static polymorphism, polymorphism
based on compile time linking decisions (e.g overloading functions); and dynamic polymorphism,
polymorphism based on run-time binding decisions (e.g. virtual functions). They validated their
measures by evaluating their impact on class fault-proneness. They found that their measures measure
on a di↵erent orthogonal dimension than size measures and that they are significant predictors for
fault-proneness.
The metric suite they devised constitutes out of 6 metrics:

• OVO. Overloading in stand-alone classes. Measures the number of methods that are overwritten
in the same class, that are all methods with the same method name but di↵erent arguments.
The metrics is calculated using the following equation:

OV O(C) =
X

fi2C

overl(f
i

, C) (2.7)

Where overl(f
i

, C) is an operator which returns the number of times the function member name
f
i

is overloaded in class C.

• SPA. Static polymorphism in ancestors. Measurement of the unique class couples of which their
methods statically overloads one another and where of one of the classes is an ancestor of the
other. The measure is calculated using the following equation.

SPA(C) =
X

Ci2Ancestors(C)

SPoly(C
i

, C) (2.8)

Where SPoly(C
i

, C) is a function which returns the number of statically polymorphic functions
that appear in C

i

and C. Static polymorphic functions are functions that have the same name
but a di↵erent signature. Ancestors(C) returns the set of distinct ancestors of class C.

• SPD. Static polymorphism in descendants. Measurement of the unique class couples of which
their methods statically overloads one another and where of one of the classes is a descendant
of the other. The measure is calculated using the following equation.

SPD(C) =
X

Ci2Descendant(C)

SPoly(C
i

, C) (2.9)

Where SPoly(C
i

, C) is a function which returns the number of statically polymorphic functions
that appear in C

i

and C, and Descendant returns the set of distinct descendants of class C.

• DPA. Dynamic polymorphism in ancestors. Measurement of the unique class couples of which
their methods dynamically overloads one another and where of one of the classes is an ancestor
of the other. The measure is calculated using the following equation.

DPA(C) =
X

Ci2Ancestors(C)

DPoly(C
i

, C) (2.10)

Where DPoly(C
i

, C) is a function which returns the number of dynamically polymorphic func-
tions that appear in C

i

and C. Dynamic polymorphic functions are functions that have the
same name and the same signature. Ancestors(C) returns the set of distinct ancestors of class
C.
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• DPD. Dynamic polymorphism in descendants. Measurement of the unique class couples of which
their methods dynamically overloads one another and where of one of the classes is an ancestor
of the other. The measure is calculated using the following equation.

DPA(C) =
X

Ci2Descendant(C)

DPoly(C
i

, C) (2.11)

Where DPoly(C
i

, C) is a function which returns the number of dynamically polymorphic func-
tions that appear in C

i

and C, and Descendant returns the set of distinct descendants of class
C.

• NIP. Polymorphism in non-inheritance relations. The measure of unique class pairs that dy-
namically or statically overload their methods and the relation between them is neither ancestor
or descendant. The measure is given in the following equation:

NIP (C) =
X

Ci2Others(C)

SPoly(C
i

, C) +DPoly(C
i

, C) (2.12)

Where SPoly(C
i

, C) is a function which returns the number of statically polymorphic functions
that appear in C

i

and C, DPoly(C
i

, C) is a function which returns the number of dynamically
polymorphic functions that appear in C

i

and C, and Others(C) returns the set of distinct classes
that are neither ancestors or descendants of class C. NIP is not actual polymorphism but could
be a potential for human confusion.

2.3.5 Khoshgoftaar reuse metrics

Koshgoftaar et al. developed a fault-proneness prediction model based solely on process-history vari-
ables [22]. This research is based on a preliminary study where they showed that reuse indicators can
improve classifications models for identifying fault-prone modules. They used three process metrics
for the purpose of measure reuse: module did not existed in previous versions (IsNew), module was
changed since last version (IsChg), and the age of a module (Age).

IsNew =

8
><

>:

1 If module did not exist in ending

version of prior build

0 Otherwise

(2.13)

A module is considered reused if it had existed as part of a previous build. If a module required no
code change, it was reused as an object.

IsChg =

(
0 If no changed code since prior build

1 Otherwise
(2.14)

They argue that modules with a long history may be more reliable and therefore expected to contain
less faults. The definition of a module’s age is the number of builds it has been through.

Age =

8
><

>:

0 if module is new

1 If module was new in the prior build

2 Otherwise

(2.15)

2.3.6 Relationship between product metrics and fault-proneness

Briand et al. [14] explored the relationships between software measures and the quality of object-
oriented systems. They looked at the relation of coupling, cohesion, and instance measures and
the probability of fault detection in system classes during testing. They argued that size of classes,
frequency of method invocations, and depth of inheritance hierarchies might be the main driving
factors of fault-proneness.
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Briand et al. hypothesized that “a class with high import coupling is more likely to be fault-prone
than a class with low import coupling”. This is because a class with high import coupling relies
on many external services, which all have to be understood. The challenge of understanding all
the services, and the increased likelihood of misunderstanding or misuse could result in more fault-
prone classes. The result of the univariate logistic regression analysis provides strong support for
this hypothesis. Most relationships between the import coupling measures and fault-proneness were
significant; method invocation seems to have the highest impact on fault-proneness.
Regarding the export coupling measures, Briand et al. hypothesized that “a class with high export

coupling is more likely to be fault-prone than a class with low export coupling”. An export-coupling
class has many other classes that rely on it. Failures are therefore likely to be traced back to a class
with export-coupling, this makes the class more fault-prone. There is no evidence for this hypotheses;
only the OCAEC measure was significant. A class that is used by many other classes does probably
not relate to fault-proneness.
As third hypothesis was formulated that “a class with low cohesion is more likely to be fault-prone

than a class with high cohesion”. “Low cohesion indicates inappropriate design”, and therefore a
class with low cohesion would be more fault-prone. The univariate logistic regression analysis of
the cohesion measures showed that only the LCOM3, Coh, and ICH were significant, but these are
unlikely to measure cohesion according to Briand et al. They concluded that there was weak support
for the cohesion hypothesis.
For the relation between depth measures (DIT, AID) and fault-proneness, Briand et al stated that

“a class situated deeper in the inheritance hierarchy is more likely ot be fault-prone than a class situated
higher up in the inheritance hierarchy”. Classes situated lower in the class hierarchy are more likely
to be inconsistent in correctly extending or specializing the ancestor classes, and would therefore be
more fault-prone. This hypothesis is supported, the DIT and AID measures were all significantly
related to class fault-proneness.
Regarding the relationship between ancestor measures (NOA, NOP, NMI) are fault-proneness,

Briand et al. hypothesized that “a class with many ancestors is more likely to be fault-prone than a
class with few ancestors”. They state that the larger the number ancestors a class is concerned with,
the larger the context needed to understand what the class represents. Such a class is more likely to
be fault-prone. The hypothesis is supported; all ancestor measures were significant.
For the relation between descendant measures (NOC, NOD, CLD) and fault-proneness, Briand et

al stated that “a class with many descendants is more likely to be fault-prone than a class with few
descendents”. As with high export-coupled classes, classes with many descendants have large influence
on the system because many classes rely on that class. “The class has to serve in many di↵erent
contexts, and is therefore more likely to be fault-prone”. There is support for the hypothesis, however
their impact of fault-proneness is smaller compared to the depth measures or ancestor measures.
For polymorphism measures (NMO, SIX), the hypothesized that “The more use of method over-

riding is being made, the more di�cult/complex it is to understand or test the class”. The result is a
class that is likely to be fault-prone. The univariate regression analysis results provided evidence for
this hypothesis; both the NMO and SIX measures were significant.
Finally, they stated that “the larger the class, the more fault-prone it is”. This is because the class

contains more information. This hypothesis has weak support, only the NMA metric was significant.

2.4 Principle Component Analysis

Principle Component Analysis (PCA) is a multivariate statistical technique for analysing data where
observations are described by several inter-correlated dependent variables and was first formalized by
Hotelling [43]. The technique is used to extract important information from the dataset and represent
it as a set of new orthogonal variables called Principle Components (PCs). There a multiple ways of
performing a PCA, we adopted the method as described by Smith [44]. For more information on the
Principal Components Analysis see Abdi & Lynne [45].
Principle Components are obtained as linear combinations of the original values, these values are

called factor scores. For finding the principle components, the PCA starts with a first PC that has
the largest possible variance, the second PC is computed under the constraint of being orthogonal
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to the first PC and to have again the largest possible variance. The other principle components are
calculated in a similar fashion as the latter component.
Taking a correlation matrix as input, the unit eigenvectors and their accompanying eigenvalues can

be calculated. These eigenvectors are perpendicular to each other and reveal the patterns in the data
if there are any. For choosing the first PC the eigenvector with the highest eigenvalue is chosen. The
second PC is the eigenvector with the second highest eigenvalue, and so on; the result is a feature
vector. On this point, one could choose to ignore vectors that have an eigenvalue below a certain
threshold, this is called dimensionality reduction. The final step is to multiply the transposed feature
vector with the transposed input matrix.

2.4.1 Rotations and loadings

An Interesting observation could be made when looking at the loadings of the variables of the PCs,
those are the correlations between the PC (the eigenvector) and that of the original variable. Compo-
nent loadings are analogous to correlation coe�cients, squaring them gives the amount of explained
variation and tells something about how much of the variation in a variable is explained by the com-
ponent. If a variable has a high loading then it is strongly correlated with the PC and therefore
measures along that dimension.
To simplify the loadings and make them more interpretable the PCs are often rotated. A rotated

PC is called a Rotated Component (RC). The RCs are extracted by rotating the axes to align them
with the eigenvectors. Two types of rotations are possible: orthogonal rotations (e.g. varimax) that
assume the factors are not correlated, and oblique rotations (e.g. promax, oblimin) that allow for
correlation.

2.5 Logistic Regression Models

Logistic regression is one of the most frequently used regression methods in data analysis concerned
with describing the relationship between a response variable and one or more explanatory variables.
The application of the logistic regression model is to find the best fitting and easily interpretable
model that describes the relationship between an outcome (dependent or response) variable and a set
of independent variables (predictor or explanatory variables). Logistic regressions is frequently used
when the outcome variable is dichotomous, or binominal (e.g. dead or alive, passed or failed) [46].
The equation for calculating the probability of an outcome variable, based on a set predictors is as

follows:

⇡(~x) =
e(�0+�1x1+�2x2+···+�pxp)

1 + e(�0+�1x1+�2x2+···+�pxp)
(2.16)

Where ⇡ is the probability of the outcome and ~x are the independent variables used in the model. The
logistic regression model (see Equation 2.16 has �0+�1x1+�2x2+ · · ·+�

p

x
p

as unknown parameters.
To fit the regression model to a dataset, the values of these parameters must be estimated. In

logical regression, this is done using maximum likelihood. In short, maximum likelihood assigns values
to the unknown parameters such that they maximize the probability of obtaining the observed set
of data. In order to calculate the maximum likelihood the following function is used (the log variant
of the equation is more often used due its mathematical benefits, but this variant is more easy to
understand):

l(~�) =
nY

i=1

⇡(~x
i

)yi [1� ⇡(~x
i

)]1�yi (2.17)

Where ~� represents the unknown parameters, the pair (x
i

, y
i

) is the value of the outcome variable
(y

i

) and the value of the independent variable (x
i

) for an independent observation i, pi(x
i

)yi is the
probability of (Y = 1|x) based on all observations that are associated with the outcome variable,
and [1� ⇡(x

i

)]1�yi is the probability of (Y = 0|x) based on all observations that are associated with
the outcome variable. p+ 1 likelihood equations to be solved and are obtained by di↵erentiating the
log-likelihood function with respect to the p + 1 coe�cients. The maximum likelihood estimators of
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the parameters are the values that maximizes the equations. Because the equation is not linear the
optimization is done iteratively.

2.5.1 Model comparison

Three methods are occasionally used to statistically determine if the independent variables in the
model are significantly related to the outcome variable: The likelihood ratio test, Wald test, and
scored test. All these tests makes use of the likelihood of the models to assess their fit. We only focus
on the log likelihood ratio test, the other methods are described in detail by Hosmer & Lemeshow
[46].
The likelihood ratio test (or ls-test) compares two models based on the relative goodness of fit.

It assumes that one model is a nested model of the other, meaning that one model is a sub- (or
simplified) model of the other. It uses the likelihood ratio, which expresses how many times more
likely the data are under one model than the other. A low ratio means that the observed result was
less likely to occur under the null hypothesis.

G = �2 ln


(likelihood without the variable)

(likelihood with the variable)

�
(2.18)

The function G is chi-square distributed with p degrees of freedom, the di↵erence in number of
parameters between the two models. The model could be expressed in terms of deviance or in terms
of fitted model and saturated model.

2.5.2 Stepwise selection

The goal of selection methods is to find the set of variables that result in the best model within the
context of the problem. Statistical model building involves seeking the a minimal model that still
accurately reflects the true outcome of the data. The reason for finding this model is because it is likely
to be numerically more stable (less chance of overfitting) and more easily adopted for use. Moreover,
the more variables included in the model, the greater the estimated standard errors become, thus
making the model more dependent on the observed data [46].
A popular selection method is stepwise selection. Stepwise selection is used in cases where there

are a large number of independent variables of which the association with the outcome variable is not
well understood. All stepwise selection methods base their inclusion or exclusion of variables on the
outcome of a statistical algorithm that checks the importance of variables. Based on the outcome and
a fixed decision rule, variables are included or excluded in the model. For logistic regression models,
the importance of variables is tested using one of the three model significance tests: likelihood ratio,
score, and Wald test. Two popular types of stepwise selection processes exists, forward and backward
(Hosmer & Lemeshow describe both the algorithms in detail [46]).

• forward stepwise selection. Forward selection starts with a model that includes the intercept
only. Based on a statistical criteria, variables are selected one at a time for inclusion until the
stopping criteria is met.

• backward stepwise selection. Backward selection includes all independent variables, and variables
are deleted based on a statistical criteria until the stopping condition is met.

2.5.3 Model measures

For validating the model itself, several metrics could be used. These metrics are based on two
elementary counts:

• True/false positives. The count of correctly identified outcome values such that (Y = 1|x) and
incorrectly identified outcome values respectively.

• True/false negatives. The count of correctly identified outcome values such that (Y = 0|x) and
incorrectly identified outcome values respectively.
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These counts are used in a confusion matrix and used to describe the performance of a classification
model, see Table 2.2. The rows represent the actual cases and the columns the predicted case. The
values range from T- to F+ were T/F represents true/false and +/- represents positive/negative.

Table 2.2: Confusion matrix
Predicted True Predicted False

Actual True T+ F�
Actual False F+ T�

Based on the elementary counts, new composite measures could be formed:

• Accuracy. Accuracy is defined as the true positives and true negatives identified by the model
divided by the all observations. The measure can be obtained using the following equation:

Accuracy =
(T+) + (T�)

All Observations
(2.19)

The measure is a ratio of the accuracy of the model. A low accuracy means that most of the
predictions of the model are incorrect. If an arbitrary model did 10 predictions in total but only
8 were correct, then the model’s accuracy is .8.

• Precision. Precision is defined as the true positives identified by the model divided by the total
number of actual positives. The measure is expressed by the equation:

Precision =
T+

(T+) + (F+)
(2.20)

The measure is the ratio of all the actual positives the model did find. A low recall indicates
that a lot of the actual positives were not detected by the model. If an arbitrary model identified
7 true positives but the actual number of positive cases is 10, then the model’s recall is .7.

• Recall. Recall is defined as all the correctly identified positive cases divided by the incorrectly
identified negatives and the correctly identified positives and given by the following equation:

Recall =
T+

(T+) + (F�)
(2.21)

The measure is the fraction of all correct results returned by the model. If an arbitrary model
identifies 2 true positives, 3 true negatives, and the total of cases is 10, then the model’s recall
is .5.

.

2.5.4 Model validation

For cross-validation validates the model using the same system it was build on. Cross-validation can
be done in several ways, [47] studied di↵erent types of cross-validation and bootstrap techniques for
accuracy estimation and model selection. In his paper he describes several types of cross-validation
techniques, including the two most frequently used: holdout and k-fold cross-validation

• Holdout, also called test sample estimation, partitions the data into two mutually exclusive
subset; the training set and the test set. The training set is usually 2/3 of the data set and the
test set 1/3. The smaller the training set, the higher the bias; the smaller the test set, the wider
the confidence interval. A drawback of the holdout technique is that is makes ine�cient use of
the data, a third of the dataset is not used for training. Because the individual systems of our
dataset are rather small, we will not use this validation technique.

• Cross-validation, also called k-fold cross validation or rotation estimation, randomly split the
dataset into k mutually exclusive subsets D1, D2, ..., Dk

of approximately equal size. The model
is trained and tested k times; each time t it is trained on D \ D

t

and tested on D
t

. Kohavi
recommends the stratified ten-fold cross-validation method for model selection. This is the one
we will use in our research.
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2.6 Outlier Detection

Outlier analysis is important in prediction model building, especially if the models that are being
build are regression models. Outliers in data can distort the prediction and the e↵ect on accuracy.
Detecting outliers in an univariate sense done by considering the Inter Quartile Range (IQR), that is
the di↵erence between the 75th and 25th quartiles. A continuous data-point is considered an outlier
if the following equation holds:

x
i

> 1.5 ⇤ IQR (2.22)

A multivariate outlier analysis is done a bit di↵erently compared to the univariate variant. The
di↵erence between the two types of outlier analysis is that the multivariate type measures the distances
with respect to the correlation structure. As a result, the exclusion criteria is not based on the distance
from the mean but rather the distance from the correlation structure.

2.6.1 Mahalanobis distance

Various distance measures could be used to measure the distance from the correlation structure, one of
them is is Mahalanobis distance. The Mahalanobis distance of an observation is the distance between
a data-point and the centroid of the dataset in units of standards deviations. It takes the correlation
structure of the data as well as the individual scales into consideration. The lower the distance,
the closer a data-point is to the multi-dimensional mean (centroid). The distance is measured with
respect to the Principal Components, a Mahalanobis distance of 1 is equal to the standard deviation
of along single orthogonal dimension; this holds for every orthogonal dimension. The distance of a
single data-point is calculated as follows.

D(x) =
q

(~x� ~µ)TS�1(~x� ~µ) (2.23)

Where ~x = (x1, x2, . . . , xn

) is a single datapoint its values of the independent variables. ~µ =
(µ1, µ2, . . . , µn

) are the means of the independent variables. S�1 is the inverse covariance matrix
of the independent variables.
Outliers could be detected using the Mahalanobis distances by setting the distances of the data-

points of gainst the 97,5% Quantile. A data-points that satisfy the following equation are considered
outliers.

D(x
i

) > Q (2.24)

where D(x
i

) is the Mahalanobis distance of a single data-point and Q is the 97.5%-Quatile of the
Chi-Square distribution.
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Chapter 3

Fault Distributions in Software
Systems and the Pareto Principle

The fault distribution plays an important role in fault-proneness prediction. Without an unequal
distribution of faults in a system, one part of the system is not more fault-prone than another. There
is much support for the claim that a large part of the faults reside in a small part of the system (see
Section 2.2), but this support comes from around 20 systems where most of those systems are closed
source or dated. Because of the importance of this claim, we dedicate this chapter to validate if the
Pareto Principle holds for the fault distribution in modern software systems. To re-evaluate the claim
in a modern context, we will replicate a part of Fenton & Ohlsson’s research on faults and failures in
a complex software system [32]. In the following section we will describe our research question, study
setting, and data analysis methodology. We conclude with the analysis results and discussion.

3.1 Introduction

It is widely accepted that faults are unequally divided over software. Many belief that an average
system’s fault distribution adheres to the Pareto Principle; many faults reside in a small part of
the system. From the eight studies we considered, all of them supported this claim (see Section 2.2).
They found distribution between 20-60 and 10-100, where 20-60 means that 20 percent of the modules
contains 60 percent of the system’s faults.
One of the main remarks regarding the Pareto Principle is that the e↵ect could easily be explained

by the inequality in size of the modules. In other words, the module size correlates with module
faults, and as a result, the modules that are large in size naturally contains more faults compared
to modules that are small in size. However, this e↵ect was not observed in any of the studies of our
literature study.
A remark regarding the literature is that they do not clearly mention that their dataset is only an

approximation of the actual fault distribution that their conclusions are subjective (see Section 2.1
for more information on selection bias). Note that the conclusions drawn in this study are subjective
and that they only tell something about the faults we observed.
Our hypotheses related to the Pareto Principle are based upon hypotheses 1 and 2 of Fenton &

Ohlsson their qualitative analysis of faults and failures in a complex system [32], but we did not
replicate the hypotheses. Our hypotheses di↵er in two ways:

• Instead of measuring faults on module-level, we measure faults on class-level. The reason is that
the study we will replicate only considers classes. Moreover, Catal & Diri [3] recommends to
perform measurements on class-level.

• Instead of separating faults found in pre-release testing and during operation, no such division
was made in this study. Systems developed using an agile software development methodology
have no strict separation of pre-release and operation faults.
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We use hypothetical population means based on the findings from our literature study. The first
hypothesis will provide an answer to the question: does the distributions of observed faults in software
systems adhere to the Pareto Principle? The 21 fault distribution observations of our literature study
have a median of 20-75. Therefore, we expect that an average system has at least an observed-fault
distribution of 20-75.

H1: 20% of a software system’s classes contains at least 75% of the total observed faults

Secondly, we expect that 20% of the most fault-prone classes in a system does not make up more
than 29% of its total size. This value is the median of 13 observations from the literature study.

H2: 20% of a software system’s classes that contains most of the observed faults make up
29% of the total system’s size at most

Beside the two hypotheses devised by Fenton & Ohlsson, we will also propose a di↵erent measure
for measuring the inequality of the observed-fault distribution, the Gini-coe�cient (see Section 2.2).
The Gini-coe�cient is more expressive compared to the Pareto Principle because it tells something
about the whole distribution instead of a single point in the distribution. We consider a distribution
based on the first hypothesis (H1) 20-75. We interpret this rule as a discrete distribution. The
Gini-coe�cient is calculated as follows:

B =
⇣1
2
⇤ 75

100
⇤ 25

100

⌘
+

⇣ 25

100
⇤ 25

100
+

1

2
⇤ 25

100
⇤ 75

100

⌘
=

25

100
(3.1)

And the Gini coe�cient:

G =
⇣ 50

100
� 25

100

⌘. 50

100
= 0.5 (3.2)

Our hypothesis is as follows:

H3: The Gini coe�cient of a software system’s observed-fault distribution is at least 0.5

The chapter is structured as follows: Section 3.2 describes the setting of the study. Section 3.3 lays
out the analysis methodology. In Section 3.4 we present our findings. In Section 3.5 we discuss our
findings, draw our conclusions, and layout feature work.

3.2 Description of Study Setting

In this section we describe the systems, and how we collect and filter the dataset. We describe the
independent and dependent variables, and how we will analyse the data and answer our hypotheses.

3.2.1 Systems

For all our three hypothesis we will use the same collection of systems. We selected the first 1000 Java
systems from GitHub 1 stars. A star is given to a project for each person who marked the project
as interesting and wants to follow its activities; a person can revoke its star if he no longer finds the
project interesting. As a result, projects with the most stars may indicate the projects (hosted on
GitHub) that are deemed to be most interesting by the users of GitHub at that current moment.
We assume that these projects are popular, modern, and actively developed and tested systems. A
threat to validity is that the selection of the systems is not completely random. In order to select the
most popular dataset, we made an ordering of population we could pick from. The result is that the
dataset is biased towards the popular projects. However, we think that these ordering causes less bias
compared to the constrains we had to set on the data like minimum size, minimum degree of activity,
maximum age. Because the star-rating provides an indication of projects that are popular today; we
expect them to be active, relevant, heavily used, and of reasonable size.
We retrieve all the project data of the 1000 systems using an automated tool that is part of gcrawler.

This tool collects up-to-date data of the project characteristics (e.g. starts, forks, description) and

1
https://github.com
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pulls the latest version of the system from GitHub. All the systems are based on the latest commit
of the master branch at the time of collection. From the 1000 systems, 934 used the GitHub issue
tracking system. The last measured activity of 45 systems was before 2015 (with 1 in 2011, 3 in 2012,
16 in 2013, and 25 in 2014), 130 systems were active till 2015, and 825 systems were still active in
2016. The systems had on average 1916 stars, 609 forks, and were on average 54 megabytes large (for
most projects this size is based on the source-code size). According to GitHub, the largest project in
the dataset, liferay-portal, is 7.415 megabytes, and the smallest project android-smart-image-view is
57 kilobytes (one project had a size of 0). 933 system used the issue tracking system of GitHub.
The factors of the collected systems are gathered using ovms (see Section ??). Of the selected

systems, the source-code and the git-tree are analysed. Not all files are included for analysis; excluded
files are non-Java files, generated files, and test files (see Section ??). Due to the size of our dataset,
it is not possible to analyse the systems on class-level, instead we did the analysis on file-level which
is still more fine grained compared to an analysis on module-level. A class contains a fault if it is
changed by a commit that fixed a fault (see Section ??). Based on the results, we will exclude some
systems based on the number of observed faults they have. All systems with less than 2 faults will be
removed from the dataset. We exclude these systems because they will skew the dataset. For example,
if a system has zero faults (e.g. because they did not mention the fix in the commit message) the Gini
coe�cient will be 0, meaning that the fault distribution is perfectly distributed. On the other hand;
if a system has a single fault, the Gini coe�cient will be 1, which means the faults are extremely
uneven distributed. These extreme cases do not give a realistic representation of a fault distribution
and are therefore excluded from the dataset. In total, 856 systems were included in the dataset.

3.2.2 Measurement instruments

For building the fault- and code distribution we use the data provided by our own tools gcrawler
and xloc, respectively. The distribution takes a map of classes to counted values and returns map of
number of classes to cumulative counted values (with increasing di↵erence). More simply put, the
fault distribution is an aggregation of the counted values of classes that are sorted from low to high.
When taking a percentage of the distribution (e.g. 20% of distribution) the percentage is converted

to the total number of files that is requested and is round down if the value is not an integer. For
example, the distributions has a total of 101 classes a 20% is requested, 20% of 101 classes is 20.2; so
one wants the total number of faults that reside in the first 20.2 classes. This is not possible and the
number of faults of the first 20 classes is returned instead.
The function of the distributions are always discrete and a composition of linear functions because

the space between the classes is always a positive integer, therefore we can exactly calculate the Gini-
coe�cient (see Figure 3.2.2). We calculate the Gini-coe�cient by taking a distribution as described
in the previous paragraph. The space between x and x�1 can be calculated as follows (the di↵erence
between x� 1 and x is always 1):

S(x) = 1/2 ⇤ (y
x

� y
x�1) ⇤ x+ y

x�1 ⇤ x (3.3)

With y
x

the corresponding y of x and y
x�1 the corresponding y of the predecessor of x. To calculate

the total space under the under the Lorenz-curve:

B =
nX

x=1

S(x). (3.4)

Di↵erence between the space of the line of equality and the Lorenz curve is then calculated as follows:

A = 1/2 ⇤ total faults ⇤ total files�B (3.5)

Finally the Gini-coe�cient can be calculated:

G = A/(A+B) (3.6)
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Figure 3.1: Calculating Gini coe�cient (diagram based on [48])

3.2.3 Variables

Independent variables

Of the systems that were included for analysis, we collected the following values to answer the hy-
potheses: the percentage of faults in the 20% most faulty classes; the percentage of code in the 20%
most faulty classes; and the Gini coe�cient of the fault distribution. The independent variables are
the means of the collected values.

Dependent variables

As dependent variables for the first two hypotheses we used the median of all the observation made
in the literature survey regarding the Pareto Principle. For the fourth hypothesis we used a Gini
coe�cient based on a distribution of 20-75. These values are fixed and mentioned in the hypotheses.

3.3 Data Analysis Methodology

From the data collected by ovms, the mean (µ), standard deviation (�), maximum (Max), and the
minimum (Min) are calculated.
Next, the histograms of the Pareto Principle values (x’es of the 20-x are plotted), the percentage

of code in the 20% most fault classes, and the Gini-coe�cients of the observed-fault distributions are
presented to help understand the results of remaining analysis.
The goal of testing the first hypothesis (H1) is to check if on average an observed-fault distribution

of a software system adheres to the Pareto Principle. In the literature study, a fault distribution of at
least 20-60 is considered a distribution that adheres to the Pareto Principle (with a median of 20-75).
To test the hypothesis we will conduct an one-tailed one-sample t-test for the hypotheses (with an
alpha value of ↵  .05). We choose this statistical test because we are working with a hypothetical
population mean and a sample mean, and we want to know about the direction of the di↵erence
between those means.
The goal of testing the second hypothesis (H2) is to verify that in general only a small part of the

system’s code resides in the 20% most faulty classes. In the literature, at most 40% of the system’s
code may reside in 20% of the most faulty classes to accept the hypothesis (with a median of 29%)
This hypothesis is similar to Hypothesis H1, therefore the same test will be used.
The last hypothesis is similar to the previous hypothesis, and tested using the same test. We consider

an observed-fault distribution with Gini-coe�cient of .50 unequally distributed and therefore use this
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value as the hypothetical mean.

3.4 Analysis Results

Out of the 1000 systems, 856 systems were analysed by the ovms tool. The other systems caused an
error: some projects had a size of zero; some projects had the exact same name as other projects (our
tool used project-name as unique identifier); Some project did not had a HEAD commit; and some
projects had illegal field values. These projects were automatically excluded from the dataset by the
tool. Of the 856 systems none of the systems had less than 4 faults and were all included for further
analysis. Histograms of the fault- and code-distributions can be found in Appendix B.
Testing the Pareto Principle on fault distribution. A one-tailed one-sample t-test was con-

ducted to determine if a statistically significant di↵erence (↵  .05) existed between inequality of
distribution of the observed faults from our sample of 1000 popular GitHub projects and the obser-
vations from our literature study. For the first hypothesis (H1), the null hypothesis was formulated
H0 : µ < 75. The total percentage of faults in the 20% most faulty files in the systems we analysed
was more than 75% (M = 77.27, SD = 18.991) than the systems from our literature study on the
Pareto Principle, t(856) = 3.519, p = .000. There is significant evidence to reject the null hypothe-
sis, therefore we conclude that the faults we observed are unequally distributed over the system and
that at least 75% of the system’s faults resides in 20% of its files. Further, Cohen’s e↵ect size value
(d = .12) suggested a small practical significance.
Testing the percentage of code in the 20% most faulty files. A one-tailed one-sample

t-test was conducted to determine if a statistically significant di↵erence (↵  .05) existed between
the percentage of code in the 20% of the most faulty files from our sample of 1000 popular GitHub
projects and the observations from our literature study. For the second hypothesis (H2), the null
hypothesis was formulated H0 : µ > 29. The total lines of source code in the 20% most faulty files
in the systems we analysed was less than 29% (M = 25.89, SD = 24.608) than the systems from our
literature study on the Pareto Principle, t(856) = �58.383, p = .000. There is significant evidence
to reject the null hypothesis, therefore we conclude that the distribution of observed faults could not
be explained by the size of the files and that at most 29% of the total lines of source code of the
system system resides in the 20% of the most faulty files. Further, Cohen’s e↵ect size value (d = .13)
suggested a small practical significance.
Testing the fault distribution inequality. A one-tailed one-sample t-test was conducted to

determine if a statistically significant di↵erence (↵  .05) existed between the fault distribution
inequality from our sample of 1000 popular GitHub projects and the observations from our literature
study. For the third hypothesis (H3), the null hypothesis was formulated H0 : µ < .5. The Gini
coe�cient of the systems we analysed was more than .5 (M = .54, SD = .119) than the systems from
our literature study on the Pareto Principle, t(856) = 9.822, p = .000. There is significant evidence
to reject the null hypothesis, therefore we conclude that the distribution of observed faults is an
unbalanced one and that the Gini coe�cient of the distribution of observed system faults is at least
.5. Furthermore, Cohen’s e↵ect size value (d = .34) suggested a moderate practical significance. The
results are summarized in a histogram (see Figure ??). Instead of frequency, the probability density
is shown, values on the x-axis are allocated to 60 bins, the kernel density function is plotted over the
histogram to give a more clear view of the shape (not restricted to the number of bins).

3.5 Conclusion and Discussion

One of the objectives of this preliminary research was to find out if the Pareto Principle could be
applied to the fault distribution in software system. If it is the case that software systems adhere to
the Pareto Principle, it means that an useful ordering can be made in such a way that a large part of
the faults can be discovered. This assumption is one of the main reasons why researcher invest time
and resources in fault-proneness prediction modelling. Our results provides strong support for the
claim that distributions of faults in software systems adhere to the Pareto Principle; on average 20%
of the classes contained 77% of the faults. Moreover, we found evidence that the most faulty classes
do not contain most of the system’s code; only 26% of the code resided in the 20% most faulty classes.
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Besides replicating Fenton & Ohlsson their qualitative analysis [32], a new metric was used for
measuring the inequality of fault distributions based on the measure of economic inequality, the Gini
coe�cient [38]. The results using the Gini coe�cient measure were in line with the 20 � n measure
and supported the claim that fault are unequally distributed over the system. We prefer the use of
the Gini-coe�cient to measure fault-distributions over using the 20 � n rule. One limitation of the
20� n rule can be seen in the histogram in Appendix B. A lot of observations are in the right most
bar, meaning that a lot of the systems in the dataset had 100% of the faults in at most 20% of the
modules. At this point, information is lost, it could be that the faults are located in 20% of the
classes, in 1% of the classes, or anything in between. Not only in the latter case is information lost,
by fixing one of the variables to 20%, the information of fault distribution itself is lost. The Gini
coe�cient does not has this limitation because it does not fixate on a single variable.

3.5.1 Threats to validity

A threat to the internal validity resides in the fault classification process. The classification of faults
is subjective and depends on the way faults are reported and how they are collected again. Moreover,
a fault is not always a fault, even if it is reported as a fault. Contrariwise, it could be the case that
a fault is never formally reported and could be fixed on the spot. The result is that the observations
are biased towards the faults we observed. The hypotheses only tells something about the observed
faults. In other words, the outcome to the hypotheses could di↵er if another fault classifier is used.
To mitigate this threat, we tried to create awareness by explicitly refering to the observed faults to
press that the classification process is subjective.
Other threats to the internal validity could be caused by the instrumentation used for the calcu-

lations and collection of the data. We build the tool explicitly for this research and it has not been
validated by an external third party. However, we did test and pilot the tool, but it could be that
in edge case scenarios the tool fails. To cope with threats related to instrumentation, we published
the source code and the raw output of the analysis of the dataset so it can be validated by external
parties. Moreover, the systems in the dataset are all accessible and the exact state of the system can
be restored using the provided commit id.

3.5.2 Future research

Most of the current research on fault distribution analyses systems on module-level, we analysed our
dataset on a finer level of granularity, on file-level. We think this level of granularity is enough to give
an indication of the fault distribution regarding software systems and that these finding do not change
significantly if lower level of granularity are used. However, this is a speculation and we could not
test this is because of the size of the dataset and the time complexity of analysing fault distribution
of class-level. It is interesting to see if this speculation is true because fault-proneness prediction
is preferably done on class-level, and knowing the fault distribution on class-level provides the best
accuracy [3].
In our research we applied a new measure to represent fault distribution inequality, one that is

much more expressive compared to the Pareto Principle (20�x rule). We calculated the accumulated
faults with a dx the size of files. Although, this tells something about the inequality of the fault
distribution, it does not provide insights in the correlation of the number of faults with the size of
these files. A second hypothesis has to be tested to cover the latter. The expressive power of the Gini
coe�cient could be improved if not the files are accumulated but the source lines of code of the files
are accumulated instead. The result is that the area under the Lorenz curve becomes larger (Gini
coe�cient increases) if the files with the most faults also contain the most lines of code; the area
of the Lorenz curve remain una↵ected, relative to counting the files, if the lines of code are equally
divided over the files. The way the Gini coe�cient is a↵ected by the result of the source lines of code
within the files is interesting. But in the case if the files with the lowest number of faults contain
more lines of code, that is an inverse correlation between lines of code and faults, the area under the
Lorenz curve increases (Gini coe�cient decreases); this is an unwanted side e↵ect which obscures the
actual measurement. Nevertheless, it is still interesting to investigate if the Gini coe�cient could not
only replace the first hypothesis of this study (H1) but also the second hypothesis (H2).
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We used a heuristic way of measuring faults, that is by the means of semantically analysing the
commit messages. Because 933 system used the GitHub issue tracker and our semantic analyser detect
faults if a commit message formally closes an issue in the issue tracker through a commit, we think
that we have most of the faults. However, there is a change of over fitting. Based on the observations
by Herzig et al. [29], most of the detected faults are not faults at all. For future research is could be
interesting to replicate this study but with a more accurate fault discovery strategy. As suggested by
Herzig et al., the discovered faults should be verified manually.
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Chapter 4

Reassessing the Applicability of
Fault-Proneness Prediction Models
Across Software Systems

4.1 Introduction

As shown in our preliminary research (see Chapter 3), the fault distributions of software systems
seems to be unequally balanced. Fault-proneness prediction models could be used to exploit this
knowledge, and deduce the part of the system that is most fault-prone.
Software fault-proneness prediction models have been put to the test by various researchers and

hold promising results. In our literature study on regression-based fault-proneness prediction models,
we found that the models were able to find on average 79% of all the faults within a system with a
precision of 78% (see Section 1.3). However, almost all of the models from our literature study are
probably less useful in practice, because the models were not applied under realistic conditions. These
models were validated on the same system as they were build on. A more realistic scenario would be
a model trained using one or more systems and used on a set of similar systems. However, there is
little knowledge about the e↵ectiveness of fault-proneness prediction models used across systems.
Only two studies from our literature study validated the prediction model accuracy across systems,

Schneidewind [7] and Briand et al.[4]. Scheidewind did not focused on cross-system prediction models
and paid little attention to that matter. Briand et al. on the other hand, dedicated a significant
part of his research to cross-system prediction models, and claimed that they successfully build a
cross-system fault-proneness prediction model with reasonable precision and recall (see Section 1.2).
However, Briand et al. their study regarding cross-system fault-proneness prediction models was of an
exploratory nature and the conclusions were based on a single observation. Therefore, we see the need
to validate the findings of Briand et al. and contribute to the body of empirical knowledge of cross-
system fault-proneness prediction modelling. A replication study will be conducted; the following
hypothesis will be used for this purpose:

H1: A fault-proneness prediction model that is trained on a system and validated on an-
other system with the same team composition will have at least an accuracy and recall of
60%.

The percentage used in the hypothesis is taken from the initial study where the cross-system model
obtained precision and recall of both 60%. Briand et al. explicitly mentioned that they kept the team
composition constant; this is reflected our hypothesis.
Hypothesis H1 enables us to compare Briand et al. their findings with ours and draw conclusions

based on the outcome. But, it provides no insight on how transferring a model from system A to
system B a↵ects model accuracy. Consider the following case: A model has an accuracy of 90% when
applied on the same system it was trained on, but when used on another system, the accuracy drops
to 65%. The absolute prediction capabilities of the model looks promising, but the accuracy drop
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tells otherwise. To also get some insights in the accuracy loss while a prediction model is transferred,
we state another hypothesis:

H2: A fault-proneness prediction model that is trained of a system and validated on another
system with the same team composition has the same prediction accuracy when trained and
validated on a single system.

This chapter is structured as follows: Section 4.2 describes the set up of the study. Section 4.3 lays
out the analysis methodology and how the initial study is replicated. In Section 4.4 we present our
findings. In Section 4.5 we discuss our findings and draw our conclusions.

4.2 Description of Study Setting

In this section we describe the system selection strategy and which systems we picked for our dataset.
Furthermore, we describe the data we collected from the systems and which procedure we used.
Because this is a replication study, we try to describe each decision and how it relates to the initial
study.

4.2.1 Systems

The initial study used two Java systems: XPosed and JWriter. Those systems are both closed source
and could therefore not be used in this replication study. The provided characteristics of the two
systems from the original dataset were used to choose similar systems. The systems consisted out of
144 and 68 Java classes respectively, were developed by the same team, and both came from the same
company. We will select system with similar characteristics.
In total we collected 10 systems. The systems were build by company that propagates strict

protocols and standards regarding software development (the company is kept anonymous on purpose).
All systems are still maintained and actively developed during the period of analysis. Most of the
systems in our dataset are smaller compared to the systems in Briand et al. their dataset. However,
the size of the systems used in the initial study and the size of the systems in this dataset are hard
to compare, because we filtered out all the files that are generated or related to testing 1.
Because the dataset will be reused in this thesis and want to minimize observation bias, we randomly

selected 6 systems from the data that we will use for replication means. The set of all systems, and
the systems selected for this study (labelled with *) are shown in Table 4.1. For each system: the
number of non-generated/non-test Java source code files (Files), the number of source lines of code
(SLOC), the number of faults (Faults), the fault distribution (FGini), and the team who build the
system (Team) are shown in the table.

Table 4.1: Available systems overview

System Files SLOC Faults FGini Team

BIra* 30 3.023 8 .45 C
Doc 83 2.666 86 .41 B
Sec 100 4.511 254 .48 E
IRat 22 781 0 .51 D
MAdd* 80 4.012 38 .56 D
MApp 15 579 6 .42 D
MIntO* 46 2.204 93 .45 B
MIra* 28 1.186 29 .38 D
MPen* 27 1.217 17 .59 B
MRep* 85 2.603 72 .44 B

* system included in the single-system dataset

Another dataset must be created that comprises the system pairs that have a same team composition
relationship. The system pairs in the dataset must be unique couples ((a, b) = (b, a)) where the largest

1On average, the number of files had shrunk with a factor three after the exclusion of test and generated files

32



system of the pair, in terms of number of files, will be used as training data; the other will be used to
validate the prediction model. See Table 4.2 for an overview of all system pairs. The training system
(Train), validation (Validate), and the team who build both systems (Team) can be found the table.

Table 4.2: Between-systems overview
System pair Training Validation Team

MAdd-MIra MAdd MIra D
MRep-MIntO MRep MIntO B
MRep-MPen MRep MPen B
MIntO-MPen MIntO MPen B

4.2.2 Variables

Independent variables

The metric-suite used by Briand et al. was not made available for the public. Moreover, the imple-
mentation of the metrics are not described. Therefore, a new metric-suite was build containing the
same metrics as used in the initial study, except from a couple of simple size measures. The only
di↵erence between our metrics and the metrics used by Briand et al. is at implementation level.
The metric-suite contains a subset of Briand et al. their cohesion metrics [25], Benlarbi & Melo their

polymorphism measures [12], all metrics from the Chidamber & Kemerer metric suite [13], all metrics
proposed by Li & Henry [26], and some size metrics. The implementation of the metrics are described
in detail (see Appendix A) and the tool is open-source and publicly available2. In the initial study,
Briand et al. uses a total of four size measures (totatrib, totprivatrib, totmethod, totprivmethod), we
measure totmethod using NOM .
All the metrics measure at class-level. Inner classes are not treated as individual observations but

their measures, methods, and attributes are counted to contribute towards the containing class. Also,
faults that traced back to an inner class were assigned to the out most containing class. This way
measurement is also used in the initial study.

Dependent variable

We want to evaluate whether the existing design measures are useful for predicting the likelihood that
a class is fault-prone; that is if the class contains at least one fault. The outcome value is dichotomous,
a class is either fault-prone or it is not.
A class is fault-prone if it at least contains one fault. We collect faults in a class using our own tool,

gcrawler. The tool analysis git commit messages; if the commit message contains hints of a fault that
has been fixed, then we say that all changed classes contain one fault each (see Appendix A).
The latter procedure is not ideal but had to be adopted due restricted data access and the absence

of issue-trackers. Take in mind that the faults that were detected using this procedure are probably
not all of the faults. Also, there might be some false positives among the observed faults. To roughly
check if the detected faults were actual faults, we randomly picked three systems from the dataset.
From these systems we collected the first 10 commit messages that contained the word ’fix’, ’fixed’, or
’fixes’ (see Table 4.3). Next, a software architect, that was involved during development of the system,
analysed the listed commits and matching changes. He labelled each commit as a commit that fixed
a fault or a commit that did not fixed an actual fault (e.g. code refactoring, feature improvement).

2
https://github.com/scrot/mt
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Table 4.3: Commit messages of observed faults in dataset
Commit message Fault-fixing commit

Fix unittest on maven by setting UTF-8 Yes
Merge branch ’Update version and fix double package name’ Yes
Merge branch ’fixDeserializeBugFortify’ Yes
Merge branch ’Fortify fixes’ Yes
Fix config docblocs, default .... Yes
Added fix for problematic retry of retrieval of requests Yes
Fixed small bug in Config.java Yes
Merge branch ’fix-graphite-logging’ into develop Yes
CODE Fixed graphite jndi’s. Yes
Fortify fixes Yes
CODE Corrected Toolkit dependency versions.* Yes

Based on the results of this sample, we will make the assumption that our procedure will find
actual faults. However, not all faults will be discovered. For example, in Table 4.3 there is one
commit message with the word ’corrected’ in it (labelled with a star). Our tool does not classify
this commit as a fault-fixing commit, but the commit fixes an actual fault according to the software
architect who analysed the commit.

4.3 Data Analysis Methodology

In this section we layout the methodology used for analysing the data. The analysis procedure consists
of: (i) An analysis of descriptive statistics, (ii) data distribution and outliers analysis, (iii) a principle
component analysis, (iv) a multivariate regression analysis, (v) and an evaluation of the prediction
model.

4.3.1 Descriptive statistics

For each system, all metrics are calculated. The minimum (Min), maximum (Max), sample mean (µ),
Median (Med), and the standard deviation (�) are collected of each metric. This data will help with
the interpretation of the results for upcoming analyses.

4.3.2 Outlier analysis

The outlier analysis is used to spot low variance measures. Outliers are removed from the dataset.
The outlier analysis is done following the same two steps as described by Briand et al. in the initial
study:

• All measures that do not have more than 5 non-zero data points are removed for analysis.
According to Briand et al. these measures do not di↵erentiate classes very well and therefore
are not likely to be useful predictors for fault-proneness.

• Multivariate outliers are removed. To calculate the distance of the data point in this multi
dimensional space the Mahalanobis distance from the sample space centroid is calculated. If
the distance of the data point from the centroid is too large, it is removed from the dataset. In
the initial study there is no mentioning of the cut-o↵ value, also it is unclear if the Mahalanobis
distance or the Jackknife distance was used (see Section 2.6). In this study, for each observation
in each system, the outlier distance is measured using squared robust Mahalanobis distances,
the outliers were detected using the 97,5%-quantile.

4.3.3 Principle component analysis

The Principal Component Analysis (PCA) is a method of analysis which involves finding the linear
combination of a set of variables that has maximum variance and removing its e↵ect; repeating this
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successively. PCA is used for finding metrics that are likely to measures the same underlying concept.
The result of this analysis is used as input during construction of the prediction model.
For identifying the Principal Components (PCs) and the variables with high loadings we will use

varimax rotated components, following the method described by Briand et al. (see Section 2.4 for
more information). Rather than selecting all n PCs, we consider only the PCs whose eigenvalue is
larger than 1.0.
Briand et al. suggested that it would be interesting for a replication study to see which dimensions

would also be observable in other systems, and to find possible explanations for di↵erences in the
result. They expected to see consistent trends across systems for the strong PCs which explain a
large percentage of the dataset variance. We will compare the findings of Briand et al. their PCA
with ours and reflect on their expectations.
The Principal Component Analysis will be done using R and the principal function from the psych

package3. Varimaxi rotations will be applied, requesting the maximum number of principal compo-
nents. We only consider the Principal Components that have an eigenvalue larger than 1.0.

4.3.4 Prediction model construction

In this study, a logical regression model will be used to classify classes as fault-prone or not fault-prone.
Logistic regression is a standard technique based on maximum likelihood estimation for estimating the
likelihood that an event will occur (see Section 2.5). The selection of metrics described in Section 4.2
will be used as predictors and the binomial value, fault-proneness, will be used as outcome variable 4.
The goal is to build a prediction model with the best accuracy possible using a minimum number

of predictors. The strategy to achieve this goal consists of two parts:

• Minimize the number of independent variables in the model. Too many independent variables
negatively a↵ects the estimated standard error of the model’s prediction and makes it more
dependent on the data. To minimize the number of independent variables in the model, Briand
et al. used forward selection with significance levels for entering and exiting the model of
↵
enter

= .05 and ↵
exit

= 0.10, and tested the significance of a variable by using a log-likelihood
ratio test. Instead of using only forward selection we use both forward and backward selection.
This is because Briand et al. also intended to use both strategies, but could not fit the backwards
selection function to the data. Moreover, we will use a AIC test instead of the log-likelihood
ratio test to compare the models; both tests produce the same results only log-likelihood is only
valid for nested models, whereas AIC has no such restrictions. The lower the AIC the lower the
loss of information, relative to the actual model.

• Reduce multi-collinearity in the model. Reduce the number of predictors which are highly corre-
lated. The result is that the model is more easy to interpret. Briand et al. used the predictors
their eigenvalues from the Principal Component Analysis as a conditional number and excluded
all predictors whom’s conditional number exceeded 30. However in the initial study,no signifi-
cant di↵erence was observed as result of preselecting predictors using PCA as a heuristic. Briand
et al. chose not to use PCA to preselect the predictors at all. Based on this decision, we will
also not use the PCA to exclude variables.

The result of the model selection procedure is a logical regression model with the best AIC score.
This model is used for further analysis.
On implementation level, we will make use of the software platform for statistical computing and

graphics, named R5. The model is build using glm6 and is used to fit the logistic model. The
’binominal’ family is used to describe the link function and error distribution. A binary value to
indicate fault-proneness (the class contains at least a single fault or non at all) is used as outcome

3
https://cran.r-project.org/web/packages/psych/index.html

4In the initial study, linear regression and logical regression are mixed up. However, these methods di↵er significantly
from each other and only one of the two is actually used in the study. Based on their exploratory study [14] where is
referred to by the initial study and the scale of their dependent variable, we assume they used logical regression instead
of linear regression.

5
https://www.r-project.org

6
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

35

https://cran.r-project.org/web/packages/psych/index.html
https://www.r-project.org
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html


variable. All other variables of the dataset are used as independent variables. For the stepwise model
selection method we used stepAIC 7 from the MASS package. The optimal model is selected using
the forward selection strategy and the generalized Akaike a Information Criterion (AIC) for a fitted
parametric model. AIC is a relative and generalized method of comparing fitted parametric models
and is similar to the log-likelihood ratio. stepAIC takes a parametrized glm as input.

4.3.5 Model evaluation

In the initial study, the model’s prediction capabilities were measured in terms of precision and recall.
We included another measure, called accuracy, because this measures tells more about the overall
e↵ectiveness of the model.

• Precision. Precision is defined as the number of classes correctly classified by the model divided
by the total number of classes that are classified as fault-prone by the model. A low precision
means that a lot of fault-prone classes identified by the model are false positives.

• Recall. Recall is defined as the number of faults in classes classified as fault-prone divided by
the actual number of faults in the system. A low recall indicates that a lot of faults were not
detected by the model.

• Accuracy. Accuracy is defined as the number of correctly classified fault-prone and non fault-
prone classes divided by all classes. A low accuracy means that the model incorrectly classifies
classes as fault-prone or not fault-prone.

To perform these measures, the trained models must be applied to a new dataset and the results
compared to the actual observations. To answer Hypothesis H1, only the cross-system precision and
recall scores are needed, and could be obtained using a cross-system validation technique. To answer
Hypothesis H2, the cross-system precision and recall scores as well as the single-system precision
and recall scores are needed. To obtain the two measures, two techniques will be used (for more
information about those techniques see Section 2.5):

• Single-system validation. To establish a base rate, the prediction capabilities of the fault-
proneness prediction models are validated using a single-system, that is the same system it
was trained with. For this purpose we use k -fold cross-validation. This method builds k mod-
els, each model is trained using k � 1/k of the data and validated on 1/k of the data; the
sets are mutually exclusive. On implementation level we will use R and the cv.binary function
from the DAAG package8 to perform the single-system validations. The function uses k-fold
cross-validation, we configured the function to use 10 folds and to take a binary glm function
as input.

• Cross-system validation. To uncover the prediction capabilities of the fault-proneness prediction
models across systems, we will use cross-system validation. The model is trained using system
A and validated using system B; the pairs used for the cross-system validation can be found
in Table 4.2. Only the systems that occur in the cross-system dataset as validation system are
included for analysis in the single-system group. On implementation level we will use R and the
prediction.glm function from the stats package9. As the prediction model output scale (type)
we choose the response scale, this is to correctly handle dichotomous outcome variables.

4.3.6 Hypothesis testing

In order to answer our research question we will test the hypotheses stated in Section 4.1:

• Hypothesis H1. In order to test our first hypothesis for statistical significance, we conducted
two one-tailed one-sample t-tests, using an alpha value of ↵  .05, on the model validation
results of the cross-system dataset. The first t-test will be used to check the significance of the

7
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/stepAIC.html

8
https://cran.r-project.org/web/packages/DAAG/index.html

9
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/predict.glm.html
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hypothesis in terms of precision, and another t-test will be used to check the significance of the
hypothesis in terms of recall. Both the null hypotheses need to be rejected in order to reject
Hypothesis H1. To analyse the e↵ect size we will use Cohen’s d.

• Hypothesis H2. To test the second hypothesis, we will use two Weld independent-sample t-tests
(with an alpha value ↵  .05). The first t-test will be used to test the hypothesis in terms
of precision, the other t-test will be used to test the hypothesis in terms of recall. The mean
precision/recall of the single-system group is compared to the mean precision/recall of the cross-
system group. Only the systems that occur in the cross-system dataset as validation system are
included for analysis in the single-system group.

4.4 Analysis Results

4.4.1 Descriptive statistics

Appendix ?? contains the descriptive statistics of the analysed dataset. For each metrics the number
of observation (N), mean (Mean), standard deviation (St. Dev.), minimum value (Min), and maximum
value (Max) are stated.
In all dataset we see that the use of inheritance is sparse (low mean values of DIT and NOC), this was

also observed by Briand et al. As a result, all ancestor/descendant measures (e.g. ACXXC/DCXXC),
and polymorphism metrics (e.g. OVO, SPX, DPX) also have low means. Another metric with a low
mean is the lack of cohesion measure (LCOM). The reason could be that most classes are cohesive, that
is have a negative LCOM value, and that these value are rounded up to zero. All the non-inheritance
related measures di↵erentiate the data rather well (e.g. OCXXC, NIP).

4.4.2 Outlier Analysis

Outliers and measures with low variance were identified and removed from the dataset.

• Exclusion of weak di↵erentiators. In all projects the following metrics were removed: NOC,
LCOM, ACAIC, DCAIC, ACMIC, ACMEC, DCMIC, SPA, SPD, DPA, and DPD. These metrics
do not di↵erentiate the data enough. This is in line with the observations from the initial study.
The DAC metric was a weak di↵erentiator in two systems and OCMEC in one system. All
the other measures di↵erentiated the data enough to be included in all the systems and are
considered in the selection process. The metrics that were selected are: WMC, DIT, CBO,
RFC, DAC, MPC, NOM, SIZE1, SIZE2, OCAEC, OCAIC, OCMIC, OCMEC and NIP. Note
that DAC and OCMEC are also included. They did not di↵erentiate the data enough in two
systems, but for the larger part the systems they did.

• Exclusion of multivariate outliers. Out of the six systems only one system was analysed, the rest
of the systems were computational or exactly singular and could therefore not be analysed. This
is because some variables had near linear dependencies, resulting in the matrix to exceed the
reciprocal condition threshold. We would be able to resolve this issue by starting with a PCA
and remove co-linear variables, but we choose to do not defer from the method as described by
Briand et al. Moreover, the number of observation in some systems are too small for an outlier
analysis, making the detection of real outliers more complicated. We ignore two probable outliers
that were discovered in the one system that was analysed.

4.4.3 Principal component analysis

The results of the Principal Component Analysis can be found in Appendix C. All measures with a
Principal Component that has an eigenvalue larger than .7 are highlighted in the appendix.
In the initial study, Briand et al. found 6 principle components and interpreted them as follows:

• PC1: Class size in terms of attributes and methods.

• PC2: The number of children / descendants of a class.
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• PC3: Amount of polymorphism taking place.

• PC4: Export coupling to other classes.

• PC5: Import coupling from ancestor classes.

• PC6: Overloading in standalone classes.

Based on our results of the Principal Component Analysis of 5 systems and the loadings of each
measure we found the 5 Principal Components. The components are in descending order based on
amount of variance they explain:

• PC1: Import coupling of classes. In 3 out of the 5 systems, class coupling explained most of the
variance in the data. In the remaining two systems, the ’coupling’ Principle Component had an
eigenvalue larger than 1.0. Besides the CBO metric (measures import and export coupling), the
metrics with the highest loadings are all import coupling metrics: RFC, MPC, DAC, OCAIC,
OCMIC. Import coupling measures that di↵erentiate type of relationships (e.g. attribute-to-
class or method-to-class) all seem to measure on the same orthogonal space. In two of the
systems, some of size measures (SIZE1, SIZE2, and NOM) were also among the variables of this
principal component. Briand et al. mentioned also a recurring relationship between size and
import coupling.

• PC2: Class method size and complexity. In 2 out of the 5 systems, size and complexity measures
explain most of the variance. In one system, the size and complexity explain the second most
of the variance. In the remaining two systems, size and complexity measures are among the
Principle Component with an eigenvalue larger than 1.0. Simple size metrics (NOM, SIZE1,
and SIZE2), and the complexity measure (WMC) seems to make up this principal component.
In one system, NIP had also a high loading in this component.

• PC3: Export coupling to other classes. in all 5 systems, there is at least one Principle Com-
ponent composed solely out of other-class export coupling metrics (OCAEC, OCMEC) with an
eigenvalue higher than 1.0. In one of the systems, the OCAEC and OCMEC measures explain
one component, but in all other systems they do not seem to measure along the same dimension.

• PC4: Depth of the inheritance tree (DIT). In all 5 systems, this component mostly explained
by the DIT metric, had an eigenvalue larger than 1.0.

• PC5: Polymorphism in non-inheritance class relations. In 4 out of the 5 systems, a Principle
Component were only NIP had a high loading was observed among the component with an
eigenvalue larger than 1.0.

Comparing the Principal Components found by Briand et al. and the Principal Components found
in this study, we see that in both analysis the size metrics measure a similar underlying concept and
that this concept is somehow related to input coupling measures. Moreover, in both studies import
and export coupling explained a large part of the variance but measures a di↵erent underlying concept.
Most specialized coupling metrics measure all the same underlying concept and could probably be
aggregated. The same holds for the polymorphism measures. Briand et al. their PC2 and PC6 were
not observed in our dataset.

4.4.4 Prediction model construction

For each system in Table 4.2, the best logistic regression model was build using mixed stepwise
selection based on AIC of the models. An overview of the selected predictors per system and the
model’s AIC score are shown in Table 4.4.
Briand et al. mentioned that they were unable to use backward stepwise selection because the data

could not be fitted. We did not experience that problem and instead of using only forward selection
we use both backward and forward selection.

38



Table 4.4: Dataset overview

System Selected predictors AIC

MAdd WMC, DIT, SIZE2 41.42
MIntO DIT, CBO, SIZE1, SIZE2, OCAIC 14.77
MIra OCMEC 4.00
MPen RFC, DAC, MPC, NOM, OCMIC, NIP 17.82
MRep MPC, SIZE1, SIZE2 89.22

The set of predictors that resulted in the best fault-proneness prediction model di↵er from the
findings in Briand et al. their research and the other studies in Table 2.1. It seems that a di↵erent
context result in a di↵erent set of fault-proneness predictors. This could oppose a challenge when
fault-prediction models are applied across systems, especially when they reside in di↵erent contexts.
The inclusion of simple size metrics seems to result in the best possible model. Note that the best

possible model does not mean it has good prediction capabilities. In 4 out of the 5 models, a size
metric was included in the set of independent variables (NOM, SIZE1, SIZE2). We see the same in
other studies [24, 5, 7, 8]. Coupling metrics are also often included in our best possible models (CBO,
RFC, MPC, DAC, OCAIC, OCMIC, OCMEC). This is also observed in Briand et al. their studies
[14, 4]. Beside the most prominent quality measures, we find an inheritance metric in two models
(DIT), a complexity metric in one model (WMC), and a polymorphism measure in one model (NIP).
Because we have no base-line for the AIC scores at this point, and the AIC scores are relative

values; we could not compare the information-loss of the models at this stage of our research.

4.4.5 Model validation

For all prediction models the precision, recall, and accuracy were calculated and discussed. The model
evaluation phase consists out of two parts: (i) The validation of the prediction model using a single
system (single-system validation); (ii) and the validation of the prediction model using another system
(cross-system validation).

Single-system validation

For the result of the analysis, see Table 4.5. For each system, the true positives (T+), true negatives(T�),
false positives (F+), false negatives (F�), accuracy, precision , and recall were calculated. Note that
the accuracy, precision, and recall are the averages of the k models produced by the k-fold cross
validation method. Moreover, the true/false positives/negatives are the aggregated results of the k
models; every model predicted 1/k of all observations.

Table 4.5: Single-systems overview
System T+ T� F+ F� Accuracy Precision Recall

MAdd 3 33 2 6 .82 .60 .33
MIntO 22 6 1 0 .97 .96 1.00
MIra 12 5 0 0 1.00 1.00 1.00
MPen 8 14 1 0 .96 .89 1.00
MRep 20 9 6 9 .64 .69 .64

The precision and recall of the single-system prediction models are in line with the observations
in the initial study and the results from the literature study. the model constructed using MIra was
completely accurate, while the prediction model Madd was one of the worst models. Interestingly is
that they where developed by the same team and were of comparable sizes. This and the dissimilarity
of predictors could be indicative of problems with applying model across systems, even with similar
teams and system sizes.
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Cross-system validation

For the result of the analysis, see Table 4.6. For each system pair (coded as training system -
validation system), the true positives (T+), true negatives(T�), false positives (F+), false negatives
(F�), accuracy, precision , and recall were calculated.

Table 4.6: Cross-systems overview
System pair T+ T� F+ F� Accuracy Precision Recall

MAdd-MIra 1 5 0 11 .35 1.00 .08
MIntO-MPen 8 14 1 0 .96 .89 1.00
MRep-MIntO 8 2 3 4 .55 .80 .55
MRep-MPen 4 2 9 2 .43 .35 .75

If we look at the accuracy of the cross-system prediction models, we see that three out of the four
preform no better than random. This contradicts the findings of Briand et al., who found a precision
and recall that were notably better than random.

4.4.6 Hypothesis testing

Using the results from the model evaluation phase, we will answer the two hypotheses. The results are
discussed in Section 4.5. To aid the hypotheses testing, the descriptive statistics are given in Table 4.7
and Table 4.8. The tables include the number of observations (N), minimum value (Min), maximum
value (Max), mean (Mean), and standard deviation (St. Dev.) for the single-system dataset and the
cross-system dataset, respectively.

Table 4.7: Descriptive statistics of the single-system prediction models
Statistic N Mean St. Dev. Min Max

T+ 5 13.00 8.00 3 22
T� 5 13.40 11.50 5 33
F+ 5 2.00 2.35 0 6
F� 5 3.00 4.24 0 9
Accuracy 5 0.88 0.15 0.64 1.00
Precision 5 0.83 0.17 0.60 1.00
Recall 5 0.79 0.30 0.33 1.00

Table 4.8: Descriptive statistics of the cross-system prediction models
Statistic N Mean St. Dev. Min Max

T+ 4 5.25 3.40 1 8
T� 4 5.75 5.68 2 14
F+ 4 3.25 4.03 0 9
F� 4 4.25 4.79 0 11
Accuracy 4 0.57 0.27 0.35 0.96
Precision 4 0.76 0.29 0.35 1.00
Recall 4 0.60 0.39 0.08 1.00

Testing the cross-system prediction capabilities. Two one-tailed one-sample t-test were
conducted to determine if the precision and recall of our four fault-proneness prediction models are at
least as high as Briand et al. their fault-proneness prediction model (p  .05). For the first hypothesis
(H1), the null hypothesis was formulated as follows:

H0 : µprecision < .60 _ µrecall < .60 (4.1)
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The average precision of the cross-system fault-proneness prediction models was more than 60%
(M = .76, SD = .29), but not significant (t(3) = 1.122, p = .172). Cohen’s d shows a large e↵ect
(d = 2.621). For recall, the mean was 60% (M = .60, SD = .39), the result was not significant
(t(3) = �0.137, p = .509). The null hypothesis: A fault-proneness prediction model that is trained
on a system and validated on another system with the same team composition will have an accuracy
and recall less than 60%, is not rejected.
Testing the accuracy loss caused by model transferring. Two Welch independent-sample

t-tests were performed to determine if there is a significant di↵erence (p  .05) between the prediction
accuracy of fault-proneness prediction models that are used on a single system and models that are
used across systems. For the single-system dataset, we only included the systems that were also
used for training the cross-system models. For the second hypothesis (H2), the null hypothesis was
formulated:

H0 : µsingle-system 6= µcross-system (4.2)

The di↵erence between the average accuracy of the single-system models (M = .88, SD = .15)
compared to the cross-system models (M = .57, SD = .27) was not significant (t(4.45) = �2.020,
p = .106) and the null hypothesis was not rejected. See Table 4.9 for an overview of the accuracy
losses.

Table 4.9: Between-system prediction capabilities
losses

Within-system Between-systems Accuracy Loss

MAdd MAdd-MIra .47
MIntO MIntO-MPen .01
MRep MRep-MIntO .09
MRep MRep-MPen .21

4.5 Conclusion and Discussion

This replication study was done to answer one of our research questions (RQ3): Can fault-proneness
prediction models e↵ectively be used across systems. Briand et al. concluded that fault-proneness
prediction models could indeed e↵ectively be used across systems, but that it is far from straight-
forward; after our replication study we did not came to the same conclusion. We found no evidence
that our fault-proneness prediction model obtained precisions and accuracies significantly higher than
.60; most of the models performed not better than random. Moreover, the prediction models lost
a considerable part of their accuracy, on average 19.50%, when used across systems. At this point,
we conclude that fault-proneness prediction models cannot be e↵ectively applied across systems that
only share a common team-composition.
From the results of the Principal Component Analysis, one notable observation was done: import

coupling measures seems to measure along the same orthogonal dimension as size measures. One
explanation could be that most of the code that is written, in the systems we considered, are calls to
other classes or libraries. It could be that these systems are mainly made by tying together existing
libraries and that not much code was written from scratch.
One of the observations based on the results of the prediction model construction was that size

was included in almost all the best possible models (sometime even more than once); this was also
the case in most of studies from the literature study. It seems that the size of the class plays an
important roll in the number of faults produces and tends to be a good predictor for fault-proneness.
A possible explanation could be that the number of faults increases with the amount of code produced.
Another explanation could be because large size and high complexity result in classes that are hard to
comprehend, and therefore results in more faults. Note that the complexity of the code is almost never
among the predictors of the best models, even though it tends to measure along the same dimension
as size measures. Coupling related variables were also often among the variables of our best models
and also among the best predictors in the studies of by Briand et al. One possible reason for these
type of measures to be good fault-proneness predictors could be because they provide some sort of
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indication of how many context a person has to keep track of. Another reason could be that faults in
coupled classes triggers a snowball e↵ect. If a class c depends on another class d and class d contains
a fault, then it is possible that class c is also a↵ected and needs fixing. Yet another reason could
simply be because coupling metrics measure along the same dimension as size measures, which are
probably good fault-proneness predictors.
The single-system model validation results were in line with the studies done by Briand et al. and

other studies from our literature study. The average accuracy of 5 fault-proneness prediction models,
applied on the system they were build on was 88%, with a precision of 83% and a recall of 79%.
The cross-system validation results were not in line with the studies done by Briand et al. The 4
fault-proneness prediction models obtained on average an accuracy of 57%, with a precision of 76%
and a recall of 60%. Three out of the four cross-system models performed on average not better than
random.
Based on the assessment of various cross-system fault-proneness prediction models, we think that

there are three important factors that influence the accuracy of fault-proneness prediction models
based on regression analysis techniques:

• Included predictors. The predictors or independent variables directly influence the logit function
regression model. A regression model is fit by applying weight to the available predictors. The
number of predictors are important; too much predictors will overfit the data and too few
predictors will not be able to discover patterns. Beside the number of predictors, the selected
predictors plays an equally import role; if the predictors do not correlate with fault-proneness
then the model is not likely to reveal relevant patterns. In other words, an optimal subset of
measures that strongly correlates with the outcome variable is a prerequisite for an accurate
regression-based prediction model.

• Model construction method. During the construction of the prediction models we were confronted
with many decisions: How and when to measure the class properties, which variables to select
for the model, which systems to train the model on, the values of function parameters (e.g.
cut-o↵ value for prediction outcome), and even the shape of the logit function itself (e.g. does
the function needs to fit a Poisson, a logical, or a linear distribution; or is the relationship
between predictors and outcome variables even more complex, see MARS model used by Briand
et al[4]). An alternative approach for constructing the model could lead to a di↵erent model
with di↵erent prediction capabilities.

• Environmental and system factors. Looking at the single-system prediction models we observe
high accuracies, and but when transferred to another system their accuracies drop considerably.
Intuitively, we think that to build e↵ective fault-proneness prediction models that could be
applied across systems, environmental and system factors play an important role and needs to
be controlled. If we control all factors, it will result in a single-system model, but this is an
impossible task. However, if we succeed in controlling the right factors, an large accuracy loss
might be prevented.

4.5.1 Threats to validity

The way regression models work poses a threat to external validity. Because, the model chooses its
logit function in such a way it fits the training data best, it could be hard to replicate previous studies
or generalize findings. The regression model are partly fit to the data, therefore the conclusion drawn
from the output of these models are also partly bound to the data. Statements like: “size measures
are good fault-proneness predictors”, are dangerous if they are based solely on the model evaluation
results. To deal with this threat, we did not draw our conclusion based on a single model and verified
our findings by looking at more than one context. However, we trained every model with the data of
a single system instead of using a pool of di↵erent systems.
Errors made by the tools we used or misinterpretations of their results posses a threat to the internal

validity. The used tools forms a threat in particular because they are developed and validated by the
author. To mitigate the risk, we explicitly describe the implementation of the metrics, wrote unit test
for all metrics, and published the source code of all tools.
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Furthermore, our reasoning is based on the observed faults; the faults discovered by applying a
certain strategy. Other strategies could lead to a di↵erent set of observed faults and therefore might
lead to other observations.
Another threat related to the external validity could be the method of sampling. We took a random

sample from a population of specific context. The results we found are all within the boundaries of
this context and it could be that our findings can not be generalized.
The rest of the threats are related to the dataset. Some systems in de dataset were relatively small

in size; this could hinder the model construction, because it is hard to find relationships with too
few observations. We dealt with the small sized systems by using k-fold cross-validation techniques,
a technique designed for small datasets. Another issue was the sample size, due the low number of
systems we were unable to test our hypothesis for significance and generalize our observations.

4.5.2 Future research

In the discussion, we described three factors that we think could dramatically impact the outcome
of prediction models. Alongside these three dimensions, one could try to improve the prediction
capabilities of a model. Moreover, it is known that regression-based models are black boxes, it is
hard to deduce the factors that influence the model and even more di�cult to find out why and
how these factors impact the model’s accuracy. By considering the factors in isolation and test them
in a controlled environment, a lot could be learned about these factors and their relation to fault-
proneness. When more is known about these factors and their e↵ect on prediction accuracy, they can
be more carefully applied in order to improve models.
In this study we found accuracy rates varying from .35 to 1.00. In the case of our worst models,

they performs worse than by chance. For models that perform no better than by chance, we could
easily tell that these models have no practical value. But what about fault-proneness prediction
models with an accuracy of .60, is this an acceptable lower bound? It could be that a simple fault-
proneness selection strategy based on trivial metrics such as size or last-change will easily outperform
the much more complex regression model. It is interesting to find out what acceptable lower bound
prediction capabilities are and how they would compare to prediction capabilities of trivial fault-
proneness models. Briand et al. conducted a cost-benefit analysis that tried to estimate the practical
value of the prediction models for example [4].
Although the fault-proneness prediction models perform rather well, even across systems with the

same team composition, and there is room for improvement, the question is: are machine based fault-
proneness prediction more e↵ective than humans. It is interesting to see the di↵erence in e↵ectiveness
of a human based fault-proneness selection strategy and a machine based strategy.
More and more software development is done in an agile manner, where software reviewing and

testing is done on a regular basis. Not every class is reviewed as thoroughly as the other classes. The
reviewer selects what he thinks are the most important classes and if the code seems good the pull
request gets accepted. In this particular case, the selection of possible fault-prone classes is based
on human intuition. This strategy is rather unstable depending on the case (e.g. a persons mood
or experience in that domain). A machine based strategy might easily outperform humans in terms
of stability. The question is: could fault-proneness prediction be used on only the set of classes that
were changed.
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Chapter 5

Improvements to Regression-Based
Fault-Proneness Prediction Models

5.1 Introduction

In our replication study (see Chapter 4), we discuss three axes along which we possibly can improve
fault-proneness prediction models for software systems: (i) Altering the fault-proneness predictors;
(ii) Changing the fault-proneness prediction techniques; (iii) or by considering the environmental and
system factors. In this study will we focus on the first two axes.
Based on our literature study (see Section 1.3) and the replication study (see Chapter 4); we like

to suggest some improvements to Briand et al. their prediction model construction method [14, 4].
The two improvements are summarized below.
Predictor-set extension. The problem of most metric-suites from the literature study, is that they

mainly consist out of product measures (in their research called quality metrics or design metrics),
and therefore are limited in diversity. Moreover, almost all metric-suites contain multiple metrics
that measure along the same dimension; introducing ambiguity and making the model harder to
interpret. By reducing the number of similar metrics, the models will be easier to understand and will
be easier to generalize. For example, three size measures that measure the same underlying concept
could be replaced by one measure that describes this concept best. The improvement is twofold:
(i) Replace metrics that measures the same underlying concept by one that measures this concept
best; (ii) and add process metrics to the predictor-set. Both are described in more detail by the
following paragraphs.
The metric-suite used by Briand et al.[4] is a rather large one (containing over 20 metrics), but it is

limited in diversity. During the replication of their study (see Section 4), more than half of the metrics
were filtered out because they did not explain enough of the variance. Also, the result of the Principal
Component Analysis (see Section 4.4) showed that many of the remaining metrics measured the same
underlying concept. In our opinion, the result was too homogeneous metric-suite, that in turn resulted
in fault prediction models that were more tightly coupled to the individual systems and less stable
when used on other systems. We think that one of the solutions to this problem is to combine some
strongly related metrics and use that composite metric instead (e.g. not distinguish between ancestor,
descendant, and other types of coupling). Based on the observations done in the replication study,
we think the aggregation of the ACAIC, DCAIC, OCAIC, ACMIC, DCMIC, OCMIC into the metric
XXXIC, still measures the import coupling of a class but is less finer grained. The same holds for the
ACAEC, DCAEC, OCAEC, ACMEC, DCMEC, OCMEC metrics. The POLY measure will be an
aggregation of the DP, SP, and OVO measure; the metric still measures polymorphism, but again on
less fine grained. These composite measures are based on the conclusions drawn during the Principal
Component Analysis; where there was only a clear di↵erence between import coupling and export
coupling measures but not between ancestor, descendant, or other types of couplings for example. It
is likely that the new composite measures will di↵erentiate the data better compared to the individual
measures and that the model is more easy to interpret. However, there is a loss of information because
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we aggregated the individual measures.
In an e↵ort to make the model more diverse, process metrics could be added to the suite. Process

metrics seems to be good fault-proneness predictors when looking at other related studies. For ex-
ample, three out of the six metrics in Ostrand & Weyuker their ’optimal’ standard model [27] were
process metrics, and Khoshgoftaar et al. based their prediction solely on change metrics and obtained
high prediction accuracy [22] .
State-aware measurement. To our knowledge, none of the researchers in the literature study truly

consider state during measurement. In all studies we considered, measurements are done on the most
recent version of the class. These measurements are then used as predictors for fault-prone classes in
fault-proneness prediction models. The problem with this approach is that the measurements does
not represent the fault-prone class, but instead a more recent version of that class. The probability
that a newer version of the fault-prone class has been changed over time is high, and this probability
is even higher if the class contained a fault. It is likely that the newer class does not resemble the
fault-prone class any more. An even more problematic consequence would be that the newer version
of the fault-prone class is fixed in such a way the measures represent a non fault-prone class instead
of a fault-prone class; thus measuring the inverse of what was intended.
Briand et al. [4] also identified this issue and worked around it by not considering all faults but

only the faults discovered in a specific release. As a result the di↵erence between the analysed class
and fault-prone class di↵er at most 3 a 4 months, according to Briand et al. This approach is more
accurate that an approach which does not consider state, but it does not solve the problem. To solve
this problem, we will analyse the fault-prone class instead of the most recent version of the class. More
precisely, for each fault we recover the whole system to the latest state that still contains the fault
before performing any measurements. The result is a set of measurements that actually represents
the fault-prone class and its relationship it had with other classes.
Regarding the e↵ect of the improvements on fault-proneness prediction models, we are mostly

interested in how the models will improve when used across systems. Therefore, we will focus solely
on the cross-system models and not the single-system models. To test the e↵ect of the improvements
on the fault-proneness prediction models, we will take the systems and results from our replication
study and use those as base rates. Next, we reapply the improved models and compare the accuracy
di↵erence using the following hypothesis:

Hypothesis H1: A fault-prediction model with the improved predictor-set will result in
more accurate predictions compared to a fault-prediction model that uses the predictor-set
as proposed by Briand et al.

For testing the e↵ect of the second improvement, we will again take the systems and the results
from the replication study and reapply the improved models on the systems. We test the e↵ectiveness
using the following hypothesis:

Hypothesis H2: A fault-prediction model with state-aware measurement will result in more
accurate predictions compared to a fault-prediction model without state-aware measure-
ment.

Finally, both of the improvements are applied. We expect predictions models using both the
improvements result in a more accurate model compared to using just a single improvement or none
of the improvements. The e↵ectiveness of the improved model is tested using the following hypothesis:

Hypothesis H3: A fault-prediction model with the predictor-set improvement and state-
aware measurement will result in more accurate predictions compared to a fault-prediction
model without these improvements.

This chapter is structured as follows: Section 5.2 describes the setting of the study. Section 5.3 lays
out the analysis methodology and how we will test the improve models. In Section 5.4 we present our
findings. In Section 5.5 we discuss our findings and draw our conclusions.
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5.2 Description of Study Setting

5.2.1 Systems

For our dataset, we will use the same systems that were used for the cross-system dataset of the
replication study. Table 5.1 provides an overview of the systems. For each system: the number of
non-generated/non-test Java source code files (Files), the number of source lines of code (SLOC), the
number of faults (Faults), the fault distribution (FGini), and the team who build the system (Team)
are given. Table 5.1 provides an overview of the system-pairs used to train and test the model.
The training system (Train), the validation system (Validate), and the prediction model’s accuracy
(Accuracy), its precision (Precision), and its recall (Recall) can be found in this table.

Table 5.1: Systems used in the replication study

Files SLOC Faults FGini Team

BIra 30 3.023 8 .45 C
MAdd 80 4.012 38 .56 D
MIntO 46 2.204 93 .45 B
MIra 28 1.186 29 .38 D
MPen 27 1.217 17 .59 B
MRep 85 2.603 72 .44 B

5.2.2 Variables

Independent variables

We will use two di↵erent set of independent variables, one for each improvement:

• Predictor-set extension. A selection of metrics from the metric-suite will be made in the model
construction phase that will represent the independent variables. The metric-suite used in this
study contains: a subset of Briand et al. their cohesion metrics [25], Benlarbi & Melo their poly-
morphism measures [12], metrics from the Chidamber & Kemerer metric-suite [13], size metrics,
change metrics based on Koshgoftaar et al. [22] their metric-suite, and a subset of Ostrand &
Weyuker their ’optimal’ standard model [27]. We replaced Briand et al. their import/export
coupling metrics with the composite measures XXXIC and XXXEC. Also, Benlarbi & Melo their
polymorphism measures, DP, SP, and OVO were replaced by the composite measure POLY (see
Section 5.1 for more information)

• State-aware measurement. The metric-suite used to select the independent variables is exactly
the same as the one used in the initial study. The metric-suite used in this study contains:
a subset of Briand et al. their cohesion metrics [25], Benlarbi & Melo their polymorphism
measures [12], all metrics from the Chidamber & Kemerer metric suite [13], and some simple
size metrics. As part of this improvement, we will measure the fault-prone class; the latest
version of the class that still contained the fault. Before conducting any measurements on that
class, we will not only revert the state of that class but of the complete the system. This is
because some measurements also consider class relationships. We will use the ’checkout’ and
’reset’ functionality of the version control system and the commit-id of the foremost commit
whom mentioned that the fault was fixed (for more details see Appendix A).

All the metrics measure at class-level. Inner classes are not treated as individual observations but
their measures, methods, and attributes are counted to contribute towards the containing class. Faults
that are traced back to an inner class were assigned to the out most containing class.

Dependent variable

We want to evaluate whether the existing design measures are useful for predicting the likelihood that
a class is fault-prone; that is if the class contains at least one fault. The outcome value is dichotomous;
a class is either fault-prone or it is not.
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We collect faults in a class using our fpms package. The tool analysis git commit messages, if the
commit message contains hints of a fault that has been fixed, then we say that all changed classes
contain one fault each (see Appendix A). Take in mind that the faults that were detected using this
procedure are probably not all of the faults. Also, there might be some false positives among the
observed faults (See Section 4.2 of the replication study for a detailed discussion).

5.3 Data Analysis Methodology

The data analysis methodology follows the same method as described in the replication study. If one
of the two improvements require a deviation of the replication method, it will be indicated. An short
overview of the methodology is given in this section, for a more detailed description see Section 4.3.
In this section we layout the methodology used for analysis the collected data. The analysis pro-

cedure consists out of: (i) An analysis of descriptive statistics, (ii) data distribution and outliers
analysis, (iii) a multivariate regression analysis, (iv) an evaluation of the prediction model, (v) and
the testing of the hypotheses.

5.3.1 Descriptive Statistics

For each system, all metrics are calculated. The minimum (Min), maximum (Max), sample mean
(µ), Median (Med), and the standard deviation (�) are collected. This data will help with the
interpretation of the results for upcoming analyses.

5.3.2 Outlier analysis

The outlier analysis is used to spot low variance measures and originally consists out of two steps:
(i) excluding weak di↵erentiators by removing all measures with less than 5 zero data points; (ii) and
excluding multivariate outliers with a too large the Mahalanobis distance. In this study we will deviate
from the replication study and only perform the first step. This is because detecting multivariate
outliers on the dataset is unreliable due to the low number of observations per system (see Section 4.3
for more details).

5.3.3 Prediction model construction

Both improvements will follow the same method for constructing the fault-proneness prediction model
as the one used in the replication study. A logical regression model will be build that uses a subset
of metrics as predictors and fault-proneness will be used as the outcome variable. The independent
variables are selected using a mixed stepwise selection process that compares the models their AIC
scores. The multi-collinearity reduction step is skipped for both improvements because is added little
value in our replication study.

5.3.4 Model evaluation

The model evaluation for both the improved models is done based on accuracy, precision, and recall.
Because we are interested in the cross-system model prediction capabilities, only the cross-systems
validation method is used. A small di↵erence between the replication study and this study is that we
focus more on the accuracy measure and less on the precision and recall measures. Accuracy implicitly
represents both the precision and recall measures but is easier to use when comparing models. For
example, comparing a model with a precision of 60% and a recall of 90% with a model with a precision
of 70% and a recall of 80% is more complex than comparing two models with accuracies of 70% and
80%.

5.3.5 Hypothesis testing

Before testing the hypotheses, the absolute accuracy values obtained in the model evaluation phase
are transformed to relative values. The values are relative towards the base rate values, that are the
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accuracy values of the models from the replication study, and represent the di↵erence between those
values in terms of accuracy gains. For example, the original model has an accuracy of .70 and the
improved model an accuracy of .80, then the improved model has an accuracy gain of .10. A negative
gain value is the same as a positive loss value.
After the transformation, we will test both hypothesis using an one-tailed one-sample t-test (↵ 

.05). Moreover, Cohen’d will be used to measures the e↵ect size.

5.4 Analysis Results

5.4.1 Descriptive Statistics

By looking at the means of the metrics, we see in all systems that number of children, lack of cohesion
measure, and polymorphism measure (NOC, LCOM, and POLY respectively) do not di↵erentiate the
data very well. For the NOC and LCOM measures, these observations are no di↵erent than we saw
in our replication study. The composition metric, POLY, does not seem to di↵erentiate the data very
much either; even though this metric measures any kind of polymorphism. This could mean that the
systems do not make use of the polymorphic aspects of the object oriented language.

5.4.2 Outlier analysis

The outlier analysis of the improvements are given below:

• Predictor-set extension. The exclusion of weak di↵erentiators resulted in the removal of four
metrics. The NOC and LCOM measures had less than five non-zero data points were removed
from all systems; the POLY metric was removed from four systems, and the DAC metric was
removed from two systems.

• State-aware measurement. The exclusion of weak di↵erentiators resulted in the removal of the
LCOMmeasure in all systems, the NOC measure from four systems, the ancestor and descendent
coupling measure from all systems, the static polymorphism measures from four systems, and
the dynamic polymorphism from all systems.

• Both improvements. LCOM was removed from all systems, the NOC measure from three sys-
tems, and the POLY measure from one system.

5.4.3 Prediction model construction

The regression models were build for each system in the cross-system dataset using mixed stepwise
selection. The prediction model construction for both improvements were done separately.

predictor-set improvement

An overview of the selected predictors per system and the model’s AIC score can be found in Table 5.2
for the predictor-set improvement.
When looking at the selected predictors of the predictor-set improvement model, we see that

Changes measure is included as predictor in three out of the five models, and that the Authors
metric is included as predictor in two out of the five models. Also, compared to the selected pre-
dictors from the replication study (see Table 4.4), we see that the export coupling related metric
(XXXEC) is included in two more models.
If we compare the AIC values of the models from the replication study with the AIC values of the

predictor-set improvement models, we see that for four out of the five systems the value is lower. In
other words, the information loss of these four models is less and are therefore better representations
of the actual model. We conclude that the predictor-set improvement models better describes the
relation between software measures and faults compared to the original model. However, it does
necessarily mean that the model will obtain higher prediction accuracies.
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Table 5.2: Predictor-set extension improvement stepwise analysis re-
sult

System Selected predictors AIC

MAdd SIZE1, XXXIC, Changes 8.00
MIntO SIZE2, XXXIC, XXXEC, Changes, Authors 12.00
MIra XXXEC 4.00
MPen CBO, RFC, MPC, NOM, SIZE2, NIP 16.77
MRep WMC, CBO, SIZE2, XXXEC, Changes, Authors 48.97

state-aware measurement improvement

An overview of the selected predictors per system and the model’s AIC score can be found in Table 5.3
for the state-aware measurement improvement.
The fact that the selected predictors in these improvement models changed drastically, could indi-

cates that the state-aware measurement a↵ects prediction models.

Table 5.3: State-aware measurement improvement stepwise analysis
result

System Selected predictors AIC

MAdd WMC, DIT, RFC, OCAEC, OVO 61.36
MIntO CBO, SIZE1, SIZE2, OCAIC, OCMIC 14.77
MIra RFC, DAC, NOM 8.00
MPen CBO, NOM, SIZE1, SIZE2, NIP 12.00
MRep WMC, DIT, RFC, NOM, SIZE1, SIZE2, OCIAC 82.88

Both improvements

An overview of the selected predictors per system and the model’s AIC score can be found in Table 5.4
for the models that incorporate both the predictor-set and state-aware measurement improvement.
The Changes metric seems to be a strong predictor for fault-proneness, since the metric is included

in three out of the five models when using both the improvements. Size related measurements are
included in four out of the five models. The number of non-inheritance polymorphism is included in
three out of the five models, interesting is that Briand et al [4] also included NIP in their best model.
Finally, coupling measures are also among the selected predictors in four out of the five models.

Table 5.4: Both improvements stepwise analysis result

System Selected predictors AIC

MAdd WMC, SIZE2, XXXIC, NIP, Changes, Authors 14.00
MIntO NOC, CBO, NIP, Changes, Age 12.00
MIra RFC, DAC, NOM 8.00
MPen NOM, SIZE1, SIZE2, NIP, Changes 12.00
MRep DIT, CBO, DAC, NOM, SIZE1, XXXEC, NIP 42.37

5.4.4 Model evaluation

predictor-set improvement

For the result of the analysis, see Table 5.5. For each system pair (coded as training system -
validation system), the true positives (T+), true negatives(T�), false positives (F+), false negatives
(F�), accuracy, precision , and recall are calculated.
If we compare the model evaluation results with the results obtained in the replication study (see

Table 4.9), we see that three out of the four models in this study have higher accuracies. This suggest
that the improvement indeed positively a↵ects the prediction capabilities.
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Table 5.5: Predictor-set extension improvement models their prediction capa-
bilities

T+ T� F+ F� Accuracy Precision Recall

MAdd-MIra 5 3 2 7 .47 .71 .42
MIntO-MPen 6 4 7 0 .52 .42 1.00
MRep-MIntO 11 2 3 1 .79 .86 .86
MRep-MPen 4 4 7 2 .52 .40 .75

state-aware measurement improvement

For the result of the analysis, see Table 5.6. For each system pair (coded as training system -
validation system), the true positives (T+), true negatives(T�), false positives (F+), false negatives
(F�), accuracy, precision , and recall were calculated.
The state-aware measurement improvement positively a↵ected all four model when compared to the

models used in the replication study. Moreover, three out of the four models obtain higher accuracies
compared to the predictor-set improvement. The state-aware measurement seems to have a larger
e↵ect on the prediction models than the predictor-set improvement.

Table 5.6: State-aware measurement improvement models their prediction ca-
pabilities

T+ T� F+ F� Accuracy Precision Recall

MAdd-MIra 1 3 2 1 .57 .33 .50
MIntO-MPen 7 10 0 0 1.00 1.00 1.00
MRep-MIntO 9 0 4 4 .79 .91 .84
MRep-MPen 6 2 8 1 .54 .50 .85

both improvements

For the result of the analysis, see Table 5.7. For each system pair (coded as training system -
validation system), the true positives (T+), true negatives(T�), false positives (F+), false negatives
(F�), accuracy, precision , and recall were calculated.
The combination of both the predictor-set improvement and the state-aware measurement improve-

ment dramatically increased the fault-proneness prediction models their accuracies for three out of
the four system-pairs compared to the models from the replication study. Also, the prediction mod-
els build using a combination of both the improvements result in better accuracies compared to the
individual improvements for these three system-pairs.

Table 5.7: Models using both improvements their prediction capabilities

T+ T� F+ F� Accuracy Precision Recall

MAdd-MIra 1 3 2 1 .57 .33 .50
MIntO-MPen 7 5 5 0 .75 .65 1.00
MRep-MIntO 11 3 1 2 .81 .98 .80
MRep-MPen 5 5 5 2 .61 .56 .77

5.4.5 Hypothesis testing

To aid the interpretation of our testing outcomes, the descriptive statistics of the prediction models
are given in Table 5.8, Table 5.9, and Table 5.10. The tables include the number of observations (N),
minimum value (Min), maximum value (Max), mean (Mean), and standard deviation (St. Dev.).

Testing the prediction accuracy of the fault-proneness prediction models with the
predictor-set. To determine if there is a significant di↵erence (p  .05) between the accuracies of
the predictor-set improvement models and the replication models, a Welch independent-sample t-tests
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was conducted. For the first hypothesis (H1), the null hypothesis was formulated:

H0 : µrepl = µpredictor (5.1)

The results of the test indicate that there is no significant di↵erence between the accuracies of the
predictor-set improvement models and the replication models (t(4.592) = .0163, p = .987). The
null hypothesis: There is a significant di↵erence in accuracy between the replication models and the
predictor-set improvement models, is not rejected. The e↵ect size was calculated using Cohen’s d,
and indicated a small e↵ect size (d = 0.023).

Table 5.8: Descriptive statistics of the predictor-set improvement prediction models
Statistic N Mean St. Dev. Min Max

T+ 4 6.500 3.109 4 11
T� 4 3.250 0.957 2 4
F+ 4 4.750 2.630 2 7
F� 4 2.500 3.109 0 7
Accuracy 4 0.575 0.145 0.470 0.790
Precision 4 0.598 0.225 0.400 0.860
Recall 4 0.758 0.247 0.420 1.000

Testing the prediction accuracy of the fault-proneness prediction models with state-
aware measurement. This hypothesis was tested in the same way as Hypothesis H1, using the
following null hypothesis:

H0 : µrepl = µstate (5.2)

Based on the test results, there is no significant di↵erence between the accuracies of the state-aware
measurement improvement models and the replication models (t(5.699) = .882, p = .413). The null
hypothesis is not rejected. The e↵ect size was calculated using Cohen’s d, and indicated a medium
e↵ect size (d = 0.635).

Table 5.9: Descriptive statistics of the state-aware improvement prediction models
Statistic N Mean St. Dev. Min Max

T+ 4 5.750 3.403 1 9
T� 4 3.750 4.349 0 10
F+ 4 3.500 3.416 0 8
F� 4 1.500 1.732 0 4
Accuracy 4 0.725 0.215 0.540 1.000
Precision 4 0.685 0.322 0.330 1.000
Recall 4 0.798 0.211 0.500 1.000

Testing the prediction accuracy of the the fault-proneness prediction models with the
predictor-set and state-aware measurement. This hypothesis was tested in the same way as
Hypothesis H1, using the following null hypothesis:

H0 : µrepl = µboth (5.3)

The test result show no significant di↵erence between the accuracies of the state-aware measurement
improvement models and the replication models (t(4.022) = .766, p = .486). The null hypothesis
is not rejected. The e↵ect size was calculated using Cohen’s d, and indicated a medium e↵ect size
(d = 0.555).
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Table 5.10: Descriptive statistics of the prediction models using both improvements
Statistic N Mean St. Dev. Min Max

T+ 4 6.000 4.163 1 11
T� 4 4.000 1.155 3 5
F+ 4 3.250 2.062 1 5
F� 4 1.250 0.957 0 2
Accuracy 4 0.685 0.114 0.570 0.810
Precision 4 0.630 0.269 0.330 0.980
Recall 4 0.768 0.205 0.500 1.000

There is not enough statistical evidence that indicate a significant di↵erence in accuracy between the
replication study models and the improvement models. However, the Cohen’d values of the state-aware
improvement models and the models using both improvements suggest a moderate to high practical
significance [49]; the average accuracy gain of the state-aware improvement and ’both-improvement’
models are 15% and 11%, respectively. In Table 5.11 are the individual observations and contains the
accuracy gains of the improvement models relative to the values observed in the replication study. The
absolute accuracies from the original models used in the replication study (Intercept), the di↵erence
between the accuracies of the original models and the predictor-set improvement models could be
found in this table.

Table 5.11: Accuracy gains of the improved prediction models

Intercept Predictor-set State-aware Both impr.

MAdd-MIra .35 .12 .22 .22
MIntO-MPen .96 -.44 .04 -.21
MRep-MIntO .55 .24 .24 .26
MRep-MPen .43 .09 .11 .18

5.5 Conclusion and Discussion

To answer our research question (RQ2): how could the construction for regression-based fault-
proneness prediction models be improved? we suggested two improvements regarding the model con-
struction method used by Briand et al. (i) extending the predictor-set with process measures and sim-
plifying the metric-suite by merging strongly related metrics (predictor-set improvement). (ii) Mea-
suring class properties of the latest class version that still contained the actual fault (state-aware
measurement improvement). The predictor-set improvement does not significantly improve the pre-
diction model its accuracy. The state-aware measurement improvement and using both improvements
increased the average prediction accuracy by 15% and 11%, respectively. There was no statistical sig-
nificant evidence that showed that the latter two improvements increased accuracy of the replication
models, but the Cohen’s d suggested a moderate to high practical significance. Moreover, we observe
that the suggested improvements result in higher accuracies except for one system pair. For the
three systems, the models that use both improvements perform best in terms of accuracy. To answer
research question RQ2, using both the suggested improvements result in fault-proneness prediction
models that are more accurate compared to the models build using Briand et al. their method.
One notable observation done during the model construction phase is that we found two reoccurring

types of metrics in almost all of the best models, namely size/complexity measures and the coupling
measures. The same discovery was done in the replication study (see Chapter 4 for the discussion).
Another frequently selected predictor is the Changes metric. This means that frequently changed
classes are more likely to be fault-prone compared to less frequently changed classes. This observation
could be explained by the trivial fact that faults are more likely to arise in the parts of the code that
are changed than in part that are not changed.
A second observation was the inconsistent set of independent variables among the best prediction

models, and is one of our biggest concerns. Every model has a di↵erent set of independent variables
with little similarities compared to the other models. For example, MAdd and MIra are developed
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by the same team but do not have one independent variable in common. This could mean that team
composition does not result in systems with similar class characteristics. Another explanation could
be that the selected predictors are no real fault-proneness predictors. The latter suggest that the
models will become (more) unstable when used on other systems.

5.5.1 Threats to validity

In order to make state-aware measurement possible, we had to change the workings of the tool that
was used in the initial study. They still measure the same concepts, but it is done in a slightly
di↵erent way. Two di↵erences in measurement are: (i) The state-aware measurement tool does not
take external libraries into consideration, for example the depth of inheritance (DIT) only considers
the local inheritance. For example, if MyList extends Java’s List, the DIT of the new method of
measurement is 0 instead of 0+DITList; (ii) The state-aware measurement tool does not only consider
the classes of a single jar, but all non-test/non-generated Java classes that were generated by the Java
compiler. For example, a systems compiles two jars. The former method considered only classes in the
’main’ jar, while the new method considers classes from both jars and even the classes that are not
included in the jar. These changes could introduce new confounding variables and therefore negatively
influence the comparison of the replication models and predictor-set improvement models, with the
state-aware measurement improvement models and the models that incorporate both improvements.
Other threats to validity are similar to the threats described in the replication study. For more

details regarding these threats we refer to Section 4.5.

5.5.2 Future research

The di↵erence between the selected predictors for the prediction models is remarkable. We expected
that by using the same team composition, a similar set of metrics would be selected as predictors for the
models. Instead, we observed that the selected predictors have little in common when compared the
models their prediction-sets. One explanation could be that the team composition has no relationship
with class characteristics. We have our doubts about the relationship of some of the predictors and
fault-proneness. The only extensive research regarding this relationship, that we found, was done by
Briand et al. [14]. In our opinion, the value of replicating Briand et al. their research is high because
of the absence of observable patterns regarding the behaviour of faults in software systems. Moreover,
Briand et al. states that their research is of an exploratory nature and that an more extensive studies
are required to validate their findings.
The state-aware measurement improvement is not yet applied in fault prediction to the knowledge

of the author. It could be interesting to see how other prediction models will react when they are
’state-aware’. Moreover, we think that the state-aware measurement really pays of when used on
datasets with a large commit history. To follow up on the previous research direction, Briand et al.
[14] did not mentioned how they handled state when measuring class properties and did not really
consider class-state in their follow-up study [4]. Therefore, a replication of study Briand et al. that
explores the relationship between design measures and software quality, but this time considering the
state of the classes during measurement could result in interesting discoveries.
The fault discovery strategy could be altered or analysed in more depth. For example, one could

abstract data from special bug-tracking databases. This could lead to di↵erent (and perhaps more
accurate) fault prediction models. Another option would be to analyse the faults is more depth and
study the relation of fault prediction models and the relations to certain types of faults. For example,
one could manually verify and classify the discovered faults from the bug database and validate the
models based on the prediction capabilities of certain types of faults (see the paper of Herzig et al.
for more information about fault categories and fault discovery strategies [29]).
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Chapter 6

The Influence of Environmental
Factors on Fault-Proneness
Prediction Models

6.1 Introduction

In our replication study (see Chapter 4), we discuss three axes on which we think fault-proneness
prediction models could be improved:

• Axis I. Through changing the included fault-proneness predictors.

• Axis II. By tuning or altering fault-proneness prediction modelling techniques.

• Axis III. By considering the context in which the fault-proneness prediction model operates.

During the improvement study (see Chapter 5), we improved Briand et al. their prediction model by
changing the collection of predictors to choose from (Axis I), and by changing the modelling technique
such that the state of the system is considered during measurement (Axis II). In this study will we
focus on the latter axis, and try to improve the model by controlling the factors that are likely to
influence the prediction model (Axis III).
In this study, we hypothesize that context plays an important role in cross-system fault-proneness

prediction; and that by keeping the right factors constant, the prediction models can become more
stable and e↵ective when applied in practice. In order to test the latter statement, we consider
three types of context: people, process, and technology. These types are considered the fundamental
elements of an information technology infrastructure [50] and are key components of an information
system [51]. Each of these types will be explored in isolation and will help in answering the question:
will factors related to that type a↵ect fault-proneness prediction models?
Based on the available information on the systems used in this study, a number of factors were

collected and allocated to a context type, for a detailed description see Appendix A:

• People. This type contains all the factors related to people whom were involved during devel-
opment or maintenance. The type provides information regrading the team composition, the
architect, the size of development team, the years of experience of team, type of the project
team, and the number of teams whom worked on the system.

• Process. This type contains all process and managerial aspects. It provides information regard-
ing the budget that was reserved for the system, the product owner, the software methodology
that was used, and the number of stories that were available.

• Technology. This type contains the system related factors and has information on the type of
system, number of files, lines of comments/code, number of faults in the system and changes to
the system, the age of the system, and the time it took to develop the system.
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This study is of an exploratory nature, there is no known evidence on the e↵ect of factors on
fault-proneness prediction models. The factors will be allocated to a type intuitively; the factors are
chosen based on the information that is available. As result, the factors might cause an incomplete
or inaccurate representation of that context type. Note that the focus of this study is not to point
out the factors that influence prediction models but rather to obtain knowledge on the behaviour of
prediction models when applied in similar contexts.
The first hypothesis is used to test the e↵ect of people related characteristics on cross-system fault

prediction model accuracy:

Hypothesis H1: Fault-proneness prediction models that are applied on systems that have
many people related similarities di↵er in accuracy from fault-proneness prediction models
that are applied on systems that share little people related similarities

The second hypothesis is used to test the e↵ect of system related characteristics on cross-system
fault prediction models their accuracy:

Hypothesis H2: Fault-proneness prediction models that are applied on systems that have
many system related similarities di↵er in accuracy from fault-proneness prediction models
that are applied on systems that share little system related similarities

The third hypothesis tests the e↵ect of process related characteristics on cross-system fault predic-
tion models their accuracy:

Hypothesis H3: Fault-proneness prediction models that are applied on systems that have
many process related similarities di↵er in accuracy from fault-proneness prediction models
that are applied on systems that share little process related similarities

The outcome of hypotheses H1, H2, and H3 will not be enough to draw conclusions yet; confound-
ing variables could influence the prediction outcomes. In order to show that the individual system
characteristic impacts the prediction model, it must di↵er significantly from a model based on all
systems. Hypothesis H4 will be used for testing this:

Hypothesis H4: Fault-proneness prediction models build from a set of systems that share
many factors of a certain context type di↵ers from a fault-proneness prediction model that
is build from a set of all systems

Finally, to test if the models that result from a specific context are good enough to be applied in
practice, we compare these models to a constant value. Based on the rule of thumb given by Hosmer
& Lemeshow [46], we state that the accuracy is reasonable at .60, good at .70, and excellent at .80.
We expect that our best model is able to obtain an accuracy of at least .70. The following hypothesis
will be used:

Hypothesis H5: Fault proneness prediction models applied within an idealistic context are
able to predict with an accuracy of at least .70

This chapter is structured as follows: Section 6.2 describes the setting of the study. Section 6.3
lays out the analysis methodology. In Section 6.4 we present our findings. In Section 6.5 we discuss
our findings and draw our conclusions.

6.2 Description of Study Setting

6.2.1 Systems

To minimize the e↵ect of confounding variables it is important to control as much as variables as
possible. It is challenging to isolate a single factor that influence the fault model’s prediction accuracy.
Therefore, the systems in our dataset must be already similar to one another and share common
characteristics. To control most of the system their characteristics, we will pick systems that are
developed by a single company, whom propagates strict protocols and standards regarding software
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development. Moreover, the systems must be developed for a similar business context and in a similar
environment. The systems may only slightly di↵er from each other, preferably on a single aspect only.
For these reasons we will not reside to open-source projects. We have little information on most of
the open-source projects regarding development environment, standards and protocols, and so on; it
will be hard to find a set of similar projects. Instead, we will use commercial systems.
Due to constrains to our analysis tools, not all systems are suitable for our dataset. One constrain is

the programming language, we must choose a specific language and keep this constant for all project.
The reason for this is because the tools we use for measuring product metrics are language specific.
Our language of choice is Java, and was decided by the fact that the company that could provide the
dataset builds Java systems.
In total we collected 19 systems. These systems are all developed and used by a firm active in

the financial services sector. All systems are still actively developed and used during the period of
analysis. Out of the 19 systems, 14 systems were suitable for analysis; the remaining systems su↵ered
from errors or did not meet the criteria. An overview of all systems and a short description is given
in Table 6.1.

Table 6.1: Collected systems overview

System Description

BIra* Exposes raw data
DSto* Interfaces with a document store
ESec* ?
Doc* Upload documents
Sec* Verify documents
IRat* Interfaces with old legacy system
kryp Reactive back-end-service stores large amount of data
MAdd* Combines and summarises data from many sources
MApp* Combines and summarises data from many sources
MCon API to move process a step further
MIntO* Interfaces with legacy back-end service
MIntR Manages, validates and distributes user input
MIra* Connect and translate back-end-service
MPen* Connect and translate back-end-service
MRep* Interface with legacy back-end service
Acc Legacy system
MDue* Front-end API
MorM Combines and summarises data from many sources
Forc Bridges two protocols
pMorE Exposes legacy system
Ass Shared component

* included in the dataset

System pool creation

In order to answer our hypotheses, we will make system-pools. Each pool contains systems whom
share similar factors of a specific context type. We use three types of pools, each type representing
one of the three context types: people, process, or system. Moreover, each type of pool has an inverse-
type, that is a type that is dissimilar on as many factors of a specific type as possible. For example,
a pool of the people-type contains systems with similar people factors, the inverse of the people-type
pool contains systems with as many dissimilar people factors as possible.
The pools are created using the following strategy:

1. One characteristic, the main-characteristic, is selected that belongs to the pool type in question.
This characteristic is chosen in such a way that that the systems in that pool have as many
commonalities among the characteristics. The systems that comply to the criteria will form
the first sub-pool. This sub-pool will carry the label TYPE1 where TYPE is the name of the
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pool-type.

2. At least one other sub-pool must be created. This sub-pool is made out of the systems whom
share the same main-characteristic as the first sub-pool; this main-characteristic is mutually
exclusive from the other sub-pools. The same conditions hold as for the primary sub-pool; at
least 3 systems must be in the sub-pool and the systems must have some commonalities among
the other characteristics. In the case of a system that di↵ers too much from the other systems
and the sub-pool size consists out of more than 3 systems, the system must be removed. The
detection of outliers is subjective. The following sub-pools carry the label TYPEn where n is
the number of the sub-pool.

3. Finally, a special kind of sub-pool must be created, the inverse sub-pool. Based on the first
selected characteristic in step 1, systems are chosen that all di↵er from each other on that
specific characteristic. The systems are chosen in such a way that the resulting sub-pool consists
of systems that di↵er on the main-characteristic and on as many other characteristics as possible.
This sub-pool is labelled as (e.g. TYPE�).

Selected pools

Three pools are created, more details on the pools can be found in Appendix D.

• One people-type pool was created using team-composition (Team) as the main-characteristic.
The PPL1 only includes the systems developed by team B (see Table D.1). The PPL2 only
includes the systems developed by team D (see Table D.2). The PPL� is the inverse-pool and
is developed by distinct teams (see Table D.3).

• One system-type pool was created using system type (Type) as main-characteristic. The SYS1

pool only includes server/client systems (see Table D.4). The SYS2 pool only includes API
systems (see Table D.5). The inverse system pool, SYS�, only includes systems of di↵erent
types (see Table D.6).

• Finally, a process-type pool was created based on the number of stories (Stories) as main-
characteristic. The PROC1 pool only contains systems with less than average stories (average
is 20 stories) (see Table D.7). The PROC2 pool only contains systems with more than average
stories (see Table D.8). The inverse pool, PROC�, contains a single system of varying number
of stories (see Table D.9).

6.2.2 Variables

Independent variables

The metric-suite used in this study contains: a combination of Briand et al. their cohesion metrics [10],
a combination of Benlarbi & Melo their polymorphism measures [12], all metrics from the Chidamber
& Kemerer metric suite [13], size metrics, change metrics based on Koshgoftaar et al. [22] their
metric-suite, a subset of Ostrand & Weyuker their standard model [27], and a class-author count. See
Appendix A for an overview of the metrics and the tool used to calculate these metrics.
All the metrics measure at class-level. Inner classes are not treated as individual observations but

their measures, methods, and attributes are counted to contribute towards the containing class. Also,
faults that traced back to an inner class were assigned to the out most containing class.
The measurements are state-aware; the class is measured in the state when it contained the fault.

To correctly measure the fault-prone class, the whole system was reverted to the latest state before
the fault was fixed. For more information on state-aware measurement and the predictor-set see
Chapter 5.

Dependent variable

We want to evaluate whether a subset of the collection of measures are useful for predicting the
likelihood that a class is fault-prone; that is if the class contains at least one fault. The outcome value
is dichotomous, a class is either fault-prone or it is not.

57



We collect faults in a class using our fpms package. The tool analysis git commit messages, if the
commit message contains hints of a fault that has been fixed, then we say that all changed classes
contain one fault each (see Chapter A). Take in mind that the faults that were detected using this
procedure are probably not all of the faults. Also, there might be some false positives among the
observed faults. See Section 4.2 in the replication study for the results of the assessment of our fault
detection procedure.

6.3 Data Analysis Methodology

In this section we layout the methodology used for analysis the collected data. The analysis procedure
consists out of: (i) prediction model construction, (ii) evaluation of the prediction models, (iii) and
finally hypothesis testing. We adapted the data analysis methodology used in the improvement study
for constructing and validating the prediction model (see Section 5.3 and Section 4.3 for a more
detailed description of the data analysis methodology used in this study). In this study, no outlier
analysis is conducted because in our experience the analysis is redundant (e.g. stepwise selection also
filters out the weak di↵erentiators).

6.3.1 Model construction

For each sub-pool, a logistic-regression based fault-proneness prediction model will be build. The
independent variables are selected using a mixed stepwise selection process that compares the models
their AIC scores. Class fault-proneness is used as outcome variable. To map out the e↵ect of con-
founding variables, we also build a model containing all systems (that are the systems with a star in
Table 6.1). This model will be the base rate, and used to determine the actual e↵ect of the context
types. First, we expect that the ’all-systems’ pool has a low AIC score and many selected predictors.
This indicates that the resulting model does not fit the data very well and that the observations
di↵erentiate from each other. Secondly, we expect that the AIC scores of the sub-pools TYPEn are
relatively low compared to the AIC score of the inverse sub-pool TYPE�, if the system characteristic
type a↵ects the fault-proneness prediction model. This is because it should be less di�cult to fit a
model to dataset with lot of similarities compared to a dataset with a lot of dissimilarities. Finally,
we expect that, if the system-characteristic type a↵ects the model, the sub-pools TYPEn will have
similar independent variables. If this is the case, then this combination of variables are probably good
fault-proneness predictors for that specific context.

6.3.2 Model validation

The accuracy, precision, and recall is calculated for each prediction model. The accuracy measure will
be used for hypothesis testing and in the discussion. The pool-models are evaluated using the 10-fold
cross-validation technique; the same pool will be used for training and validating the model. If a system
characteristic type a↵ects fault-proneness prediction models, then we expect to observe three things:
(i) The sub-pool models TYPEn are more accurate that the all-systems pool. If this is the case, we
may say that besides the confounding variables whom a↵ected the model, the system characteristic
type also has an e↵ect on the prediction model. (ii) The sub-pool models TYPEn obtain similar
accuracies. If this is true, then the system characteristic type is likely to have an e↵ect on prediction
models in general rather than for a particular set of characteristics of that characteristic type. (iii) The
sub-pool models TYPEn obtain higher accuracies compared to the inverse sub-pool model TYPE�.
If the accuracies are structurally higher for the sub-pools with the similarities compared to a sub-pool
without these similarities; then the system characteristic type could actually have an e↵ect on the
prediction model.

6.3.3 Hypothesis testing

To answer the Hypothesis H1, H2, and H3 we first test if there is a di↵erence between the accuracies
of the sub-pool prediction models, including the inverse sub-pool. If there is no di↵erence between
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any of these pools, then it is not needed to test the hypothesis any further and the null hypothesis of
the following form will not be rejected.

µtype1 = µtype2 = µtype� (6.1)

If there is a di↵erence between one of the sub-pools, then we continue with a post-hoc test in order
to identify which pool di↵er from each other. The null hypothesis will be rejected if and only if the
accuracy of the sub-pools models do not di↵er significantly from each other and the prediction model
of one of the two sub-pool di↵er significantly from the inverse sub-pool prediction model.
A one-way analysis of variance (ANOVA) will be conducted to determine if the means of the

accuracies of the sub-pools models are significantly di↵erent (↵  .05). To uncover which means are
unequal and by how much, we will use the Tukey Honestly Significant Di↵erence (HSD) test. The
null hypothesis will be rejected if the ANOVA test is significant and the Tukey post-hoc test indicates
that there is only a di↵erence between one of the sub-pools and the inverse sub-pool.
Hypothesis H4 will be tested using the same method as used for hypothesis H1, H2, and H3; only

using a di↵erent hypothesis. The hypothesis states that there is at least one di↵erence between any
of the sub-pools and the all-systems pool. First, we test if there is any significant di↵erence at all
between the sub-pools and the all-systems pool; if not then the null hypothesis of the following form
is not rejected:

µtype1 = µtype2 = µtype� = · · · = µall-systems (6.2)

If there is a di↵erence between one of the sub-pools, a post-hoc test will be conducted to determine
which sub-pools di↵er from each other. The null hypothesis will be rejected if and only if one of
the sub-pool prediction models di↵ers significantly from the all-systems prediction models in terms of
accuracy.
Hypothesis H5 will be tested using an one-tailed one-sample t-test (↵  .05). Based on the results

of the previous hypotheses, will will pick the pool that resulted in the best prediction models. The
models that were generated using this pool will be compared to the constant .70.

6.4 Analysis Results

An overview of the selected predictors per system and the model’s AIC scores can be found in Table 6.2.
A more detailed table can be found in Appendix E.
Based on the observations shown in Table 6.2, the best inverse sub-pool model fitted the dataset

better than the other sub-pools in two out of the three pool-types. This could suggest that more
dissimilarity in the dataset result in a better fit of the model and is not what we expected. Secondly,
the selected predictors in the sub-pools of the people-type, PPLn, di↵ers in 10 variables from each
other; the selected predictors of the system-type sub-pools di↵er in 11 variables from each other;
and the selected predictors of the process-type sub-pools di↵er in 7 variables from each other. An
explanation for the dissimilarity among the predictor sets could be that any of these factors were not
the cause of the discovered faults and are not likely to influence prediction model accuracy.
Looking at the selected predictors, the Changes metric is selected in all models and is a dominant

positive variable in all models (see Appendix E); this suggests that a frequently changed class is likely
to be fault-prone. The POLY measure is selected in eight out of the ten pools and is a dominant
negative variable in almost all the models; this suggests that a class with low polymorphism is likely
to be fault-prone. This opposes the conclusion drawn by Benlarbi & Melo [12], where they state that
“polymorphism may increase probability of fault in OO software”. The DAC is selected in six out
of the ten pools and is a dominant positive variable in four of the pools (including the all-systems
pool); this suggests that a class with high coupling to abstract data types is likely to be fault-prone.
Interesting is CBO, which includes the DAC measure, is not a dominant predictor in any of the
models. The SIZE1 and SIZE2 measure are included in five out of the ten pools as a combination.
The measures do not play a significant role in any of the models. However, an interesting observation
is that the SIZE1 measure is always positive while the SIZE2 measure is always a negative factor. In
other words, a class with a high number of instructions, and a low number of attributes and local
methods is probably fault-prone. This could suggest that the number of methods and attributes do
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not result in faults but rather the size of the methods themselves. All other variables do not play
a significant role in the larger part of the pools or show contrary results (e.g. positive and negative
multipliers).

Table 6.2: Sub-pools stepwise analysis result

Selected predictors AIC

PPL1 DAC, Changes, Age, POLY 80.91
PPL2 WMC, DIT, DAC, MPC, NOM, SIZE1, SIZE2, XXXIC,

POLY, NIP, Changes, Authors, Age
28.00

PPL� DIT, DAC, SIZE2, XXXEC, NIP, Changes, Authors 16.00
SYS1 DIT, NOC, CBO, DAC, SIZE1, XXXEC, POLY, NIP,

Changes, Authors
54.53

SYS2 WMC, NOM, SIZE1, SIZE2, XXXIC, XXXEC, POLY,
Changes, Age

123.50

SYS� DAC, MPC, Changes, Authors, Age 12.00
PROC1 WMC, CBO, RFC, MPC, NOM, SIZE1, SIZE2, XXXEC,

POLY, NIP, Changes, Authors
59.72

PROC2 WMC, NOC, CBO, RFC, MPC, SIZE1, SIZE2, NIP,
Changes

20.00

PROC� CBO, RFC, SIZE2, XXXIC, POLY, NIP, Changes 97.42
All Systems NOC, CBO, DAC, SIZE1, SIZE2, XXXEC, POLY, NIP,

Changes, Age
265.50

The results of the model validations can be found in Table 6.3. For each sub-pool, the true positives
(T+), true negatives(T�), false positives (F+), false negatives (F�), accuracy, precision, and recall
were calculated. The values in the table represent the average values of k models, where k is the
number of folds used for validation.
The accuracies of the type-related sub-pool models are similar, but are all lower than the inverse

sub-pool instead of higher, this observation does not match our expectations. Also, the sub-pool
models their accuracies does not seem to di↵er from the all-systems pool, and probably means that
the context type has no e↵ect on prediction model accuracy.
All prediction models obtain accuracies of at least .88; these are the best results we have obtained

so far and is higher than the accuracies of cross-system prediction models observed in similar studies
(see Section 1.2). One explanation of the high accuracies could be because we use pools of multiple
similar systems to train our model instead of using only a single system. Another explanation could
be that a lot of the confounding variables were kept constant (see Section 6.2).
All the prediction models are very accurate and that none of the models di↵er from the models

build using the all-systems pool. This could suggest that some confounding variables were at play
that positively influenced the fault prediction models. It seems that some factors were kept constant,
factors we did not consider.

Table 6.3: Sub-pool models their prediction capabilities

T+ T� F+ F� Accuracy Precision Recall

PPL1 163 47 7 5 .95 .96 .97
PPL2 25 56 8 3 .88 .76 .89
PPL� 67 57 4 1 .96 .94 .99
SYS1 114 36 6 9 .91 .95 .93
SYS2 212 90 10 8 .94 .95 .96
SYS� 50 57 3 3 .95 .94 .94
PROC1 107 29 10 8 .88 .91 .93
PROC2 48 15 5 6 .85 .91 .89
PROC� 122 102 10 13 .91 .92 .90
All Systems 341 209 21 27 .92 .94 .93
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6.4.1 Hypothesis testing

A summary of the accuracies of the sub-pools are given in Figure 6.4.1. The individual box-plots
represent the accuracies obtained by the prediction models during the k-fold cross validation. The
sub-pools are labelled TYPEn, were n is the sub-pool number. The inverse sub-pool is labelled
TYPEi. The all-systems pools is labelled ’All’.

Figure 6.1: Parallel boxplot of the sub-pool their accuracies

All PPL1 PPL2 PPLi PROC1 PROC2 PROCi SYS1 SYS2 SYSi

0.
7

0.
8

0.
9
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Testing the e↵ect of the people characteristics on fault-proneness prediction models.
An one-way ANOVA was conducted to determine if there is a significant di↵erence between any of
the sub-pools of the people type, including the inverse sub-pool (p  0.05). For the first hypothesis
(H1), the following null hypothesis was formulated:

µPPL1 = µPPL2 = µPPL� (6.3)

The results of the ANOVA test indicates that there is not a significant di↵erence between the sub-pool
means (F (2) = 1.844, p = .178). As result, the null hypothesis is not rejected. A post-hoc test was
not conducted due the absence of a significant di↵erence.
Testing the e↵ect of the process characteristics on fault-proneness prediction models.

An one-way ANOVA was conducted to determine if there is a significant di↵erence between any of the
sub-pools of the people type (p  0.05). For the second hypothesis (H2), the following null hypothesis
was formulated:

µPROC1 = µPROC2 = µPROC� (6.4)

The results of the ANOVA test indicates that there is not a significant di↵erence between the sub-
pool means (F (2) = 0.035, p = .966). The null hypothesis is not rejected. A post-hoc test was not
conducted due the absence of a significant di↵erence.

Testing the e↵ect of the factors on fault-proneness prediction models. An one-way
ANOVA was conducted to determine if there is a significant di↵erence between any of the sub-pools
of the people type (p  0.05). For the third hypothesis (H3), the following null hypothesis was
formulated:

µSYS1 = µSYS2 = µSYS� (6.5)

The results of the ANOVA test indicates that there is not a significant di↵erence between the sub-
pool means (F (2) = 0.146, p = .865). The null hypothesis is not rejected. A post-hoc test was not
conducted due the absence of a significant di↵erence.

61



Testing the e↵ect of the confounding variables on fault prediction models. An one-way
ANOVA was conducted to determine if there is a significant di↵erence between any of the sub-pools,
and the all-system pool (p  0.05). For the fourth hypothesis, the following null hypothesis was
formulated:

µPPL1 = µPPL2 = µPPL� = µPROC1 = µPROC2 = µPROC� = µSYS1 = µSYS2 = µSYS� = µALL (6.6)

The results of the ANOVA test indicates that there is not a significant di↵erence between the sub-
pools, including the all-system pool, their means (F (9) = 0.675, p = .729). The null hypothesis is not
rejected. A post-hoc test was not conducted due the absence of a significant di↵erence.
Testing the best model’s practical application e�ciency. An one-tailed one-sample t-test

was conducted to determine if the pool that resulted in the best models resulted in an average model
with an accuracy significantly higher than .70 (p  .05). The pool was the PPL�. The null hypothesis
was formulated as follows:

H0 : µaccuracy < .70 (6.7)

the prediction models from the PPL� pool obtained on average accuracies higher than 70% (M = .96,
SD = .06). The di↵erence is significant (t(9) = 13.229, p = .000) and the null hypothesis is therefore
rejected. The Cohen’s d shows a large e↵ect (d = 15.277).

6.5 Conclusion and Discussion

To answer research question RQ5 based on the results of this study, we do not think that people,
process, or technology related factors influence fault-proneness prediction model accuracies which are
applied across systems. However, we think that there are factors, which we kept constant but which
where not considered, that have a positive e↵ect on fault-proneness prediction model accuracy.

In this study, we found no evidence that factors related to people, technology, or process a↵ects the
accuracy of the fault-proneness prediction models. No significant di↵erence between the accuracies
of the prediction models were found that kept a specific context related factors constant compared
to the prediction models which did not keep those factors constant. Moreover, none of the models
di↵ered significantly in accuracy from the prediction models that was based on all systems.

The results of the model construction showed no overlap in predictors among the pools. Instead,
some metrics reoccurred in every model and might tell something about the factors which are related to
fault-proneness in this context. Changes was a dominant positive predictor in all models; a frequently
changed class is likely to be fault-prone. A trivial explanation could be that faults are not introduced
in non-changing classes and are introduced in changing classes (see Chapter 5 for a more elaborate
discussion). POLY was a dominant negative predictor; a class with low polymorphism is likely to
be fault-prone. This observation is in-line with the object-oriented paradigm and contradicts the
conclusion Benlarbi & Melo drew; “polymorphism may increase probability of fault in OO software”
[12]. DAC was a dominant positive measure; a class with high coupling to abstract data types is
likely to be fault-prone. Interesting is that other coupling measures like XXXIC, XXXEC, and CBO
(which includes the DAC measure) are not dominant predictors in any of the models.

The average accuracy of all prediction models that we build (10 models for each pool, and a total
of 10 pools) was 91.5%. These are the best results we have obtained so far and is much higher than
the accuracies of cross-system prediction models observed in similar studies (see Section 1.2). One
explanation of the high accuracies could be because we use pools of multiple similar systems to train
our model instead of using only a single system. Another explanation could be that a lot of the
confounding variables were kept constant (see Section 6.2).

All the prediction models are very accurate and that none of the models di↵er from the models
build using the all-systems pool. This could suggest that some confounding variables were at play
that positively influenced the fault prediction models. It seems that some factors were kept constant,
factors we did not consider.

62

Jurgen Vinju


Jurgen Vinju


Jurgen Vinju




6.5.1 Threats to validity

One threat to validity is caused by the k-fold cross-validation technique. The technique splits the
data into 30/70 partitions, trains the model on the larger partition, and validates the model on the
smaller partition. This method could cause an overlap of classes belonging to the same system in the
training and validation set. If one system is significantly larger than the others, the model is similar
to a model trained and validated on the same system, with higher accuracies compared to models
validated using the cross-system validation technique as possible result.
Other threats to validity are similar to the threats described in the the replication study (Section 4.5)

and the improvement study (Section 5.5). For more details regarding these threats we refer to those
studies.

6.5.2 Future research

One noteworthy observation was the the high accuracy of the all-systems pool and absence of a
di↵erence between the sub-pools and the all-systems pool. This could hint at other factors that
influences prediction models that we did not consider during this study. One factor we did not consider
was the company from which we took our sample. It is interesting to see if there is an accuracy drop
when fault proneness prediction models are build from similar systems build by di↵erent companies
compared to models build using similar system form the same company. Moreover, the company we
took our sample from has strict development protocols and standards, this might also have lead to
the e↵ective prediction models in this study.
Another interesting research direction is to find out if a company specific predictor-set could be

composed (could be less or more general), that is able to predict with reasonable to good accuracy.
Another related direction could be to replicate this research and focus on the variables that are
selected during the stepwise selection procedure and see what the dominant variables are. We expect
that Changes measure will often reoccur in the selected predictors.
One of or threats to validity is caused by the k-fold cross-validation. Even though the technique

takes the error of using partly the same data in consideration it is still not ideal compared to hold-out
or cross-system validation techniques. However, the later two techniques require a large dataset in
order to produce stable prediction models. To validate the observed accuracies in this study, one
could perform a replication but substituting the k-fold cross-validation by a cross-system validation
technique.
Two measures beside the Change metric were dominant in most of our systems. However, we could

not provide a logical explanation of why these factors are dominant. One could explore these metrics
in more detail by splitting up the POLY measure and analyse the measures on a finer scale.
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Appendix A

Tooling

This appendix contains an overview of all tools that were build by the author and used in this thesis.
The source code of these tools can be found on GitHub1.

A.1 File Selection

Before we analyse the systems using any of the tools, we first filter the the files. The filter excludes
three types of files: non-Java files, automatically generated files, and test files.

• Non-Java files. Because most of the systems in our dataset are Java projects and some tools are
language specific (e.g. depend on language specific compilers), we will exclude all non-Java files,
that is all the files that do not contain a Java extension .java. Even if a file contains embedded
Java but has not the right extension, then the the Java snippet is simply ignored. The result is
that none of the tools will consider non-Java files.

• Automatically generated files. We decided to ignore automatically generated files. This include
all files that are automatically generated an are meant to not be edited manually (e.g. classes
generated by parser generators). The inclusion of these classes could lead to less accurate
predictions because the perceived complexity of the class, for example, could be high but will
the class will never contain a fault (assuming the generator work correctly); if a fault is found,
then it would be in the source file and not the generated file. The selection tool uses a heuristic
for detecting auto-generated files and ignores them if detected. We check the first 15 lines of
comment, if in those lines there is any mentioning of ’generated’ (case-insensitive) the file will
be ignored. This heuristic filters out most of the generated files but not guarantees that all
generated files are filtered out.

• Test files. We choose to exclude all test classes in the system. Test classes could negatively
influence the fault-proneness prediction. When a fault is discovered in a test class then it is
highly probable that as a result there are also faults in the parts that the test covers. As a
result, the balance of faults is more evenly distributed. Also, the test classes are not a part of
the system itself but more a tool to find faults in the system. We label a class as test class if
it include one of the following annotations in the first 30 lines: @Test, @Before, or @After.
This also include annotations as @BeforeSuite and @Test(timeout = 1000). This check covers
all annotations of both the JUnit and TestNG libraries. This is a heuristic and it is possible
that a test related file will slip through the filter.

A.2 Lines of Code Counter

We used our own tool, xloc, for counting various types of lines of code. The reason behind this decision
is because their is a lack of tools that correctly count the lines of code or could not easily be extended

1
https://github.com/scrot/mt
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to fit our purposes. We considered the following tools.

• cloc2. A popular open-source tool written in Perl that counts black lines, comment lines, and
physical lines of source code in many languages. This tool wrongly classifies code that contains
multi-line comment start symbols (for example ’/*’) within a string and therefore we did not
used it.

• sloccount3. A tool for counting physical Source Lines of Code in a large number of languages of
potentially large set of programs. It was used in a paper by Wheeler [52] and counts as far as we
know the lines of code of Java projects correctly. The downside is that it is not easy to use as
a Java library, the comment lines of code and logical source lines are not collected, and it does
not provide capabilities to ignore files except for generated files. However, we did verified our
tool with this program to check if the outputs are the same. We tested it on large open-source
projects (e.g. intellj, junit4, fdroid, spring) and found almost identical source lines of code for
those projects.

• locMetrics4. A tool that counts the lines of code in various was. For example total lines of
code, blank lines of code, comment lines of code, logical source lines of code physical executable
source lines of code. The downside is that it is closed source and not usable as a Java library.
We also verified our tool with this tool on the large open-source projects and found similar lines
of code when we set our tool to not ignoring auto-generated files (some lines where of by one or
two).

Our tool counts three types of lines of code: Source lines of code, comment lines of code, and blank
lines of code. For the source lines of code, we count the physical source lines of code and not the
logical. The di↵erence is that logical counts the semi-columns, open brackets, and close brackets that
are not part of a comment; where physical counts all the lines of code that are not comment or blank
lines. There for the definition we used as a source line of code is:

A source line of code is a line that is not solely a comment nor is it blank.

In other words, every line that is blank, meaning it contains no characters or only white-space char-
acters, is not a code line. Also, every line that only holds only commentary is neither a code line. In
the latter case, when a line contains commentary as well as source code and the source code is not
part of the comment than the line is counted as source code and not as comment.

A.3 Git Crawler

We automatically discover faults by the use of our own tool named gcrawler. The tool takes a git
directory, the folder containing ’.git’ folder, and optionally a reference to the issue tracking system. It
collects information about commits, issues, faults, and authors on class-level. Our tool makes use of
several libraries: JGit for crawling local directories; gitlab-api5 for receiving the issues from the issue
tracker system of Gitlab; github-api6 for receiving the issues from the issue tracker system of Github.
The tool has two methods to discover faults. The first method requires an issue tracking system

and formal issue closing through commits, the other method does not require an issue tracking system
and classifies faults using semantic analysis of the commits.

• No issue tracker. There is not always an issue tracker used for managing issues, we have projects
in our dataset that does not use them. Therefore, we have to rely on more unreliable sources.
We use the commit messages to identify ’issue commits’, by looking if the messages uses one
of the following words (case-insensitive): fix, fixes, fixed, close, closed, closes, resolve, resolves,
resolved. If this is the case, then the commit is a ’issue commit’ and we assume that all classes
related to the commit in question contained a fault.

2
https://github.com/AlDanial/cloc

3
http://www.dwheeler.com/sloccount

4
http://www.locmetrics.com/

5
https://github.com/gmessner/gitlab-api

6
http://github-api.kohsuke.org
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• Issue tracker. A map from commit to issues is build for all commits that formally closes an
issue7 and if the issue is labelled as a bug. Next all the files that are changed by one of the
commits in the ’issue commit’ map are assumed to contain faults.

A.4 Byte-Code Metric Suite

There are a lot of metric-suites available that could be used on Java systems 8. However most of the
tools are not free to use, do not analyse on class-level, or only contains a small and often incomplete
set of metrics. One criteria for the metric-suite is that it contains metrics from the literature and not
just only simple count metrics. We considered the following free metric-suites:

• JMetrics9. A metric-suite used by Briand et al. [4]. The tool was developed internally by
Oracle Brazil and never published for the public.

• CCCC 10. A tool which analyses and generates a report on various metrics of the code. Metrics
supported include lines of code, McCabe’s complexity and metrics proposed by Chidamber &
Kemerer and Henry & Kafura. This tool didn’t had support for annotated types (e.g. ’@’) and
misses metrics lilke RFC and LCOM, therefore it was not usable for our purposes.

• jDepend11. A metrics suite containing Martin’s Software Package Metrics. These metrics are
interesting, for example Ca metric could be used on class level instead of package level, but the
tool does not provide support for class-level analysis.

• Metrics12. A metric-suite measuring containing metrics proposed by Henderson, and Martin’s
Software Package Metrics. However this metric-suite depends on Eclipse 3.1 and misses metrics
like RFC and CBO metrics.

• JMetric13. A metric-suite for analysing Java projects. The metric suite is abandoned since 2000
and supports only up to Java 1.1. Moreover, the tool only provided a very limited set of metrics:
statement count, LCOM, and cyclomatic complexity.

• Dependency Finder14. Contains besides some other features also a metric suite. However, the
metrics are mostly simple count measures and package dependency metrics. Therefore this
metric-suite was not suited for our analysis.

• ckjm15. A Java program that calculates all Chidamber & Kemerer metrics (WMC, DIT, NOC,
CBO, RFC, and LCOM), Martin’s Ca (class-level), and NPM (Number of Public Methods).
However, a couple of metrics, NOC and DIT, do not work on modern Java projects. This
is because the way to discover super classes was not properly implemented, with as a result
that these values were always 0. And some metrics were incorrectly implemented, for example
WMC, their implementation did not took the complexity of the methods into consideration
and therefore was not di↵erent from just counting the number of methods in a class. For
these reasons, this tool is not suited for our analysis. However the method of extracting class
information (by analysing byte-code using Apache’s BCEL library) is e�cient and is also used
by our tool. More about this tool can be found in the companying paper by Spinellis [53].

The tool makes use of the Apache BCEL library for analysing the byte-code of the systems 16 and
is inspired by ckjm. Our metric suite extends the Chidamber-Kemerer metric suite with the metrics
proposed by Li & Henry. Furthermore, it includes eight of Briand et al. their class coupling metrics

7
http://docs.gitlab.com/ee/customization/issue_closing.html

8
http://www.monperrus.net/martin/java-metrics

9JMetrics: java metrics extractor [9]
10
http://cccc.sourceforge.net

11
http://clarkware.com/software/JDepend.html

12
http://metrics.sourceforge.net

13
https://sourceforge.net/projects/jmetric

14
http://depfind.sourceforge.net

15
http://www.spinellis.gr/sw/ckjm

16
https://commons.apache.org/proper/commons-bcel/apidocs
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(excluding the friend relation metrics), and Benlarby & Melo their polymorphism measures. The
metrics in bcms can be found in Table A.1.

A.5 Fault Prediction Metric Suite

For the predictor-set, we extended bcms to include some other measures. These measures contains
change metrics that are based on Koshgoftaar’s change metrics, and the fault count metric. For the
collection of these metrics we used our own git crawler, gcrawler. An overview of fpms is given in
Table A.1.

Table A.1: fpms overview

Metric Description and implementation

WMC Weighted Methods per Class, the count of sum of complexities of all methods in
a class. We calculate the complexity by analysing the byte-code, therefore the
complexity does not always maps directly to the complexity as observed in the
source code. This is because their could be complier optimizations in between,
for example conditional operators (e.g. && and ||) are simplified. As complexity
measure we use McCabe cyclomatic complexity [54]. We count the method itself
and all the branch instructions (labelled as branch instruction by BCEL) except
for GOTO instructions, this is because these instructions interfere with Select
instructions (e.g. cases of a switch conditional). We also count all the exceptions
(including the try/catch) of the method. We do not count the switch statement
itself.

NOC Number of Children, number of immediate subclasses in a hierarchy. The NOC
is calculated by counting all the classes that have this class as their super class.

RFC Response for a Class, this is the union of all methods of a class and all the methods
their invocations (see Section 2.3.1 for the formal definition). We analyse the
instructions of the byte-code of the class; of each instruction that is an invoke
instruction (e.g. static, special, virtual), the method signature is added to the set
of response-set; the methods their own signatures are also added to the responses
set. A implementation decision we made is that we count the constructor and
destructor also as a method, we also take into account their < init > methods.
The RFC is the size of the response-set.

CBO Coupling between objects, the count of the number of other classes it is coupled
to. Two classes are coupled when methods in one class use methods or instance
variables of another class. We implemented the CBO in a slightly di↵erent man-
ner. We not only count the instance variables and methods the class is coupled
to but also the invoked method their arguments, local variables of the method,
the return type of the method, the exceptions of the method, and the class its
interfaces.

DIT Depth of inheritance, maximum number of steps from the class node to the root
of the tree and measured by the number of ancestor classes. DIT is represented
by our tool by the number of all ancestors of the class in question. This includes
the ancestors of the external classes and classes from the Java library. Because
Java doesn’t allow multiple inheritance there is only a single depth to consider,
this depth is used.
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LCOM Lack of Cohesion in Methods, measure of dissimilarity of methods in a class by
looking at the instance variables or attributes used by methods. Every variable
of the PUTFIELD byte-code instruction is added to the set of the method if
and only if this variable is also among the instance variables of the class; this
is done for every method in that class. The LCOM is calculated by subtracting
number of ’method instance set pairs’ that result an empty-set from the ’method
instance set pair’ that result in a non-empty set. The method instance set pairs
are the intersection-set of all method instance sets (see Section 2.3.1 for the formal
definition).

MPC Message Passing Coupling, the number of send statements defined in a class. We
count every invoke instruction within a method as one message that is being
passed.

DAC Data Abstraction Coupling, the number of abstract data types defined a class.
We consider the local instances of a class and only count the fields if they are not
part of an external library and if the reference class is abstract or an interface.

NOM Number of Local Methods. The number of the local methods in a class are all
methods which are accessible outside the class. We count only the public methods,
static or not static.

SIZE1 Number of semicolons in a class. Because we want to keep the tool only depen-
dent on the byte code we will not count the number of semicolons (statements)
but the number of instructions and the number of variable fields. This count
is only a representation of the code size, because there is no one-to-one map-
ping from statement to instruction (single line statements could translate in more
instructions).

SIZE2 Number of attributes and local methods. We count all the methods and all the
instance fields of a class.

ACAIC Number of import class-attribute couples where the attributes are ancestor
classes. For each class A, we collect all attributes types of the class and count
the attributes types that are ancestors of class A.

ACAEC Number of export class-attribute couples where the attributes are ancestor classes.
For every class A, if another class B refers to class A from one of its attributes
and class B is an ancestor of class A, then we count it as one ancestor export
couple.

DCAIC Number of import class-attribute couples where the attributes are descendent
classes. For each class A, we collect all attributes types of the class and count
the attributes types that are descendent of class A.

DCAEC Number of export class-attribute couples where the attributes are descendent
classes. For every classA, if another classB refers to class A in one of its attributes
and class B is a descendant of class A, then we count it as one descendant export
couple.

OCAIC Number of import class-attribute couples where the attributes are non-
ancestor/descendant classes. For each class A, we collect all its attribute types
and count only the attribute types that are neither ancestors nor descendants of
class A.

OCAEC Number of export class-attribute couples where the attributes are non-
ancestor/descendant classes. For every class A, if another class B refers to class
A in one of its attributes and they have no descendant or ancestor relation, then
we count it as one export couple.

ACMIC Number of export class-method couples where the method arguments are ancestor
classes. For every class A, if another class B refers to class A from one of its
method arguments and class B is an ancestor of class A, then we count it as one
ancestor export couple.
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ACMEC Number of export class-method couples where the method arguments are ancestor
classes. For every class A, if another class B refers to class A from one of its
method arguments and class B is an ancestor of class A, then we count it as one
ancestor export couple.

DCMIC Number of import class-method couples where the method arguments are descen-
dent classes. For each class A, we collect all method argument types of the class
and count the method argument types that are descendent of class A.

DCMEC Number of export class-method couples where the method arguments are descen-
dent classes. For every class A, if another class B refers to class A in one of its
method arguments and class B is a descendant of class A, then we count it as
one descendant export couple.

OCMIC Number of import class-method couples where the method arguments are non-
ancestor/descendant classes. For each class A, we collect all its method argument
types and count only the method argument types that are neither ancestors nor
descendants of class A.

OCMEC Number of export class-method couples where the method arguments are non-
ancestor/descendant classes. For every class A, if another class B refers to class A
in one of its method arguments and they have no descendant or ancestor relation,
then we count it as one export couple.

OVO Overloading in stand-alone classes. The number of times a method is overloaded.
We do not count the overloaded method itself.

SPA Static polymorphism in ancestors. The number of methods that are statically
overloaded by other classes, where the class in consideration is it ancestor. All
method with the same name but a di↵erent method signature are counted as
static overloaded methods. The metric count is not symmetric, here this metric
di↵ers from the original metric which states the class pairs are symmetric. We
made this implementation decision to prevent double counting of relations. For
example, there is an ancestor relation between class A and class B, then there
is also a descendant relation between B and A. But because the relations are
symmetric the following sets are formed: SPA{(a, b), (b, a)}, SPD{(a, b), (b, a)},
and SP (a, b), (b, a), (a, b), (b, a), which includes unnecessary double counts.

SPD Static polymorphism in descendants. The number of methods that are statically
overloaded by other classes, where the class in consideration is it descendant. All
method with the same name but a di↵erent method signature are counted as
static overloaded methods. The metric count is not symmetric, see SPA.

SP Static polymorphism in descendants and ancestors. SPA+ PSD.
DPA Dynamic polymorphism in ancestors. The number of methods that are dynami-

cally overloaded by other classes, where the class in consideration is it ancestor.
All method with the same name and a method signature are counted as dynami-
cally overloaded methods. The metric count is not symmetric, see SPA.

DPD Dynamic polymorphism in descendants. The number of methods that are dynam-
ically overloaded by other classes, where the class in consideration is it descen-
dant. All method with the same name and a method signature are counted as
dynamically overloaded methods. The metric count is not symmetric, see SPA.

DP Dynamic polymorphism in descendants and ancestors. DPA+DPD.
NIP Polymorphism in non-inheritance relations. We count all non ancestor or de-

scendent class pairs that share a common method name. We excluded < init >
methods from this count, because otherwise it results in a relationship between
all non-static classes.

Changes The total number of changes within a class. This metric is the total number of
commits that changed parts of the class. Note that a change can be an addition,
deletion, alteration, or any combination of those. It is possible that a single
commit changed multiple classes, in this case the count of all these classes is
increased.
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Authors Number of unique authors that changed the class in the past. For this count we
get all the commits that changed parts of the class. From these commits, we
collect the full names of the commit authors and count all unique names. We
decided to not base our count on e-mail or author-id because it is possible that
the same person commits using a di↵erent e-mail or id (e.g. work account and
home account).

Age Number of days between the first commit and last commit of that class. For this
measure we locate the first commit and the last commit associated with the class
in question and calculate the di↵erence in days between the dates that come with
those commits. For the purpose of calculating the di↵erence in date, we use a
third party library called joda-time.

Faults The total number of changes to a class that are done in the light of resolving a
fault. The collection of faults in a class is a subset of the collection of changes
to a class. None of the systems makes use of an issue tracker so we use the no-
issue tracker implementation of the gcrawl tool. Therefore, we consider a change
a fault if the associated commit contains one of the following terms within its
commit message (case insensitive): fix, fixes, fixed, resolve, resolves, resolved,
close, closes, closed (see gcrawler for a more detailed description).

A.6 System Overview Measures

Most of the factor measurements are manually obtained. The manual data comes from mining the
JIRA- and GitLab systems; and by interviewing the developers, architects, and business people whom
were involved during the development of the system. The rest of the data is collected using our own
tool called ovms. The data from this tool is obtained by analysing the local git and source-code using
gcrawler and xloc. See Table A.2. All measures labelled with ’*’ are calculated using the ovms.

Table A.2: System overview measures

Characteristic Description

Team The team that developed and maintained the system. For each system holds
that the team that developed it also maintains it. Moreover, the teams are
multidisciplinary devOps teams and no divisions are made between teams
responsible for developing, reviewing, or testing. It is possible that more
than one team developed or maintained the system, in this case the team
who worked most on the system is picked.

Size The number of people in the team. This count includes operations related
people and excludes management and business related people. Also the
architect and product manager are not included.

Exp. The average working experience of the people in the devOps team. The
years of the team member worked at the company in question is used as the
individual years of experience.

Arch. The enterprise architect of the system. The architect is involved on a high
abstraction.

Proj. The project tag of the system.
Di↵. The number of teams who worked at the system. The count is the number

of unique teams that developed or maintained the system.
Type. Type of system, based on the kind of service it o↵ers (e.g. back-end system,

API, front-end)
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Files* The count of all the files in the root directory of the system. For the system
totals, this count includes also build files, configuration files, hidden files,
and test files. That is, everything is counted recursively in the root path
that is not a directory. For the considered system total this is the count
of all files with the extensions of the language under consideration. This
measure is automatically calculated.

SLOC* The count of all source lines of code of the system. We only count the SLOC
of the files of the specified programming language. A line is considered source
code if it is not a comment line or a blank line and contains a line-end (see
Section ?? for a more precise definition of a source line of code). A file is
only analysed if it contains the right extension, meaning that if source code
of the specified language is embedded in another file it will not be counted.
This measure is automatically calculated.

CLOC* The count of all comment lines in the system. This count includes single-line
and multi-line comments, as well as other forms of in-lined documentation
(e.g. javadoc for Java). When a line contains comments as well as source
code then the line will be counted as source code line and not as a comment
line. When a line contains comments and blanks, the line is counted as a
comment line. This measure is automatically calculated.

FDist20* Number of faults in the first 20% of the classes in descending order of faults.
For example, the value 80 means that 80 percent of the the total faults
resides in 20% of the classes.

CinF20* The percentage of code in the fault distribution partition. For example, the
value 30 means that a fault distribution partition of 20 percent contains 30
percent of the total code.

FGini* The Gini-coe�cient of the fault distribution of the system. A value between
0 and 1, where 0 means complete equality and 1 means complete equality.

Budget The planned cost of building the system. The budget is an ordinal scale
where 1 is the cheapest category and 5 the most expensive.

Epics The number of Epics. This value is taken from a Jira-system
Stories The number of stories in the Jira-system.
Owner The product owner of the project. Not all systems have a product owner.
Meth The development method used (e.g. SRUM or RUP).
Faults* The total number of files that were changed by a commit that closed an

issue. A fault is found by pattern matching the commits to find issue related
commits (see Section ??); finding the files that were changed in that commit;
and finally count each time a file is changed as a single fault. Note that not
all faults are found this way, it is possible that one recovers a fault before
it ever reaches the issue tracker system or if he closes the issue without
mentioning it in the commit message. For the considered system totals only
faults are counted if it resides in the considered files with the right extension.
This measure is automatically calculated.

Changes* The total number of file changes observed in the version control system.
This aggregates all the individual files that were changed in a single commit
over the total commits in the master branch. There is no di↵erence between
a small change to a file and a large one, both are counted as a single file
change. When a new file is created or removed, it is also counted as a change.
This measure is automatically calculated.

Authors* The total number of unique authors that contributed to the system. This
measure is the total of unique authors, identified by their full name, that
has once committed. For the considered system totals, only the authors were
counted if the author’s commit changed a considered file.
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Age* The number of days between the first activity in the version management
system and the date the system was analysed. A system’s age is therefore
represented by the di↵erence in whole days between the first commit in the
version management system (see Development Duration) and the date the
system was analysed.

Dev* The number of days there was activity in the version management system of
the system in question. This is the number of whole days between the first
activity and the last activity. In other words, it is the di↵erence between
the first commit and the last commit that was available in online in the
version management system. Note, only the commits of the main branch
are taken into consideration, so none of the activity on the branches will be
visible in this measure. Also, commits that are not necessarily related to
code changes are also included, for example the merge-requests related com-
mits. The number of days are the absolute di↵erence between the two dates,
also counting holidays, weekends, and so on. This measure is automatically
calculated.
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Appendix B

Preliminary Study: Fault
Distribution Histograms

Figure B.1: Histogram of the percentage of faults in the 20% most faulty classes
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Figure B.2: Histogram of the percentage of code in the 20% most faulty classes
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Figure B.3: Histogram of the fault distribution Gini coe�cients
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Appendix C

Replication Study: Principal
Component Analyses

Table C.1: PCA MAdd
RC1 RC6 RC2 RC7 RC5 RC3 RC4

Eigen 5.04 2.08 1.58 1.40 1.06 1.04 1.02
IPerc 0.34 0.14 0.11 0.09 0.07 0.07 0.07
CPerc 0.34 0.48 0.58 0.67 0.74 0.81 0.88
WMC 0.18 0.62 0.53 0.40 -0.10 0.04 -0.01
DIT -0.11 -0.11 -0.02 -0.06 0.98 -0.06 -0.03
CBO 0.96 0.08 -0.06 0.03 -0.06 0.03 0.00
RFC 0.91 0.25 0.04 0.10 -0.13 -0.11 0.10
DAC 0.84 0.19 -0.14 -0.25 0.02 0.01 -0.05
MPC 0.82 0.22 0.26 0.19 -0.09 0.01 0.03
NOM 0.21 0.91 0.25 0.20 -0.15 -0.06 0.02
SIZE1 0.65 0.37 0.37 0.35 -0.03 0.01 0.00
SIZE2 0.64 0.63 0.20 0.19 0.06 -0.11 -0.01
OCAIC 0.84 -0.04 0.18 0.16 -0.08 -0.02 0.02
OCAEC -0.03 -0.06 0.10 -0.01 -0.06 0.98 -0.10
OCMIC 0.54 0.05 0.12 0.17 -0.09 0.11 0.07
OCMEC 0.05 0.29 0.92 0.19 0.00 0.12 -0.07
OVO 0.04 0.01 -0.06 -0.03 -0.03 -0.10 0.99
NIP 0.10 0.29 0.23 0.91 -0.07 -0.01 -0.04
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Table C.2: PCA MIntO
RC1 RC3 RC6 RC4 RC5 RC2

Eigen 4.42 2.49 1.26 1.16 1.15 1.03
IPerc 0.37 0.21 0.11 0.10 0.10 0.09
CPerc 0.37 0.58 0.68 0.78 0.87 0.96
WMC 0.66 0.59 0.29 0.16 0.13 -0.01
DIT 0.42 0.27 0.84 0.04 0.21 0.03
CBO 0.91 0.00 0.20 0.24 0.20 -0.03
RFC 0.81 0.33 0.30 0.25 0.16 -0.10
MPC 0.84 0.22 0.34 0.19 0.16 -0.12
NOM 0.17 0.94 0.13 0.20 0.16 0.04
SIZE1 0.71 0.48 0.34 0.18 0.23 -0.04
SIZE2 0.38 0.73 0.25 0.31 0.29 0.00
OCAIC 0.30 0.32 0.05 0.89 0.12 -0.05
OCAEC -0.06 0.02 0.01 -0.04 0.07 0.99
OCMIC 0.87 0.31 0.00 0.06 0.14 0.05
NIP 0.28 0.26 0.18 0.12 0.90 0.10

Table C.3: PCA MIra
RC1 RC3 RC7 RC2 RC4 RC5

Eigen 5.13 2.01 1.20 1.14 1.13 1.02
IPerc 0.39 0.15 0.09 0.09 0.09 0.08
CPerc 0.39 0.55 0.64 0.73 0.82 0.89
WMC 0.90 0.12 0.25 -0.01 0.12 0.19
DIT 0.20 0.15 0.87 -0.03 0.33 0.21
CBO 0.12 0.85 0.31 -0.01 0.15 0.33
RFC 0.82 0.44 -0.05 -0.19 0.10 -0.02
MPC 0.91 0.25 0.01 -0.12 0.17 0.03
NOM 0.82 0.05 0.16 -0.15 0.02 0.23
SIZE1 0.89 0.17 0.15 -0.12 0.26 0.18
SIZE2 0.81 0.20 0.20 -0.24 0.14 0.24
OCAIC 0.33 0.93 -0.03 -0.09 0.02 -0.03
OCAEC -0.25 -0.09 -0.03 0.95 -0.09 0.13
OCMIC 0.37 0.23 0.28 0.24 0.11 0.79
OCMEC 0.53 -0.01 0.18 0.06 0.16 0.18
NIP 0.26 0.07 0.28 0.10 0.91 0.08
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Table C.4: PCA MPen
RC1 RC3 RC2 RC5 RC4

Eigen 4.16 4.08 1.92 1.39 1.05
IPerc 0.30 0.29 0.14 0.10 0.08
CPerc 0.30 0.59 0.73 0.82 0.90
WMC 0.31 0.93 -0.02 0.12 0.07
DIT -0.01 0.04 -0.16 0.06 0.98
CBO 0.87 0.21 0.14 0.19 0.06
RFC 0.78 0.56 -0.07 0.14 -0.03
DAC 0.64 0.11 0.01 0.49 0.15
MPC 0.89 0.39 -0.04 0.11 -0.08
NOM 0.13 0.97 -0.17 0.01 -0.01
SIZE1 0.49 0.79 0.02 0.27 0.07
SIZE2 0.20 0.94 -0.11 0.22 0.01
OCAIC 0.48 0.34 -0.19 0.28 -0.09
OCAEC 0.14 -0.11 0.96 0.05 -0.04
OCMIC 0.96 0.16 0.05 -0.02 -0.01
OCMEC -0.09 -0.12 0.92 0.10 -0.18
NIP 0.15 0.29 0.16 0.92 0.05

Table C.5: PCA MRep
RC1 RC11 RC3 RC4 RC9 RC6 RC2

Eigen 4.25 1.46 1.16 1.14 1.10 1.07 1.02
IPerc 0.30 0.10 0.08 0.08 0.08 0.08 0.07
CPerc 0.30 0.41 0.49 0.57 0.65 0.73 0.80
WMC 0.92 0.16 -0.03 -0.02 0.06 0.09 0.14
DIT 0.04 0.13 0.97 0.03 0.15 0.01 -0.06
CBO 0.17 0.29 0.22 0.29 0.84 0.01 0.03
RFC 0.35 0.76 0.26 0.11 0.33 0.02 -0.08
DAC 0.04 0.05 0.03 0.95 0.19 -0.06 -0.14
MPC 0.68 0.67 0.06 0.01 0.18 0.01 -0.01
NOM 0.71 0.12 -0.01 0.00 0.08 0.05 0.16
SIZE1 0.88 0.35 -0.01 0.04 0.14 0.07 0.06
SIZE2 0.62 0.28 0.14 0.13 0.31 -0.03 -0.01
OCAIC 0.32 0.29 0.18 0.20 0.18 -0.06 -0.02
OCAEC 0.16 0.01 0.02 -0.06 0.01 0.94 0.26
OCMIC 0.43 0.10 -0.06 0.22 0.16 0.20 0.06
OCMEC 0.21 -0.04 -0.07 -0.15 0.02 0.29 0.92
NIP 0.90 0.03 0.16 0.10 0.04 0.19 0.15
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Appendix D

Factor Study: Pools

Table D.1: People pool PPL
A1 overview

Team Size Exp. Arch Proj. Di↵.

DSto B 5 3 B BD 1
Doc B 5 3 B BD 1
Sec B 5 3 B BD 1

Table D.2: People pool PPL
A2 overview

Team Size Exp. Arch Proj. Di↵.

IRat D 10 3 D TRA 2
MAdd D 10 3 D EA 2
MApp D 10 3 D TRA 2
MIra D 10 3 D TRA 2

Table D.3: People pool PPL
A� overview

Team Size Exp. Arch Proj. Di↵.

BIra C 2 1 - TRA 2
DSto B 5 3 B BD 1
MAdd D 10 3 D EA 2
MDue F 5 2 E OPEN 1

Table D.4: System pool SYS
A1 overview

Type Files SLOC CLOC Flt. Chg. Age Dev.

MIntO SCli 46 2.204 486 93 334 1.102 686
MIra SCli 28 1.186 228 29 97 255 112
MRep SCli 85 2.603 507 72 610 883 446

Table D.5: System pool SYS
A2 overview

Type Files SLOC CLOC Flt. Chg. Age Dev.

MAdd API 80 4.012 740 38 264 305 159
MApp API 15 579 77 6 36 295 72
MDue API 33 1.730 185 53 294 189 181
Doc API 83 2.666 771 86 567 688 616
Sec API 100 4.511 1147 254 1114 677 547
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Table D.6: System pool SYS
A� overview

Type Files SLOC CLOC Flt. Chg. Age Dev.

BIra BEnd 30 3.023 854 8 113 213 68
ESec API 100 4.511 1147 254 1114 677 547
MIntO SCli 46 2.204 486 93 334 1.102 686

Table D.7: Process pool PROC
A1 overview

Budget Stories Owner Meth.

DSto 3 17 No SCRUM
MRep 2 5 No SCRUM
MDue 1 18 No SCRUM

Table D.8: Process pool PROC
A2 overview

Budget Stories Owner Meth.

MApp 5 28 Yes SCRUM
MIntO 5 17 Yes SCRUM
MIra 5 29 Yes SCRUM

Table D.9: Process pool PROC
A� overview

Budget Stories Owner Meth.

ESec 4 ? No SCRUM
MAdd 3 21 Yes SCRUM
MApp 5 28 Yes SCRUM
MRep 2 5 No SCRUM
MDue 1 18 No SCRUM
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Appendix E

Factor Study: Selected Variables
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