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Abstract 
 

In this study, a comparative analysis of automated 

semantic clone detection techniques is performed. 

Semantic clones are pieces of code that fulfill the same 

requirement and could therefore be considered as 

functionally redundant. Reducing the number of semantic 

clones could lead to cost reduction and higher 

maintainability. 

Semantic clones were detected manually in three open 

source projects, and results were verified by a number of 

independent observers. Secondly, automated techniques 

were performed on the same code samples. Test 

characteristics like precision and recall were calculated 

based on comparison of automated test outcomes to 

manual results. 

Results show that in our set of test cases, matching tokens 

exactly is the only significant predictor for semantic 

clones. Including dictionary matches of words which were 

not directly matched did not improve performance of this 

test.  

 

1. Introduction 
 

Research shows that a considerable part of software 

consists of code clones: this number can be as big as 5 to 

20%. These clones are introduced when a programmer 

copies, pastes and adjusts existing code [21, 22]. 

This leads to higher maintenance costs [7] since all 

changes to it have to be applied multiple times on multiple 

places in the code. It can also introduce subtle differences 

between code clones, which will make the code harder to 

maintain [19, 20]. Clones are also believed to cause 

architectural degradation [18]. Detecting code clones can 

therefore be interesting because reducing the number of 

code clones can eventually lead to reduced maintenance 

costs and prevent architectural degradation. 

 

The same arguments can be used for duplicated 

functionality. When duplicate functionality could be 

detected and removed a program would contain the same 

functionality with less code. Such a situation could emerge 

when, inside a company, two software projects that have 

large parts in common are merged. This decision may be 

made by project management in order to save resources or 

to lower maintenance costs. Another situation could be a 

company merger in which one company acquires another. 

Either way, projects are selected to be merged, and there is 

a big chance that there exists some kind of functional 

resemblance between both projects. Merging duplicate 

functionality may also reduce maintenance cost and 

simplify architecture. 

 

A couple of different ways to automatically detect code 

clones have been proposed in literature, which are all 

based on comparison of syntax: 

 String-based techniques perform a comparison based 

on characters. This technique stays most close to the 

original source code. Comparing two strings is usually 

done with a technique that calculates some form of edit 

distance [21, 23]. 

 Token-based techniques split up source code in tokens 

(as done by a lexer). Whitespace and semicolons often 

serve as token separators. Different calculations on these 

tokens can be performed, as in [14]. 

Metric-based techniques create a “fingerprint” based 

on metrics of the code. Metrics can include numbers like 

the fan-in (number of places at which this function is 

called, in case of a function) and fan-out (number of other 

functions this function calls) [22]. 

 Tree-based techniques parse the source code and 

create an Abstract Syntax Tree (AST). Some kind of 

distance function between two AST‟s can be calculated, or 

metrics can be compared [9]. 

PDG-based techniques create a Program Dependence 

Graph. A PDG is not sensitive to reordering of statements, 

and makes data and control flow dependencies explicit. 

This is the most abstract technique that is used today [6]. 

 

All methods eventually obtain differences between pieces 

of code based on a certain measure, and select pairs in 

which these differences are the smallest. The selected 

cases are considered to be code clones. 

 
1 mp_or(const MPNumber *x, const    

  MPNumber *y, MPNumber *z) 

2 { 

3  mp_bitwise(x, y, mp_bitwise_or,  

     z, 0); 

4 } 

1 static KNumber ExecOr(const KNumber &  

  left_op, const KNumber & right_op) 

2 { 

3  return (left_op | right_op); 

4 } 

Figure 1. Example of a semantic clone. Above a sample 

from gcalctool, below from kcalc. 

 

The problem with these techniques is that they are in 

essence syntactical measures. Text comparison is a 

technique that is purely based on syntax and which is 

highly sensitive to changes in source code. PDG-based 
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techniques perform a comparison on the highest level of 

abstraction. It is capable of dealing with reordering of 

statements, but comparison of individual statements is 

eventually string-based. 

 

We believe that previously mentioned techniques can be 

described as being able to detect “syntactic clones”, and 

are based on similarities in syntax. On a higher level 

would be techniques that detect clones based on similarity 

in functionality, which we will call “semantic clones”. We 

define a semantic clone as two pieces of code which fulfill 

the same requirements. Figure 1 shows an example of two 

pieces of code that we regard to be a semantic clone. The 

requirement which is implemented in these pieces of code 

is that a desktop calculator must be capable of calculating 

the binary (bitwise) OR-value of two numbers.  

 

We are interested to find out to what degree automated 

techniques are capable of detecting semantic clones. Since 

source code is the only input to our automated tests, we 

use syntactic measures as a pointer to semantic 

resemblance. We are aware of the fact that semantic 

comparison is an unsolvable problem, but we nevertheless 

try to construct tests that are cheap to perform and give 

reasonable results. In this study we only perform a static 

syntactical analysis and we omit analysis of runtime 

behavior. We also choose to avoid a strict mathematical 

definition which includes semantic functions. We draw 

conclusions from statistical means. For a more detailed 

explanation see section Discussion. 

As shown in research, each automated technique as 

mentioned above is proven to be capable of detecting 

syntactic clones. How good they are in detecting semantic 

clones as defined by us is not known. We make the 

assumption that humans are better capable of detecting 

functional redundancy than computers. We want to find 

out how close automated techniques get to human 

judgment. 

 

In this study, semantic clones will be detected manually in 

three open source projects by a number of independent 

observers. Automatic tests will be performed on the same 

projects. By combining manual with automatic results, test 

characteristics of a couple of different tests will be 

calculated. Finally, ways to improve these tests will be 

discussed.  

 

2. Related work 
 

As stated in the introduction, current code clone research 

uses different methods for detecting code clones. In these 

methods a distinction between syntactic and semantic 

clones is almost never made, at least not in the way we 

make it. Most authors implicitly assume a definition of a 

clone which results from the detection technique used. If a 

token-based comparison technique is used, a code clone is 

considered to be two pieces of code having a score for a 

token-based test below a certain threshold [32], although 

this is often not explicitly stated as such. If a string-based 

technique is used, a code clone is considered to be two 

identical strings [33], or two substrings that have a metric 

score below a certain threshold, thus differing only a 

minimal amount in characters. 

 

The most abstract definition of a code clone in use today 

are two pieces of code having isomorphic PDG‟s [6]. This 

definition may come more close to semantics as we 

defined it than plain string comparison, but still it is not 

perfect. It does not take into account the fact that the same 

functional requirements can be fulfilled by two systems 

which have completely different designs, which would 

result in two functions with completely different PDG‟s. 

 

In literature, several levels of detection (“granularity”) 

have been tried, like detection at token [14], line [23], 

subtree [9], method [22], class [26] and file [27] level, 

although no comparison between different granularity 

levels in the same study is performed. We expect that 

choice of granularity influences test results tremendously. 

We include file and function level detection in our analysis 

to test this influence. 

 

Current state-of-the-art tools are CCFinder [14] and CP-

Miner [29], which both use a token-based technique for 

detecting code clones. This eventually comes down to 

counting the number of matching tokens between a pair  of 

potential code clones. DECKARD [12] calculates a 

characteristic vector of abstract syntax trees. This method 

basically performs a count of node types in an abstract 

syntax tree. For a more complete description of this 

technique, see section Techniques. 

Point is that only the most trivial copy-and-paste code can 

be detected with these tools, which can often be described 

as containing some insertions, substitutions and deletions. 

In this study, we try to raise the standard for the type of 

clones tests will return. Semantic clones could provide 

more added value than clones as returned by software 

previously mentioned. This would mean a step forward in 

machine understanding of source code.  

 

We are realistic about the goal of our study and we do not 

expect to create a test which has full semantic awareness. 

We set ourselves the goal of creating some tests, 

calculating test characteristics and comparing them to 

human judgment, which we consider to be the gold 

standard of detection of functional redundancy. Accuracy 

of our analysis is ensured by calculating statistical 

significance for tests in comparison to chance (flipping a 

coin). New is a detection method which uses a dictionary 

to look up related words. Finally, since we perform a 

controlled experiment in which the total number of cases 

is known, we are able to include missing cases in our 

analysis as well (false negatives). In classic information 

retrieval experiments, this number is not always available 

[34].   

 

3. Research method 
 

We quantify previously mentioned comparison of 

automated test results with human judgment by using a 
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binary classification setup. Resulting from this binary 

classification setup are test characteristics like sensitivity 

and specificity, which can all be calculated from the 

number of true/false positives/negatives in this setup. See 

figure 2 for a binary classification table.  

 

In a binary classification test, test results (which can be 

either “yes” or “no” for a certain pair of code units) are 

compared with results from a gold standard or oracle, in 

this case manual detection. When an automatic test returns 

a score close enough to zero, two pieces of code are a 

clone according to this test. This is independent of the 

question whether or not a human would agree with this 

outcome. When an automatic test says that two pieces of 

code are a clone, and a human would agree, the number of 

true positives (TP) would be increased with one. In the 

same way the other numbers can be calculated. 

In the table below results of all test input combinations 

would be shown. Test characteristics of a test cannot be 

calculated without setting a threshold value first, under 

which two inputs are a code clone, and above which they 

are not, according to this test. Test characteristics only 

depends on choice of a threshold value. A binary 

classification table (or sometimes called a confusion 

matrix) for a certain test and a certain threshold would 

look like figure 2. For more information on binary 

classification tests, see [30] and [31].  

 

Type of test  

granularity 

Manual detection 

Yes no 

Test 

outcome 

Yes TP FP 

No FN TN 

Figure 2. Binary classification table/confusion matrix. TP 

= True Positives, FP = False Positives, FN = False 

Negatives, TN = True Negatives. 

 

3.1 Manual detection 
 

Manual detection was originally performed by a single 

observer. This raised questions about the external validity 

and reliability of our gold standard. This section will first 

discuss the gold standard as it was originally performed, 

and then improvements on the gold standard, which 

include asking multiple independent observers to judge 

code samples, and trying to including code samples in our 

analysis which we overlooked at first. All test scores as 

displayed in section Results are performed with the 

improved gold standard. For a more detailed discussion on 

this setup, see section Improving the gold standard in 

the discussion. 

 

3.1.1 Single observer 

 
To find semantic clones manually, we familiarized 

ourselves with the architecture of each project. This way 

the chance to find semantic clones would be increased 

since semantic clones could occur anywhere in a system, 

and understanding the architecture would make it more 

easy to find places where semantic clones were likely to 

occur. 

We scanned source code for functionally equivalent files 

and functions. For files, especially filenames, function 

headers inside files, comments on top of a file and global 

function contents were examined. For functions, mostly 

function headers, function contents and comments on top 

of the function were examined. We decide to omit 

statement level because single statements depend too 

much on context to be compared individually.  
We chose to omit class-level comparison because we 

focused on programs written in C, which do not support 

classes. Multi-word and multi-statement levels were also 

omitted due to the combinatorial explosion which would 

result in testing all possible combinations.  

Questions There are a couple of questions we considered 

to be helpful in determining whether two pieces of code 

could be considered a semantic clone. These questions are 

shown in figure 3. The rationale behind these questions is 

the following.  

First, two pieces of code were considered to be 

semantically identical if they are syntactically identical. It 

is not possible for  two pieces of identical code to perform 

different functions. If they are not identical, the smaller the 

edit distance between two pieces of code is, the more 

chance there is they are a syntactic clone and thus a 

semantic clone. Since judgment is subjective in nature we 

dot not define which exact edit distance we considered to 

be small, but the smaller it is the more chance it can be 

considered a clone.  

If pre- and post conditions were known or could be 

determined and turned out to be the same, two pieces of 

code were considered to be a semantic clone. From a 

mathematical viewpoint, two functions that only differ in 

preconditions are two completely different functions. 

From a pragmatic viewpoint, each case in which only 

preconditions are different is judged separately. For 

instance, assertions of variable values may take place 

inside a function itself, but we did not regard this to be 

contributing to main functionality. These cases were still 

considered to be semantic clones, despite the fact that they 

mathematically do not have the same preconditions. 

Two pieces of code can perform basically the same 

functionality and execute some extra tasks along the way. 

These extra tasks do not have to be the same for both 

functions. As long as the main task of both functions is the 

same, we consider them to be semantic clones. When it is 

easy to remove these extra tasks from one piece of code 

and merge the two functions while positioning the extra 

functionality somewhere else, this is an indication that two 

pieces of code are semantic clone candidates. Examples of 

extra tasks that are considered to be insignificant side 

effects and do not contribute to main functionality are 

logging, statistics or assertions. 

It is a convention in the C programming language to put 

two pieces of code which are functionally related in the 

same translation unit (C file), but this is never enforced by 

the compiler. It can therefore only serve as a hint to the 

location of possible semantic clones. If two pieces of code 

are in the same translation unit, the chance that they are 

functionally related increases. This of course depends on 

system design and the specific file in which two pieces of 
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code appear. Often, when a file contains functionally 

related pieces of code, this is indicated with a comment on 

top of the file explaining the goal of it.   

Names of function headers and variables are an indicator 

of functionality. We pay special attention to the 

occurrence of the same words or synonyms. Not all words 

are of equal importance since the most common English 

words (e.g. “the”, “and”) appear in almost all source code, 

regardless of them being semantic clones or not. 

 

Note that these questions can only help as a guide in 

determining whether two pieces of code are a semantic 

clone or not. As said before, this process is per definition 

very hard to quantify and subjective in nature and will 

therefore give different results depending on the observer. 

To address this problem, multiple  independent observers 

will be consulted to judge the same code samples. In 

figures 16, 17 and 18 results of manual collection for all 

projects are shown. 

 

 Are the two code units syntactically identical? 

 If not so, is it easy to convert the first code unit into 

the second one (small edit distance)? 

 Are pre- and post conditions given with source code? 

 If not, can they be deducted from source code? 

 Are pre- and post conditions exactly the same?  

 Are only post conditions the same?  

 Is base functionality of the two code units 

comparable? 

 Is it possible to merge the two routines relatively easy 

by creating a wrapper function? 

 Are the two code units located in the same translation 

unit (a single C file)? 

 Are the two code units executed in the same 

functional context? 

 Do the function headers show any signs of 

implementation of comparable requirements?  

 Are there any significant tokens in the function body 

that match?  

Figure 3. Example questions for the manual detection of 

semantic clones. These questions can help judging code 

units but only served as a guide and are by no means 

complete. 

 

Problems with a single observer as gold standard are 

further discussed in section Discussion. To address these 

problems, we tried to obtain a more reliable gold standard 

by consulting multiple independent observers. Next, this 

process will be described. 

 

3.1.2 Multiple independent observers 
 

A number of independent human observers are asked to 

fill in a form  in which requirements have to be connected 

to two different implementations of this requirement. A 

sample form is shown in figure 4. 

 

If an observer believes that function A.3 and function B.2 

are two semantic clones which both implement 

requirement 1, the observer puts an 3 and a 2 on his 

answer form, respectively. This survey will be answered 

by a number of  independent observers. Function bodies 

are also supplied to observers.  

 

Requirement 1: Two numbers can be multiplied 

 A:    B: 

Requirement 2: The square root of a number can be 

 calculated 

 A:    B: 
A.1: int divide(int a, int b) 

A.2: int add(int a, int b) 

A.3: int multiply(int a, int b) 

B.1: int subtract(int x, int y) 

B.2: int mult(int x, int y) 

B.3: int add_numbers(int x, int y) 

Figure 4. Example requirements and two lists of candidate 

functions. For clarity, function bodies have been omitted, which 

were included in the actual survey.  

 
Desktop calculators 

DC1. The value of numeric expressions can be evaluated 

DC2. After every calculation the latest result is displayed 

 on  screen 

DC3. A logical AND-operation can be performed on two  

 numbers 

DC4. A logical OR-operation can be performed on two 

 numbers 

DC5. Two numbers can be added 

DC6. Two numbers can be subtracted 

DC7. Operations can be reversed (undo) 

DC8. Previously reversed operations can be re-executed 

 (redo) 

DC9. The accuracy of calculations can be set 

DC10. Text from the clipboard can be pasted into the 

 application 

DC11. Calculations in other numeric bases can be 

 performed (e.g. binary, hexadecimal) 

Shells 
SH1. Entered commands can be executed 

SH2. Errors can be printed to screen 

SH3. A hash table for fast lookup of defined commands  

  can be created 

SH4. Text of previously entered commands is stored so  

  they can be re-entered (“arrow-up” in a command  

  line) 

Text editors 

TE1. A help screen can be displayed 

TE2. A message can be displayed showing parameters  

  and options to enter through the command line  

  (“--help” parameter) 

TE3. Macros can be defined which can be executed with 

  keyboard shortcuts 

Figure 5. Requirements as shown in the questionnaire. 

 

We limit the number of functions in each list to no more 

than 25 because observers are expected to complete the 

questionnaire in approximately 20 minutes, and 

experiments with our survey show that it takes 

considerable time to match even a small amount of 

requirements to functions. 

Functions are inserted in both lists in random order. To 

make answering the questionnaire more difficult, random 

requirements without matching functions are added to the 
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list. Random functions without semantic equivalents, and 

random functions without corresponding requirements are 

also added. Figure 5 shows a list of all requirements in the 

questionnaire. 

 

Answers from all observers are analyzed, as shown in 

section Results, Multiple independent observers. 

Eventually, all combinations of code have to be labeled 

either being, or not being a semantic clone. This is visible 

in figure 2, where manual detection only allows two 

categories. Therefore, a way to merge answers from all 

observers will be discussed.  

 

3.1.3 Adding previously undetected clones 
 

Even with multiple observers, validity problems can arise. 

For a further discussion on the reliability of our gold 

standard, see section Discussion. In an attempt to improve 

the gold standard and to find out what clones we 

potentially missed, we mail the original authors of each 

project and ask them if they are aware of any functional 

resemblance between the project they work on and its 

functional equivalent (e.g. kcalc and gcalctool). We ask 

them to ignore obvious duplicate functionality (adding, 

subtracting, etc) which  is directly linked to buttons on the 

screen, because we have found these cases ourselves 

already. 

 

As it turns out, in both kcalc and gcalctool the same 

library for multiple precision arithmetic calculations is 

used. These functions were not included in our original 

analysis. According to our definition, these functions are 

syntactically identical and therefore semantically identical, 

see section Manual detection, single observer. We 

decided not to include these test cases in our test set 

because it is obvious that every automated test will 

automatically return scores of 0 on syntactic clones (exact 

copy-and-paste). 

 

4. Techniques 
 

In the previous section we described the manual detection 

process as performed by humans. To compare manual 

results with automated test results, automated test results 

have to be acquired. All tests that will be executed are 

discussed in this section. 

For each test we describe the algorithm used to calculate a 

score, given two pieces of code as input. We also describe 

why we expect this technique to detect semantic clones. 

From now on, we will call a piece of code a code unit. See 

Definition 5.1 (Code Unit). A code unit can be the source 

text of a complete file or of a function. Note that tests in 

this study possess most properties of a metric, but some 

tests miss certain properties as described in Definition 5.2 

(Test). An example of one of such properties is that a 

score of 0 means that two code units are exactly the same 

(identity of indiscernibles). Strictly speaking the metric 

vector test cannot be considered a true metric, since a 

score of 0 for this test does not necessarily mean that two 

code units are identical (both code units can have identical 

vectors but still be completely different in their structure). 

We neverthelesss chose to include this test in our analysis 

because it can still contain useful properties which 

possibly makes it good at detecting semantic clones, 

despite the fact it does not fully conform to the definition 

of a metric.  

The higher the score the more different two code units are, 

according to a certain test. In the definition of a metric 

there is no upper limit on scores, but due to the fact that 

most tests are normalized for length of both code units, 

most scores range from 0 to 1. This does not include the 

metric vector test, which is not normalized. See Definition 

5.2 (Test).  

 

4.1 Edit Distance 
 

The edit distance between two strings is the minimal 

number of insertions, deletions or substitutions needed to 

transform a string into another. See Definition 5.6 

(Levenshtein edit distance). Because length of both 

strings should be taken into account, final score is 

normalized for length of both strings, while maintaining 

characteristics of a metric [25]. See Definition 5.10 

(Normalized Edit Distance). Figure 6 shows the 

(unwanted) result of an unnormalized edit distance test. 

 

DE(ab, ac) = 1 

dE(abcdefgX, abcdefgY) = 1 

Figure 6. The edit distance test should take string length 

into account. The first string pair differs 50%, the second 

pair much less than that, while edit distance is 1 in both 

cases. 

 

A score of 0 means that two strings are identical, a score 

of 1 means that two strings are completely different. Since 

we defined syntactic clones as two character arrays having 

an edit distance of 0, this is a perfect test to detect 

syntactic clones. The question is how good this test 

performs at predicting semantic clones.  

 
The reason we believe this test is able to detect semantic 

clones is that two code units which fulfill the same 

functionality are expected to be written down 

approximately the same way. This would result in lower 

edit distances for semantic clones. 

 
A problem with this test could be that there are different 

ways to fulfill the same requirement, while edit distance 

between two different methods do not necessarily have to 

be small. This test may be considered to stay “too close” 

to syntax, because it does not take any semantic meaning 

into account. But whether or not this effect is significant 

remains to be seen. The algorithm of this technique is 

shown in figure 7.  

 

4.2 Exact Token Match 
 

This test counts the number of tokens of the first code unit 

that appear in the second code unit. Each code unit is 
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considered to be a collection of tokens. It counts the size 

of the union of both collections and takes into account size 
 
int LD (char s[1..m], char t[1..n]) 

{ 

   int d[0..m, 0..n]; 

    

   for i from 0 to m 

     d[i, 0] := i; 

   for j from 0 to n 

     d[0, j] := j; 

   

   for j from 1 to n 

   { 

  for i from 1 to m 

     { 

       if s[i] = t[j] then  

         d[i, j] := d[i – 1, j – 1]; 

       else 

         d[i, j] := min 

      ( 

       d[i – 1, j] + 1, 

       d[i, j – 1] + 1, 

       d[i – 1, j – 1] + 1 

      ); 

  } 

 } 

   

   return (2 * d[m, n]) / (m + n + d[m, n]); 

} 

Figure 7. Normalized Levenshtein distance calculation 

 

of the biggest collections. The result is a normalized score, 

where 1 means that no tokens in the smallest code unit 

appear in the largest, and 0 means that all tokens in the 

smallest code unit appear in the largest. See Definition 

5.11 (Exact Token Match Distance). It does not count 

tokens that are smaller than a certain length. The reason 

for a minimal size of tokens is that tokens smaller than 3, 

for instance, do not carry any semantic meaning, speaking 

in terms of natural language. This is demonstrated in 

figure 8.  

The idea behind this test is the hypothesis that people tend 

to choose similar names for variables and functions when 

functionality is identical. 

 
int a = i * j * s; 

int totalTableSize = numberOfRows *  

numberOfColumns * cellSize; 

Figure 8. Above a statement with small token size, carrying 

almost no semantic meaning. Below a comparable statement with 

meaningful names, also having greater average token size. 

 

We do not know whether or not this test will be a 

significant predictor for semantic clones. In a normal code 

unit there are a lot of keywords and types that occur so 

often that this test is expected to return high amounts of 

false positives. These “aspecific” tokens are expected to 

pollute results, but unknown is whether or not this effect is 

strong enough to influence final test performance. Without 

this effect, this test is expected to be a significant 

predictor. 

 

 

 

 

4.3 Kolmogorov LZMA 

 
According to the Kolmogorov complexity theory, there 

exists a smallest lossless form of storage for every piece of 

information. Further compressing this piece of information 

without losing information is not possible. 

 
“abababababab” 

“6xab” 

“4c1j5b2p0cv4w1x8” 

Figure 9. Above an uncompressed string and a more compressed 

string, carrying the same information. The bottom string will be 

more difficult to compress any further, since it contains random 

numbers and characters. 

 

The shortest notation for a piece of information cannot be 

determined, but the difference in Kolmogorov complexity 

between two code units can be approached by the 

normalized compression distance. See Definition 5.9 

(Normalized Compression Distance).  

The reason why this test is supposed to detect semantic 

clones is the idea that two code units that are a semantic 

clone will carry the same amount of “information”, 

irrespective of the way information is written down in 

source code. By compressing this information, specific 

notation of this method could be ignored. When two code 

units are a semantic clone, both of them would compress 

to a file of the same size.  

Compression can be applied to source code or to compiled 

object code. The advantage of using compiled object code 

is that the compiler has already applied optimizations, in 

which case two functional identical code units would 

(hopefully) transform into comparable object code. A 

presumption is that in both code units, a compiler with the 

same settings is used.  

 

Due to the highly experimental nature of this test, it is 

highly unsure whether our theory will hold. Whatever the 

outcome, we expect more from compression distance 

between compressed object code files than plain source 

code. When the same compiler and compiler settings are 

used, functionally equivalent code is expected to compile 

to syntactically identical object code. A good example that 

supports this hypothesis is the fact that both while- and 

for-loops eventually compile to an assembly construction 

with a “jmp”-statement a label.  

 

More aggressive compiler optimization settings are 

expected to decrease compression distance between two 

pieces of object code even further, since we expect that 

object code of two semantically identical code units will 

eventually converge to comparable syntactic assembly 

instructions. We hypothesize that there is eventually only 

one way to implement a certain functionality, which 

cannot be optimized any further. 

 

4.4 Metric Vector 
 

This test calculates a vector of certain metrics which are 



7 

 

S-Complexity                          
  

  
|           |

           
 

           

demonstrated by Kontogiannis to be a good indicator of 

similarity in abstract syntax trees [3].  

 

The included metrics are the following:  

 

 

 

Where calls(Ux) is the number of individual function calls 

in Ux (fan-out). 

 

 

   D-Complexity 

  

Where             is the number of global variables 

used or updated within Ux. A global variable for Ux is a 

variable which is used or updated in Ux but not declared in 

Ux. 

 

McCabe Complexity 

 

Where        is the number of control decision 

predicates in Ux. 

 

Kafura Metric 

  ((                           )

 (                                   ))
 
 

 

Where        is the number of formal parameters in Ux,     
         the number of variables used in Ux,   
            the number of function calls to Ux and 

              the number of reference (pointer type) 

parameters that are updated in Ux. 

 

Kontogiannis bases this technique on the assumption that 

if two code units are clones, they will share a number of 

structural and data flow characteristics.  

We expect that these characteristics as measured by these 

metrics are also applicable to semantic clones because we 

expect that functions that perform the same functionality 

are likely to be implemented in the same way, which 

would show in the number of calls made, the number of 

globals used, etc.  

 

4.5 Dictionary Lookup 
 

This method can be regarded as an extension to the exact 

token match test. When a word cannot be directly 

matched, it is looked up in Wiktionary
1
, which will return 

a list of words that appear inside a dictionary entry for this 

keyword. The offline dump file
2
 of the English version of 

Wiktionary is used to look up keywords. Matches between 

words looked up in the dictionary and the other code unit 

are counted. Figure 10 gives an example of a dictionary 

lookup test. 

                                                      
1
http://en.wiktionary.org 

2
http://download.wikipedia.org/enwiktionary/

latest/enwiktionary-latest-pages-articles 

.xml.bz2 

This test is an improvement of the exact token match test, 

and should therefore at least have the same test 

characteristics as the exact token match test, but expected 

is that the test is a substantial improvement. 

 

 

Figure 10. Example of a dictionary lookup test, with 2 direct 

matches and 1 looked-up match. 

 

4.6 AST comparison 
 

This tree-based technique has Abstract Syntax Trees 

(ASTs) as input and compares them by building a 

characteristic vector of this tree, as described by L. Jiang 

in [12]. Each number in this vector is the count of the 

occurrence of a specific pattern (e.g. while, if, expression, 

call) inside this tree. Code clones are detected by 

calculating the Euclidian distance between two vectors. 

See Definition 5.7 (Euclidian distance). For an 

explanation of this technique, see figure 11.  

 

In this example, only a small piece of code is shown. The 

characteristic vector contains all possible nodes that can 

occur inside an AST. In this example, only a small 

selection of node types is shown. Node types that do not 

occur in the tree (like a while-statement) are included with 

a count of 0.  

 
1 if (x > 0) 

2     x = 0; 

 

 

 

 

 

 

 

 
<if_stmt, while_stmt, bool_expr, asmgnt, gt> = 

  <1, 0, 1, 1, 1>  

Figure 11. Example of a characteristic vector of a piece of code. 

Normally, all node types (even with a count of 0) are included in 

the vector. 

 

Code similar in functionality is expected to have structural 

characteristics in common. This technique can also be 

considered a metric-based technique which creates a 

fingerprint of subtrees. A strong point of this technique is 

that subtrees of code can be combined into a new vector 

easily by adding two vectors, and thus clones in a 

complete or partial tree can be easily detected. Another 

advantage is that calculation of these vectors is fast and 

straightforward. Even if no AST is available, pattern 

counting could be performed by regular expression 

if

=

x

>

0 x 0

abc

def

ghi

jkl

abc:

pqr mno

pqr

ghi

jkl

lookup match

direct match

direct match

t(U1) t(U2)
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matching. A disadvantage of this approach is that vectors 

of subtrees cannot be easily calculated. 

 

5. Definitions 
 

The following definitions are used in this study. For more 

details see the explanation for each test in section  

4 (Techniques). 

 
Definition 5.1 (Code unit) A code unit Ux is the input of a 

test T. In this study, it can be the text of a complete source 

file or function, represented as a string. 

 

Definition 5.2 (Test) In this study, a test is a function 

T : U1 × U2 → R. In addition, the function satisfies the 

following properties, which makes it a metric [5]:  

 T U ,U     T(U ,U ) 

 T U ,U       

 T U ,U       if and only if U   U  

 T U ,U      T U , U     T(U , U ) 

 

Definition 5.3 (Code clone) Two code units U1 and U2 are 

a code clone according to a test T, if T(U1, U2)   α, with α 

being a threshold value. 

 

Definition 5.4 (Syntactic clone) Two code units U1 and 

U2 are a syntactic clone if dE(U1, U2)  = 0 (they have 

identical character arrays). See Definition 5.6 

(Levenshtein edit distance). 

 

Definition 5.5 (Semantic clone) Two code units are a 

semantic clone if they fulfill the same requirement. 

 

Definition 5.6 (Levenshtein edit distance) The 

Levenshtein edit distance [15] of two code units U1 and 

U2, denoted as dE(U1, U2) is the minimal sequence of edit 

operations (substitute, insert or delete) that transforms U1 

into U2. Equal weight of each operation is assumed. 

 

dE(abcde, bcdef) = 2. abcde becomes bcde via deletion 

of a. bcde then becomes bcdef through insertion of f. 
Figure 12. Example of the Levenshtein edit distance 

calculation. 

 

Definition 5.7 (Euclidean distance) The Euclidian 

distance of two vectors υ1 and υ2 is 

 

d υ , υ    √∑  υ i υ i 
 

n

i  

 

 

Where n is the length of both vectors. Equal vector lengths 

are assumed.  

 

Definition 5.8 (Kolmogorov Complexity) The 

Algorithmic Kolmogorov Complexity of a code unit Ux is 

defined as the length of the shortest program that 

computes or outputs Ux, where the program is run on some 

fixed reference universal computer. This complexity can 

be approached by the length of the shortest description of 

Ux [11]. 

 

Definition 5.9 (Normalized Compression Distance) The 

Normalized Compression Distance NCD(U1, U2) is 

defined as follows [16, 17]:  

 

  D U ,U     
  U U     min{  U  ,   U  }

max{  U  ,    U  }
 

 

Where C(U1U2) is the size of compressed file containing 

the concatenated text of U1 and U2. 

 

Definition 5.10 (Normalized Edit Distance) The 

Normalized Edit Distance [25] between two code units U1 

and U2 is defined as follows:  

 

  D U ,U     
 d (U ,U 

)

  |U |   |U |    d (U ,U 
)
 

 

Where |U | is the number of characters in U1. Since equal 

weight of substitution, insertion and deletion operations is 

assumed,   = 1. 

 

Definition 5.11 (Exact Token Match Distance) The 

exact token match distance between two code units U1 and 

U2 is defined as follows: 

 

 T D U ,U     
max{|t U  |,|t U  |}  |⋂(t(U

 
),t(U

 
 )|

max{|t U  |,|t U  |}
 

 

where t(Ux) is the collection of tokens in Ux. A token is 

every substring of Ux that is separated by a non-ASCII 

character, underscore character or a capital. The selection 

can be filtered by the length of each token, shown in the 

following example. 

 

Ux   "calculateAverage(int first_value, int 
second_value, int* r)" 

t3(Ux) = ("calculate", "average", "int", "first", "value", 
"second") 

Figure 13. Example of tokens in a code unit, selecting only 

unique tokens that have a length greater than or equal to 

3. 

 

Definition 5.12 (Dictionary look-up distance) The 

dictionary lookup distance of two code units U1 and U2  

is the same as the exact  token match distance, but when a 

token cannot be directly matched, it is looked up in a 

dictionary, and is matched against the returned collection 

of words in the dictionary entry. 

 

Definition 5.13 (Abstract Syntax Tree) An abstract 

syntax tree is an abstract representation of source code, as 

generated by a parser. It is a more compact representation 

of code in which details unnecessary for the compilation 

process are omitted. See Figure 11 for an example. 
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6. Open source programs 
 

The following open source programs were used in our 

analysis: 

 

kcalc 4.4.1
3
 and gcalctool 5.29.92

4
 are two C/C++ 

desktop calculators from the KDE desktop and from GNU 

(Linux). Because of small size and limited domain, a lot of 

duplicate functionality is expected. 

bash 4.1
5
 and tcsh 6.17

6
 are two shells that are included 

in most Linux distributions. Both shells should perform 

the same functionality on a global level, although 

implementation details are expected to differ.  

joe 3.7
7
 and nano 2.2.1

8
 are two relatively small text 

editors for Linux that are also expected to contain a lot of 

cloned functionality.  

 

Application # files
 

# functions # lines 

kcalc 8 396 7202 

gcalctool 15 375 14895 

bash 228 2588 119534 

tcsh 74 1232 60857 

joe 50 1077 38364 

nano 15 407 22542 

Figure 14. Characteristics of included test projects 

 

7. Implementation 

 

To collect test results, a calculation tool was created which 

was implemented using C#. Source code of all code units 

was manually collected and entered in a Microsoft SQL 

Server database table.  

 
1. for each code unit u1 

2.  for each code unit u2 

3.   su1 = fetch source text of u1 from db 

4.   su2 = fetch source text of u2 from db 

 

5.   for each test t 

6.    score = t(su1, su2) 

 

7.    write tuple to table: 

8.     <test id, u1 id, u2 id, score> 

9.   end for 

10.  end for 

11. end for 

Figure 15. Pseudo code for the calculation of test results 

 

Source code was stored as plain text in a table with an 

identifier that uniquely identifies a single code unit. All 

tests and collected code units as described in Results were 

iterated and served as input to each test. See Figure 15. 

 

 

                                                      
3
 http://utils.kde.org/projects/kcalc 

4
 http://calctool.sourceforge.net 

5
 http://www.gnu.org/software/bash 

6
 http://www.tcsh.org 

7
 http://joe-editor.sourceforge.net 

8
 http://www.nano-editor.org 

Eventually, tuples of the form <test_id, unit1_id, 

unit2_id, score> were stored in the database. Since 

scores have been normalized, scores range from 0 to 1. 

To calculate and display each ROC curve, all tuples 

belonging to a specific test were selected. Inside a loop the 

threshold value was incremented with 1% of total range (0 

to 1) and sensitivity and specificity values were calculated 

for this threshold value. This produces sensitivity-

specificity pairs (sensitivity = TP / (TP + FN)), specificity 

= TN / (TN + FP)) for approximately 100 threshold 

values. These pairs were plotted in ROC diagrams.   

To calculate accuracy/threshold diagrams, the same loop 

was used to iterate over threshold values. For each 

threshold value inside this loop, accuracy ((TP + TN) / 

total) was calculated and a diagram was plotted as well. 

 

We had great trouble finding a suitable ANSI C parser. 

Since C is not a standardized language, several non-

standard extensions exists which are often specific to a 

certain compiler. No single parser seemed able to cope 

with all code given to it. The programs we tried include 

ANTLR, Elkhound/Elsa, GCC and GCCXML, among 

others. There were always some small features inside 

some code units which caused the parsing program to 

crash. GCC was able to parse each file in its entirety, but 

adapting GCC itself was considered to be too big a task 

and to be outside the scope of this study. 

Finally, we found srcML
9
, which was able to parse every 

piece of code we gave to it without trouble. SrcML was 

capable of parsing source code and produce an abstract 

syntax tree in the form of an XML document. From this 

file an in-memory abstract syntax tree could be built which 

could be compared to other abstract syntax trees.  

 

Several other external tools were used to help calculate 

scores. To calculate scores for the Kolmogorov LZMA 

test, 7-Zip
10

 was used, an open source program that 

contains a couple of different compression algorithms. In 

our case, we used LZMA compression. We started the 

program with the arguments "a -t7z -m0=LZMA -mx=9 

<filename>", using the maximum amount of LZMA 

compression available. 

To help extract function headers and bodies, ctags
11

 was 

used, a program that creates an index of language objects 

found in source files. It was started with the arguments "-x 

–s –e <filename>", which made sure static and external 

headers were also included. 

To extract object code for single functions out of object 

files as generated by a compiler, objdump
12

 was used. 

From the output of objdump hexadecimal start address and 

length of each function could be extracted, which could 

then be used to extract binary code out of object files. 

 

Software quality We are confident about the quality of 

developed software and reliability of our test results. We 

                                                      
9
 http://www.sdml.info/projects/srcml 

10
 http://www.7-zip.org 

11
 http://ctags.sourceforge.net 

12
 http://linux.die.net/man/1/objdump 
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can not fully exclude the possibility that there are bugs in 

the software that cause incorrect results, but software was 

tested intensively and first results where checked 

manually, which should reduce the chance of bugs that 

influence test results in a major way. 

 

Performance We did not take into account performance 

considerations when building our tool. This had the 

consequence that a single test could take minutes to finish, 

and executing all input combinations for a single test could 

take more than an hour. We did not have the goal to build 

a tool that would be scalable or could be used outside a 

research environment, but instead we wanted to obtain test 

results in the easiest way without spending too much time 

developing a tool. 

 

8. Results 
 

In this section, results of manual detection as originally 

performed by a single observers will be shown first. 

Second, results from multiple observers will be shown. 

Finally, test characteristics of automated tests are shown, 

which were calculated by combining manual test results 

with automated test scores. 

 

8.1 Manual collection, single observer 
 

File 

 gtk.c 

 kcalcdisplay.cpp 

Method 

A.1  static void display_refresh(GCDisplay *display) 

B.12  bool KCalcDisplay::updateDisplay(void) 

A.21 void ui_set_accuracy(int accuracy) 

B.17 void KCalcDisplay::setPrecision(int precision) 

A.23  static void mp_add2(const MPNumber *x, const 

  MPNumber *y, int y_sign, MPNumber *z) 

B.21 static KNumber ExecAdd(const KNumber&   

  left_op, const KNumber & right_op) 

A.18 static void solve(const char *equation) 

B.7  bool CalcEngine::evalStack(void) 

A.14 static void do_paste(GCDisplay *display,  

  int cursor_start, int cursor_end, const char *text) 

B.1  void KCalcDisplay::slotPaste(bool bClipboard) 

A.3  void display_pop(GCDisplay *display) 

B.5  void KCalcDisplay::slotHistoryBack() 

A.13 void display_push(GCDisplay *display) 

B.15 void KCalcDisplay::slotHistoryForward() 

A.6  void mp_and(const MPNumber *x, const    

  MPNumber *y, MPNumber *z) 

B.21 static KNumber ExecAnd(const KNumber &   

  left_op, const KNumber & right_op) 

Figure 16. Semantic clones found manually in gcalctool 

(above) and kcalc (below). 

 

The manual detection process resulted in 12 file-level 

semantic clones and 18 function-level semantic clones in 

three training projects. After manual detection, 11 random 

file-level combinations and 19 random function-level 

combinations (which were definitely not semantic clones) 

were added to introduce noise in the detection process. 

Without this the number of false positives and true 

negatives would always be 0. In total, 78 code units where 

selected from three different training projects, of which 54 

code units were functions and 24 were files. An overview 

of manually detected clones can be found in figures 16, 17 

and 18. See section Discussion why so few code units 

were found to be semantic clones. 

 
File 

 execute_cmd.c 

 sh.exec.c 

 expr.c 

 sh.exp.c 

 error.c 

 sh.err.c 

 bashhist.c 

 sh.hist.c 

 stringlib.c 

 tc.str.c 

 variables.c 

 ma.setp.c 

 jobs.c 

 sh.proc.c 

Method 

A.4  void save_history() 

B.2  void savehist(struct wordent *sp, int mflg) 

A.15 void load_history() 

B.9  void loadhist(Char *fname, int mflg) 

A.19 int execute_command_internal(command,    

  asynchronous, pipe_in, pipe_out, fds_to_close) 

B.14 void doexec(struct command *t, int do_glob) 

A.20 void sys_error(const char *format, ...) 

B.23 void stderror(unsigned int id, ...) 

A.11 intmax_t evalexp(expr, validp) char *expr; int   

  *validp; 

B.24 int expr(Char ***vp) 

Figure 17. Semantic clones found manually in bash 

(above) and tcsh (below). 

 
File 

 charmap.c 

 chars.c 

 help.c 

 help.c 

 utils.c 

 utils.c 

 pw.c 

 prompt.c 

Method 

A.8  void help_display(Screen *t) 

B.4  void do_help(void(*refresh_func)(void)) 

A.5  void help_init(void) 

B.6  void usage(void) 

Figure 18. Semantic clones found manually in joe (above) 

and nano (below). 

 

8.2 Manual collection, multiple observers 
 

In figure 19, answers from the survey can be found. First, 

our own answers are displayed. These are the clones we 

originally used as gold standard. Numbers inside the table 

refer to functions in figures 16, 17 and 18, referred 

requirements can be found in figure 5. In the last three 
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columns, answers from other observers are shown. The 

number of times a function is selected is displayed (3 x 11 

means 3 observers chose function 11 for this requirement). 

In the last column, the number of times A and B match 

exactly as a pair with our own answer is counted, and 

displayed with the proportion of people agreeing (2 (24%) 

means that 2 users chose both A and B the same as we did, 

and this is 24% of total answers for this requirement). 

 

Requirement Our observation All observers 

 A B A B A & B 

Calculators      

DC1 11 - 6 x 11 

1 x 18 

4 x 7 

1 x 21 

2 (29%) 

DC2 1 12 2 x 1  

2 x 13 

2 x 18 

4 x 12 0 (0%) 

DC3 6 21 7 x 6 7 x 21 7 (100%) 

DC4 - -  1 x 22  6 (86%) 

 

DC5 16 - 4 x 16 

1 x 6 

1 x 21 

 

4 (57%) 

 

DC6 - -   7 (100%) 

DC7 3 5 5 x 3 4 x 5 3 (43%) 

DC8 13 15 1 x 4 

1 x 16 

1 x 2 

1 x 9 

4 x 15 

0 (0%) 

DC9 21 17 7 x 21 5 x 17 5 (71%) 

DC10 - - 5 x 14 6 x 1 5 (71%) 

DC11 17 - 7 x 17 2 x 12 

1 x 1 

4 (57%) 

Shells      

SH1 19 14 4 x 19 

1 x 11 

5 x 14 

1 x 3 

3 (43%) 

SH2 20 23 7 x 20 7 x 23 7 (100%) 

SH3 - -   7 (100%) 

SH4 4 2 1 x 15 

6 x 4 

 

6 x 2 6 (86%) 

Text editors      

TE1 8 4 7 x 8 6 x 4 6 (86%) 

TE2 5 - 5 x 5 4 x 3 

1 x 4 

1 x 8 

1 (14%) 

TE3 - -  1 x 10 6 (86%) 

Figure 19. Our original observation and observations of 

other observers. The references (“DC1”) in the first 

column refer to the requirements in figure 5. The numbers 

in the other columns refer to the functions in figure 16, 17 

and 18. 

 

Below, test characteristics of different tests are presented. 

All functions from the three different projects have been 

combined into a single set. This should be no problem 

since files and functions are independent units, and test 

outcomes are calculated for each file or function 

individually.  

 

 

 

 

 

 

8.3 Automated test results 
 

8.3.1 Edit distance 

 

Results for the edit distance test are shown below. As it 

turns out, this test does not perform better than flipping a 

coin (visible as the diagonal line going to the points (0, 0) 

and (1, 1) in figure 17). For each test, the Delong Delong 

Clarke-Pearson method [28] is used to compare curves. 

 
In figure 21, “Area” is the area under the curve. This area 

has to be significantly bigger than 0.5 to make this test a 

good predictor for semantic clones. The farther the most 

upper-left point of the curve comes to the point (0, 1), the 

better the test is at predicting semantic clones. 

 

With a p value of 0.30, this test does not perform 

significantly better than chance, based on a 95% 

confidence interval. When the number 0.5 is not included 

in the range of the 95% confidence interval (in this case 

0.36 to 0.74) the test is significant. Edit distance as 

performed on tokens instead of separate characters 

returned similar results.  

 

 

 
Figure 20. ROC curve of edit distance test. TPR = True 

Positive Rate = sensitivity = recall = TP / (TP + FN), 

FPR = False Positive Rate = FP / (TN + FP). 

 

Area 0.55 

p 0.30 

95% C.I. 0.36 - 0.74 

Figure 21. Test characteristics.  

 
8.3.2 Exact Token Match 

  

With a p value < 0.0001, this test performs significantly 

better than chance. 

 

Excluding keywords decreases test performance, as can be 

seen from the accuracy/threshold graph below. Without 

keywords, maximum accuracy is approximately 70%, 

while with keywords, maximum accuracy is 78.4%. 
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The figure below shows that this optimal accuracy (with 

keywords) is reached at threshold values of approximately 

0.94 and 0.96. 

 

  With keywords Without keywords 

Area  0.83 0.76 

P  0.00 0.00 

95% C.I.  0.69 - 0.97 0.60 – 0.91 

Figure 22. Test characteristics  

 

The numbers inside the binary classification matrix below 

depend on the threshold value chosen, see definition 4.x 

(Code clone). The lower the score for a test, the more 

likely it is the two input units are a code clone, according 

to that test. The threshold value is the cut-off point of the 

test. Below this value, test outcome is considered to be 

positive (a clone is detected).  

 

 Confusion matrix 

(functional level) 

Manual detection 

yes No 

Test 

outcome 

yes 15 5 

no 3 14 

Figure 23. Confusion matrix of the exact token match test 

at a threshold value of 0.94. 

 

In figure 25, numbers for a threshold value of 0.94 are 

shown. 

 
Figure 24. ROC curve of exact token match test with and 

without keyword matching. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test characteristics calculated from this confusion matrix 

are shown in figure 26. 

 

Sensitivity (recall) 83% 

Specificity 73.7% 

Accuracy 78.4% 

PPV (precision) 75% 

Figure 26. Test characteristics at a threshold value of 

0.94. PPV = Positive Predictive Value. 

 

8.3.3 Kolmogorov LZMA 

 

With a p value of 0.79, this test does not perform 

significantly better than chance. Performing compression 

on object code gives similar results, but is not shown in 

the graph below.  

 

Area 0.42 

P 0.79 

95% C.I. 0.23 - 0.61 

Figure 27. Test characteristics 

 

 
 

8.3.4 Metric Vector 

 
With a p value of 0.38 this test does not perform 

significantly better than chance. We originally added all 

metrics as described by Kontogiannis, but other 

combinations of metrics with different weighing factors 

gave similar results. 

 
Area 0.53 

p 0.38 

95% C.I. 0.34 – 0.72 

Figure 29. Test characteristics 

 

8.3.5 Dictionary Lookup 

 

With a p value of 0.00, this test is a significant predictor 

for semantic clones. The area shows that this test does not 

perform better than the exact token match test (dotted 

line), but worse. See section Discussion for more details. 
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Figure 25. Accuracy/threshold curve 
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Figure 30. ROC curve of metric vector  

 

Area 0.74 

P 0.00 

95% C.I. 0.57 - 0.90 

Figure 31. Test characteristics 

 

Figure 32. ROC curve of dictionary lookup test 

 

8.3.6 AST Comparison 

 
Figure 33. ROC curve of AST comparison test 

 

With a p value of 0.53, this test does not perform 

significantly better than chance. 

 

Area 0.49 

P 0.53 

95% C.I. 0.29 - 0.69 

Figure 34. Test characteristics 

 

9. Discussion 
 

The only test that returns significant results is the exact 

token match test. This test has a sensitivity of 83%, a 

specificity of 73.7% and a positive predictive value of 

75%, given our test cases. This means that it correctly 

identifies 83% of all semantic clones in our test sample, 

and missed 17% of known semantic clones in our sample. 

For all non-semantic clones in our sample, the chance that 

this test recognizes them correctly as not being clones is 

73.7%, which means that 26.3% of all non-semantic clone 

pairs were incorrectly identified as clones. The positive 

predictive value of this test states that of all clones as 

positively identified by this test, 75% of cases are indeed 

semantic clones. Extending this test by a dictionary match 

decreased test performance.  

 

These numbers are somewhat disappointing since we 

expected the exact token match to return higher scores, 

and we expected that adding a dictionary lookup would 

increase test performance, instead of decreasing it.  We are 

also surprised to find out that other tests are not capable of 

detecting semantic clones, given the fact that we limited 

our selection of test cases to rather trivial examples, and 

left out more complex ones.  

 

Low scores We can think of a number of possible reasons 

for these low scores. As shown in our survey, it is 

extremely difficult even for human observers to correctly 

classify two pieces of code without knowledge from the 

design of the complete system. This contextual knowledge 

is completely missing in our automated tests. One could 

argue that some kind of structural knowledge is available 

after parsing each function and building an AST, but given 

results of our AST comparison test this is not enough. 

Besides this, precision and recall scores such as ours are 

not uncommon in classic information retrieval 

experiments (for instance, in [3] and [34]).  

All forms of edit distance tests (on characters and trees) do 

not return significant results. This may be explained by the 

fact that two semantic clones can fulfill the same 

requirement through two completely different 

implementations, which results in two functions that look 

completely different in every aspect. The metric vector test 

did not perform as well as expected. No individual metric 

performed significantly well and combining several 

metrics into a single vector did not improve test 

performance. Chosen metrics apparently tell nothing about 

semantic similarity, at least not in our collection of test 

cases. 
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Manual detection process Semantic clones were 

originally detected by a single observer. This raised 

questions about the external validity and reliability of our 

gold standard.  

We tried to address this issue by asking multiple 

independent observers to judge the same code samples. A 

questionnaire was prepared which should be completed in 

no longer than half an hour. This turned out to be harder 

than expected, because the total number of semantic 

clones as selected by us was simply too large to put in a 

questionnaire all at the same time. This forced us to make 

a selection of clones, which raised the question how 

objective our selection was. We tried as hard as possible to 

prevent selection bias in our questionnaire.  

 

As it turns out, multiple independent observers are more 

able to identify semantic clones within a short period of 

time, although large differences in agreement between 

different requirements exist. Most observers are able to 

correctly identify the most trivial cases, which we believe 

means that people generally have an intuitive notion of a 

semantic clone and are capable of detecting them given a 

certain set of functions. In cases where there exists 

disagreement we are capable of exactly pointing out why 

we believe other observers judged wrongly. This is mostly 

caused by a lack of contextual information and because 

some unrelated functions in our survey showed so much 

resemblance that they were accidentally confused. 

For instance, someone responded that according to him the 

requirement “after every calculation, the result is 

displayed on screen” belongs to the function static 

void solve(const char *equation). Although 

understandable, this function does not take care of 

something after every calculation, but is the calculation 

itself. Besides that, in this function no result is displayed 

but the result is only calculated.  

In another example, implementations of the requirement 

“a help screen can be shown” were sometimes confused 

with implementations of the requirement “after entering  

„--help‟ on the command line, usage is printed”. Function 

headers and requirements look alike on the surface but 

goals are nevertheless completely different. 

 

We could have taken an approach in which we completely 

replaced our own observation with the one from the 

survey. A binary classification setup ensures that current 

manual results can safely be replaced by other 

observations while leaving automated test results 

unaffected. In this sense, there is no need to defend our 

own observation since test characteristics could also have 

been calculated from any observation, even if we 

disagreed with them. We decided not to take this approach 

because we believe that manual results from other 

observers are not necessarily an improvement over our 

own test results, as shown above.  

 

Trivial requirements Supplying requirements with 

functions in our survey may raise questions why observers 

were not allowed to reconstruct these requirements from 

functions themselves, or why we did not use requirements 

as supplied by the original authors of the software. 

Starting with the latter, none of the open source projects 

we studied contained any documentation on requirements 

of any kind. 

A setup in which users are asked to reconstruct 

requirements from given source code themselves without 

supplying them would also have been possible. A survey 

would then contain two lists of functions which observers 

should connect themselves. This reduces the risk of 

influencing observers through given requirements. 

However, tryouts with our survey showed that supplying 

only function bodies is not enough for observers to judge 

code samples. More information on these functions is 

needed. Another reason to add them is that without 

requirements and with only a list of two functions, each 

observer is free to maintain his own definition of a 

semantic clone, which makes comparison between results 

from different observers almost impossible.  

 

We believe requirements as supplied by us are trivial, and 

that other observers would think of the same requirements 

as we did. Exactly how trivial most requirements are can 

be seen in figure 5. We believe that anyone would have 

thought of the requirement “a binary AND-operation can 

be performed on two numbers” given the corresponding 

function. For all other requirements, we believe this also 

applies.  

Without given requirements, some observers would apply 

a definition of semantic clones that was too strict for our 

purposes. These respondents would restrict to a 

mathematical definition, in which only the most simple 

functions were marked as semantic clone candidates (e.g. 

adding and subtracting numbers). We originally planned to 

use the same mathematical definition of semantic clones, 

in which a semantic clone is defined as two functions 

causing the same change in external state and side effects 

(bi-simulation), but soon found out that this leads to a 

number of clones that is too small to be useful. With this 

definition, the number of clones found in all 6 projects 

would be limited to less than 5. 

 

Trivial cases We decided not to add syntactic clones 

(copies of the same code, as in the multiple precision 

arithmetic library in kcalc and gcalctool) because this 

would make our tests appear better than they actually are. 

Adding syntactic clones increases sensitivity, specificity 

and positive predictive value for a test. This is due to the 

fact that for syntactic clones, every automated test will 

automatically return 0. For instance, edit distance between 

two identical pieces of code is always 0. The same is true 

for all other tests as described in this study. Since we 

defined two pieces of syntactically identical code to be 

semantic clones as well, adding these cases automatically 

leads to an increase in the number of true positives, which 

in turn increases sensitivity, specificity and positive 

predictive value for this test. 

 

We only selected trivial cases for our gold standard. These 

cases are either obvious a semantic clone (on which most 

other observers agree) or obviously not a semantic clone 
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(two random unrelated functions). This selection of cases 

is a gross simplification as compared to real-world 

systems. In the end, a single definition of a semantic clone 

may not do justice to the complexity of real-life examples.  

Note that adding cases which humans consider to be trivial 

does not influence whether or not cases possess 

characteristics from which a computer can draw a trivial 

conclusion. In other words, even if humans find a case 

trivial, a computer may still have a hard time finding out if 

they are semantic clones or not. 

And even with a single definition (“fulfilling the same 

requirements”), there may be disagreement among 

different observers which function implements exactly 

which requirement. Types of disagreement can even be 

divided into three categories: (1) Observers disagree 

among each other, resulting in an average score which 

does not fit in a single category; (2) Observers agree but 

agree to be unsure; (3) Observers want to classify cases in 

categories other than “yes” or “no” (maybe into different 

types of semantic clones). Ways to solve this disagreement 

include merging uncertain cases in “yes” or “no” 

categories, adding new categories or limiting selection of 

cases to trivial ones. We chose the latter. For further 

discussion on an approach that takes a more complex 

definition of a semantic clone into account, see section 

Future work. 

 

Original goal Our original goal was to get threshold 

values from training data and to apply them to a real-world 

production system. We performed a small experiment with 

optimal threshold values for the exact token match test on 

a real production system. We printed the top 10 functions 

with the smallest distance according to this test, but results 

did not include any significant matches. We therefore 

concluded to focus on optimization of techniques instead 

of trying to design a technique that performs well on real-

world examples. 

 

Limitations in test setup Using a binary classification 

matrix and calculating corresponding test characteristics 

from this matrix is a proven method for the evaluation of 

binary classification tests [31]. There is no doubt about the 

correctness of the calculation of test characteristics from a 

binary classification matrix, given a certain gold standard 

(in this case, multiple independent human observers). 

Internal validity of our study is ensured by this test setup.  

 

The biggest problem of our test setup is the limited ability 

to extrapolate test results to untested cases (external 

validity). If tests perform well on a set of limited code 

units, there is no guarantee that these tests will perform 

equally well on untested cases. Another problem with our 

results is that it only contains projects from three different 

domains (desktop calculators, shells and text editors). One 

could argue that this should have been more.  

To what extent we can generalize results to other domains, 

and whether selection of these domains influences test 

results is uncertain. There are, however, a number of 

reasons why it should be possible to extrapolate our test 

results to untested cases: (1) since we did not include any 

domain-specific knowledge in any of our tests, all tests 

could be considered domain-independent and we therefore 

have no reason to believe that chosen domains influence 

test results, (2) we did include 3 totally unrelated domains 

which is already a kind of random selection and (3) we 

included a wide range of different types of functions, 

which makes sure our conclusions do not apply only to 

functions of a certain length or type.  

Another limitation of our test setup is that manual 

observers were only allowed to select semantic clones 

from a given set of functions. This could result in a 

selection bias in which “false negatives” (cases we 

overlooked but are indeed semantic clones) are missed. If 

we missed functions or we did not include them in our 

survey, they could not be checked by other observers. 

Ideally, all observers should look through the entire source 

code and report all clones found. This approach has the 

problem that it has taken us almost a week to complete.  

We tried to address this problem by asking the original 

developers of the software if they knew of any places in 

their code and their functional equivalent (e.g. kcalc and 

gcalctool) where there exist functional duplicates. This 

resulted in a library which was used in both programs, 

which we did not find interesting enough to include in our 

analysis. It remains difficult to prove how representative 

our sample of test cases is, but since we checked complete 

source of all projects we have confidence in our own 

results, and given our results, most independent observers 

agree with our findings.  

 

The number of selected clones (12 files and 18 functions) 

and non-clones (11 files and 19 functions) may also pose a 

threat to validity. Increasing the number of files and 

functions will increase the validity and reliability of test 

results. With too little test results, graphs will not have 

enough detail to make sensible statements about test 

performance. Besides this, calculation of test significance 

is influenced by the number of input values (statistical 

tests almost never return significant results when the 

number of values is too low). This issue does not pose a 

threat because we have a test that performs significantly 

positive and the same number of test cases are used for all 

tests. 

 

Imperfect gold standard Even after consulting multiple 

independent observers and the original authors of the 

software, our gold standard remains imperfect. In this 

sense, the term “gold standard” is misleading. A better 

name would have been “reference test”.  o matter how 

many cases we add, there are always additional cases we 

did not check. As long as automated techniques do not get 

close to sensitivity scores of 100%, and there are no other 

compelling reasons why other gold standard would have 

been better, we believe that ours is good enough for this 

study. 

In medicine, imperfect gold standards are very common. 

The first test to detect an aortic dissection (a serious 

medical condition in which a tear in the wall of the aorta 

causes blood to flow between tissue layers), was an 

aortogram. This test has a sensitivity of 83% and a 
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specificity of 87%. This means that the “ideal” test of that 

moment missed 17% of all cases! There were simply no 

better alternatives at that time, and all other tests for the 

same condition were compared to this one.  

 

We fully acknowledge the limitations of our study. This 

study determines the ability of tests to detect semantic 

clones, given a limited set of test cases. We do not have 

the intention to be totally complete in our selection of 

cases, nor do we aim to provide a definite reference in the 

field of semantic clones. The definition of a semantic 

clone as stated by us is by no means intended as final, and 

we welcome a discussion on this definition and on results 

of our study. 

 

10. Conclusion 
 

Our results show that, given our input set of code units, the 

only test capable of predicting semantic clones statistically 

significant (Sensitivity 75% with a 95% confidence 

interval) is the exact token match test. Adding a dictionary 

lookup to words which were not directly matched did not 

increase its performance. The exact token match test 

performs best when keywords are included. This means 

that every other test is not a significantly better predictor 

than pure chance. 

 

Our initial judgment was mostly confirmed by the 

questionnaire we sent to independent observers. We can 

easily advocate cases on which there exists mutual 

disagreement between observers or disagreement between 

observers and our own judgment. Each individual case can 

be shown to be trivial, but may require more contextual 

knowledge of the underlying system.  

 

11. Future work 
 

Extended confusion matrix As explained in the 

previous section, a problem with our binary classification 

scheme is that in reality, only the most trivial cases can be 

included in our analysis which can be classified as either 

being definitely a semantic clone, or definitely not being a 

semantic clone.  

 

Type of test 

granularity 

Manual detection 

Def. 

yes 

Prob. 

yes 

Unc. Prob. 

no 

Def. 

no 

Test  

Cat. 1      

Cat. 2      

Cat. 3      

Cat. 4      

Cat. 5      

Figure 35. A more complicated classification matrix. Def. 

= definitely, prob. = probably, unc. = uncertain. 

 

Several examples of combinations of code units have been 

found which could not easily be classified by humans in 

these two categories. These examples would belong in 

categories like “probably yes”, “probably no” or 

“uncertain”.  Due to the nature of our test setup (a   x   

table), these categories were not included in our study. 

This choice is not without problems, as shown in the 

previous section. 

 

To make it possible to also include uncertain cases, a more 

advanced test setup should be used. This is shown in 

figure 35. In this table, uncertainty categories are 

introduced. This would solve the problem of cases on 

which even humans do not disagree, or on which humans 

agree that the answer is uncertain. In case of disagreeing 

observers, an average answer could be selected (1 x 

definitely yes and 1 x definitely no = uncertain).  

 

In this extended setup, each category has upper and lower 

limits. For instance, category 1 contains all scores which 

lie between 0 and 10, category 2 all cases which lie 

between 10 and 20, etc. This setup enables the inclusion of 

nontrivial cases in the analysis.  

Another option is to include different types of semantic 

clones. For instance, categories like “not functionally 

related, “loosely functionally related”, “syntactic clone”, 

“same base functionality” and “semantic clone” could be 

used. These categories would appear in the columns of 

figure 35, instead of probability categories.  

 

Adding more cases and observers Reliability of the gold 

standard could be further increased by adding more code 

clones. Now less than 100 code clones have been 

identified and were included in our study. The more this 

number is increased, the more reliable the gold standard 

becomes. All added cases should of course be judged by 

independent observers. Increasing the number of observers 

will also increase reliability. 

 

Improving case selection in gold standard Given the 

nature of our test setup, tests were only executed on pre-

selected cases. As shown in the discussion, this naturally 

raises questions about the external validity of our study.  

 

In a future study, all observers should receive a complete 

copy of the source code. Each observer should be given 

the assignment to look through the entire source and 

identify semantic clones, without being restricted to a 

limited selection of clones as assembled by us. 

Requirements should not be supplied in advance.  This 

approach has taken us a week to complete, but would 

nevertheless be the best way to create a gold standard. 

Each observer should look for cases in each category as 

described in the previous section (“probably” and 

“uncertain” also included). Then, calculations can be 

performed which combine data from different observers 

into a single gold standard (e.g. Kappa score).  

 

In a future study, more open source projects from different 

domains should be added. Limiting the number of domains 

to 3 (desktop calculators, shells and text editors) makes it 

harder to extrapolate results to other domains. We stated 

before that we do not know which influence our selection 

of domains has on test results. What we are certain about 
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is that increasing the number of domains will enable us to 

generalize the result over the domains we included 

additionally. 

 

Combining multiple tests Multiple test results can be 

combined into a single score to improve test performance. 

We already tried to apply this on the metric vector test, in 

which a couple of different metrics can be combined in a 

couple of different ways. Each test can be multiplied with 

a weighing factor, to increase influence of one test over 

the others. Combining multiple tests only works when 

tests are “orthogonal” enough to each other to amplify 

each other. One test that uses a certain measure and 

another test that uses a derivative form of this measure 

look for essentially the same value and therefore cannot 

amplify each other. For example, if one test counts the 

number of lines and another tests the number of tokens, 

these values will be closely correlated to each other and 

combining these values will probably not improve test 

results. If, on the other hand, one test calculates the 

cyclomatic complexity and another test performs an exact 

token match, these values may be orthogonally enough to 

amplify each other. A future study could include 

calculating test characteristics for combined tests.  

 

Adding a domain ontology test Checking only for 

exactly matching tokens has shown to be a significant 

predictor for semantic clones, but improvements are 

possible. A semantic web is a collection of words from a 

specific domain (such as desktop calculators) which are 

connected with links, which are also named. This leads to 

a web of connected terms. When two code units are 

semantically related, expected is that words mapped on 

this semantic web are more closely located to each other 

than with unrelated functions. See figure 36 for a small 

example of a semantic web of desktop calculators. 
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Figure 36. Example of a part of a semantic web of a 

desktop calculator. 
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