
Testing Semantic Clone Detection Candidates

Steven Raemaekers

Philips Healthcare

R&D FXD Best

University Of Amsterdam

Abstract

In this study, a comparative analysis of automated

semantic clone detection techniques is performed.

Semantic clones are pieces of code that fulfill the same

requirement and could therefore be considered as

functionally redundant. Reducing the number of semantic

clones could lead to cost reduction and higher

maintainability.

Semantic clones were detected manually in three open

source projects, and results were verified by a number of

independent observers. Secondly, automated techniques

were performed on the same code samples. Test

characteristics like precision and recall were calculated

based on comparison of automated test outcomes to

manual results.

Results show that in our set of test cases, matching tokens

exactly is the only significant predictor for semantic

clones. Including dictionary matches of words which were

not directly matched did not improve performance of this

test.

1. Introduction

Research shows that a considerable part of software

consists of code clones: this number can be as big as 5 to

20%. These clones are introduced when a programmer

copies, pastes and adjusts existing code [21, 22].

This leads to higher maintenance costs [7] since all

changes to it have to be applied multiple times on multiple

places in the code. It can also introduce subtle differences

between code clones, which will make the code harder to

maintain [19, 20]. Clones are also believed to cause

architectural degradation [18]. Detecting code clones can

therefore be interesting because reducing the number of

code clones can eventually lead to reduced maintenance

costs and prevent architectural degradation.

The same arguments can be used for duplicated

functionality. When duplicate functionality could be

detected and removed a program would contain the same

functionality with less code. Such a situation could emerge

when, inside a company, two software projects that have

large parts in common are merged. This decision may be

made by project management in order to save resources or

to lower maintenance costs. Another situation could be a

company merger in which one company acquires another.

Either way, projects are selected to be merged, and there is

a big chance that there exists some kind of functional

resemblance between both projects. Merging duplicate

functionality may also reduce maintenance cost and

simplify architecture.

A couple of different ways to automatically detect code

clones have been proposed in literature, which are all

based on comparison of syntax:

 String-based techniques perform a comparison based

on characters. This technique stays most close to the

original source code. Comparing two strings is usually

done with a technique that calculates some form of edit

distance [21, 23].

 Token-based techniques split up source code in tokens

(as done by a lexer). Whitespace and semicolons often

serve as token separators. Different calculations on these

tokens can be performed, as in [14].

Metric-based techniques create a “fingerprint” based

on metrics of the code. Metrics can include numbers like

the fan-in (number of places at which this function is

called, in case of a function) and fan-out (number of other

functions this function calls) [22].

 Tree-based techniques parse the source code and

create an Abstract Syntax Tree (AST). Some kind of

distance function between two AST‟s can be calculated, or

metrics can be compared [9].

PDG-based techniques create a Program Dependence

Graph. A PDG is not sensitive to reordering of statements,

and makes data and control flow dependencies explicit.

This is the most abstract technique that is used today [6].

All methods eventually obtain differences between pieces

of code based on a certain measure, and select pairs in

which these differences are the smallest. The selected

cases are considered to be code clones.

1 mp_or(const MPNumber *x, const

 MPNumber *y, MPNumber *z)

2 {

3 mp_bitwise(x, y, mp_bitwise_or,

 z, 0);

4 }

1 static KNumber ExecOr(const KNumber &

 left_op, const KNumber & right_op)

2 {

3 return (left_op | right_op);

4 }

Figure 1. Example of a semantic clone. Above a sample

from gcalctool, below from kcalc.

The problem with these techniques is that they are in

essence syntactical measures. Text comparison is a

technique that is purely based on syntax and which is

highly sensitive to changes in source code. PDG-based

2

techniques perform a comparison on the highest level of

abstraction. It is capable of dealing with reordering of

statements, but comparison of individual statements is

eventually string-based.

We believe that previously mentioned techniques can be

described as being able to detect “syntactic clones”, and

are based on similarities in syntax. On a higher level

would be techniques that detect clones based on similarity

in functionality, which we will call “semantic clones”. We

define a semantic clone as two pieces of code which fulfill

the same requirements. Figure 1 shows an example of two

pieces of code that we regard to be a semantic clone. The

requirement which is implemented in these pieces of code

is that a desktop calculator must be capable of calculating

the binary (bitwise) OR-value of two numbers.

We are interested to find out to what degree automated

techniques are capable of detecting semantic clones. Since

source code is the only input to our automated tests, we

use syntactic measures as a pointer to semantic

resemblance. We are aware of the fact that semantic

comparison is an unsolvable problem, but we nevertheless

try to construct tests that are cheap to perform and give

reasonable results. In this study we only perform a static

syntactical analysis and we omit analysis of runtime

behavior. We also choose to avoid a strict mathematical

definition which includes semantic functions. We draw

conclusions from statistical means. For a more detailed

explanation see section Discussion.

As shown in research, each automated technique as

mentioned above is proven to be capable of detecting

syntactic clones. How good they are in detecting semantic

clones as defined by us is not known. We make the

assumption that humans are better capable of detecting

functional redundancy than computers. We want to find

out how close automated techniques get to human

judgment.

In this study, semantic clones will be detected manually in

three open source projects by a number of independent

observers. Automatic tests will be performed on the same

projects. By combining manual with automatic results, test

characteristics of a couple of different tests will be

calculated. Finally, ways to improve these tests will be

discussed.

2. Related work

As stated in the introduction, current code clone research

uses different methods for detecting code clones. In these

methods a distinction between syntactic and semantic

clones is almost never made, at least not in the way we

make it. Most authors implicitly assume a definition of a

clone which results from the detection technique used. If a

token-based comparison technique is used, a code clone is

considered to be two pieces of code having a score for a

token-based test below a certain threshold [32], although

this is often not explicitly stated as such. If a string-based

technique is used, a code clone is considered to be two

identical strings [33], or two substrings that have a metric

score below a certain threshold, thus differing only a

minimal amount in characters.

The most abstract definition of a code clone in use today

are two pieces of code having isomorphic PDG‟s [6]. This

definition may come more close to semantics as we

defined it than plain string comparison, but still it is not

perfect. It does not take into account the fact that the same

functional requirements can be fulfilled by two systems

which have completely different designs, which would

result in two functions with completely different PDG‟s.

In literature, several levels of detection (“granularity”)

have been tried, like detection at token [14], line [23],

subtree [9], method [22], class [26] and file [27] level,

although no comparison between different granularity

levels in the same study is performed. We expect that

choice of granularity influences test results tremendously.

We include file and function level detection in our analysis

to test this influence.

Current state-of-the-art tools are CCFinder [14] and CP-

Miner [29], which both use a token-based technique for

detecting code clones. This eventually comes down to

counting the number of matching tokens between a pair of

potential code clones. DECKARD [12] calculates a

characteristic vector of abstract syntax trees. This method

basically performs a count of node types in an abstract

syntax tree. For a more complete description of this

technique, see section Techniques.

Point is that only the most trivial copy-and-paste code can

be detected with these tools, which can often be described

as containing some insertions, substitutions and deletions.

In this study, we try to raise the standard for the type of

clones tests will return. Semantic clones could provide

more added value than clones as returned by software

previously mentioned. This would mean a step forward in

machine understanding of source code.

We are realistic about the goal of our study and we do not

expect to create a test which has full semantic awareness.

We set ourselves the goal of creating some tests,

calculating test characteristics and comparing them to

human judgment, which we consider to be the gold

standard of detection of functional redundancy. Accuracy

of our analysis is ensured by calculating statistical

significance for tests in comparison to chance (flipping a

coin). New is a detection method which uses a dictionary

to look up related words. Finally, since we perform a

controlled experiment in which the total number of cases

is known, we are able to include missing cases in our

analysis as well (false negatives). In classic information

retrieval experiments, this number is not always available

[34].

3. Research method

We quantify previously mentioned comparison of

automated test results with human judgment by using a

3

binary classification setup. Resulting from this binary

classification setup are test characteristics like sensitivity

and specificity, which can all be calculated from the

number of true/false positives/negatives in this setup. See

figure 2 for a binary classification table.

In a binary classification test, test results (which can be

either “yes” or “no” for a certain pair of code units) are

compared with results from a gold standard or oracle, in

this case manual detection. When an automatic test returns

a score close enough to zero, two pieces of code are a

clone according to this test. This is independent of the

question whether or not a human would agree with this

outcome. When an automatic test says that two pieces of

code are a clone, and a human would agree, the number of

true positives (TP) would be increased with one. In the

same way the other numbers can be calculated.

In the table below results of all test input combinations

would be shown. Test characteristics of a test cannot be

calculated without setting a threshold value first, under

which two inputs are a code clone, and above which they

are not, according to this test. Test characteristics only

depends on choice of a threshold value. A binary

classification table (or sometimes called a confusion

matrix) for a certain test and a certain threshold would

look like figure 2. For more information on binary

classification tests, see [30] and [31].

Type of test

granularity

Manual detection

Yes no

Test

outcome

Yes TP FP

No FN TN

Figure 2. Binary classification table/confusion matrix. TP

= True Positives, FP = False Positives, FN = False

Negatives, TN = True Negatives.

3.1 Manual detection

Manual detection was originally performed by a single

observer. This raised questions about the external validity

and reliability of our gold standard. This section will first

discuss the gold standard as it was originally performed,

and then improvements on the gold standard, which

include asking multiple independent observers to judge

code samples, and trying to including code samples in our

analysis which we overlooked at first. All test scores as

displayed in section Results are performed with the

improved gold standard. For a more detailed discussion on

this setup, see section Improving the gold standard in

the discussion.

3.1.1 Single observer

To find semantic clones manually, we familiarized

ourselves with the architecture of each project. This way

the chance to find semantic clones would be increased

since semantic clones could occur anywhere in a system,

and understanding the architecture would make it more

easy to find places where semantic clones were likely to

occur.

We scanned source code for functionally equivalent files

and functions. For files, especially filenames, function

headers inside files, comments on top of a file and global

function contents were examined. For functions, mostly

function headers, function contents and comments on top

of the function were examined. We decide to omit

statement level because single statements depend too

much on context to be compared individually.
We chose to omit class-level comparison because we

focused on programs written in C, which do not support

classes. Multi-word and multi-statement levels were also

omitted due to the combinatorial explosion which would

result in testing all possible combinations.

Questions There are a couple of questions we considered

to be helpful in determining whether two pieces of code

could be considered a semantic clone. These questions are

shown in figure 3. The rationale behind these questions is

the following.

First, two pieces of code were considered to be

semantically identical if they are syntactically identical. It

is not possible for two pieces of identical code to perform

different functions. If they are not identical, the smaller the

edit distance between two pieces of code is, the more

chance there is they are a syntactic clone and thus a

semantic clone. Since judgment is subjective in nature we

dot not define which exact edit distance we considered to

be small, but the smaller it is the more chance it can be

considered a clone.

If pre- and post conditions were known or could be

determined and turned out to be the same, two pieces of

code were considered to be a semantic clone. From a

mathematical viewpoint, two functions that only differ in

preconditions are two completely different functions.

From a pragmatic viewpoint, each case in which only

preconditions are different is judged separately. For

instance, assertions of variable values may take place

inside a function itself, but we did not regard this to be

contributing to main functionality. These cases were still

considered to be semantic clones, despite the fact that they

mathematically do not have the same preconditions.

Two pieces of code can perform basically the same

functionality and execute some extra tasks along the way.

These extra tasks do not have to be the same for both

functions. As long as the main task of both functions is the

same, we consider them to be semantic clones. When it is

easy to remove these extra tasks from one piece of code

and merge the two functions while positioning the extra

functionality somewhere else, this is an indication that two

pieces of code are semantic clone candidates. Examples of

extra tasks that are considered to be insignificant side

effects and do not contribute to main functionality are

logging, statistics or assertions.

It is a convention in the C programming language to put

two pieces of code which are functionally related in the

same translation unit (C file), but this is never enforced by

the compiler. It can therefore only serve as a hint to the

location of possible semantic clones. If two pieces of code

are in the same translation unit, the chance that they are

functionally related increases. This of course depends on

system design and the specific file in which two pieces of

4

code appear. Often, when a file contains functionally

related pieces of code, this is indicated with a comment on

top of the file explaining the goal of it.

Names of function headers and variables are an indicator

of functionality. We pay special attention to the

occurrence of the same words or synonyms. Not all words

are of equal importance since the most common English

words (e.g. “the”, “and”) appear in almost all source code,

regardless of them being semantic clones or not.

Note that these questions can only help as a guide in

determining whether two pieces of code are a semantic

clone or not. As said before, this process is per definition

very hard to quantify and subjective in nature and will

therefore give different results depending on the observer.

To address this problem, multiple independent observers

will be consulted to judge the same code samples. In

figures 16, 17 and 18 results of manual collection for all

projects are shown.

 Are the two code units syntactically identical?

 If not so, is it easy to convert the first code unit into

the second one (small edit distance)?

 Are pre- and post conditions given with source code?

 If not, can they be deducted from source code?

 Are pre- and post conditions exactly the same?

 Are only post conditions the same?

 Is base functionality of the two code units

comparable?

 Is it possible to merge the two routines relatively easy

by creating a wrapper function?

 Are the two code units located in the same translation

unit (a single C file)?

 Are the two code units executed in the same

functional context?

 Do the function headers show any signs of

implementation of comparable requirements?

 Are there any significant tokens in the function body

that match?

Figure 3. Example questions for the manual detection of

semantic clones. These questions can help judging code

units but only served as a guide and are by no means

complete.

Problems with a single observer as gold standard are

further discussed in section Discussion. To address these

problems, we tried to obtain a more reliable gold standard

by consulting multiple independent observers. Next, this

process will be described.

3.1.2 Multiple independent observers

A number of independent human observers are asked to

fill in a form in which requirements have to be connected

to two different implementations of this requirement. A

sample form is shown in figure 4.

If an observer believes that function A.3 and function B.2

are two semantic clones which both implement

requirement 1, the observer puts an 3 and a 2 on his

answer form, respectively. This survey will be answered

by a number of independent observers. Function bodies

are also supplied to observers.

Requirement 1: Two numbers can be multiplied

 A: B:

Requirement 2: The square root of a number can be

 calculated

 A: B:
A.1: int divide(int a, int b)

A.2: int add(int a, int b)

A.3: int multiply(int a, int b)

B.1: int subtract(int x, int y)

B.2: int mult(int x, int y)

B.3: int add_numbers(int x, int y)

Figure 4. Example requirements and two lists of candidate

functions. For clarity, function bodies have been omitted, which

were included in the actual survey.

Desktop calculators

DC1. The value of numeric expressions can be evaluated

DC2. After every calculation the latest result is displayed

 on screen

DC3. A logical AND-operation can be performed on two

 numbers

DC4. A logical OR-operation can be performed on two

 numbers

DC5. Two numbers can be added

DC6. Two numbers can be subtracted

DC7. Operations can be reversed (undo)

DC8. Previously reversed operations can be re-executed

 (redo)

DC9. The accuracy of calculations can be set

DC10. Text from the clipboard can be pasted into the

 application

DC11. Calculations in other numeric bases can be

 performed (e.g. binary, hexadecimal)

Shells
SH1. Entered commands can be executed

SH2. Errors can be printed to screen

SH3. A hash table for fast lookup of defined commands

 can be created

SH4. Text of previously entered commands is stored so

 they can be re-entered (“arrow-up” in a command

 line)

Text editors

TE1. A help screen can be displayed

TE2. A message can be displayed showing parameters

 and options to enter through the command line

 (“--help” parameter)

TE3. Macros can be defined which can be executed with

 keyboard shortcuts

Figure 5. Requirements as shown in the questionnaire.

We limit the number of functions in each list to no more

than 25 because observers are expected to complete the

questionnaire in approximately 20 minutes, and

experiments with our survey show that it takes

considerable time to match even a small amount of

requirements to functions.

Functions are inserted in both lists in random order. To

make answering the questionnaire more difficult, random

requirements without matching functions are added to the

5

list. Random functions without semantic equivalents, and

random functions without corresponding requirements are

also added. Figure 5 shows a list of all requirements in the

questionnaire.

Answers from all observers are analyzed, as shown in

section Results, Multiple independent observers.

Eventually, all combinations of code have to be labeled

either being, or not being a semantic clone. This is visible

in figure 2, where manual detection only allows two

categories. Therefore, a way to merge answers from all

observers will be discussed.

3.1.3 Adding previously undetected clones

Even with multiple observers, validity problems can arise.

For a further discussion on the reliability of our gold

standard, see section Discussion. In an attempt to improve

the gold standard and to find out what clones we

potentially missed, we mail the original authors of each

project and ask them if they are aware of any functional

resemblance between the project they work on and its

functional equivalent (e.g. kcalc and gcalctool). We ask

them to ignore obvious duplicate functionality (adding,

subtracting, etc) which is directly linked to buttons on the

screen, because we have found these cases ourselves

already.

As it turns out, in both kcalc and gcalctool the same

library for multiple precision arithmetic calculations is

used. These functions were not included in our original

analysis. According to our definition, these functions are

syntactically identical and therefore semantically identical,

see section Manual detection, single observer. We

decided not to include these test cases in our test set

because it is obvious that every automated test will

automatically return scores of 0 on syntactic clones (exact

copy-and-paste).

4. Techniques

In the previous section we described the manual detection

process as performed by humans. To compare manual

results with automated test results, automated test results

have to be acquired. All tests that will be executed are

discussed in this section.

For each test we describe the algorithm used to calculate a

score, given two pieces of code as input. We also describe

why we expect this technique to detect semantic clones.

From now on, we will call a piece of code a code unit. See

Definition 5.1 (Code Unit). A code unit can be the source

text of a complete file or of a function. Note that tests in

this study possess most properties of a metric, but some

tests miss certain properties as described in Definition 5.2

(Test). An example of one of such properties is that a

score of 0 means that two code units are exactly the same

(identity of indiscernibles). Strictly speaking the metric

vector test cannot be considered a true metric, since a

score of 0 for this test does not necessarily mean that two

code units are identical (both code units can have identical

vectors but still be completely different in their structure).

We neverthelesss chose to include this test in our analysis

because it can still contain useful properties which

possibly makes it good at detecting semantic clones,

despite the fact it does not fully conform to the definition

of a metric.

The higher the score the more different two code units are,

according to a certain test. In the definition of a metric

there is no upper limit on scores, but due to the fact that

most tests are normalized for length of both code units,

most scores range from 0 to 1. This does not include the

metric vector test, which is not normalized. See Definition

5.2 (Test).

4.1 Edit Distance

The edit distance between two strings is the minimal

number of insertions, deletions or substitutions needed to

transform a string into another. See Definition 5.6

(Levenshtein edit distance). Because length of both

strings should be taken into account, final score is

normalized for length of both strings, while maintaining

characteristics of a metric [25]. See Definition 5.10

(Normalized Edit Distance). Figure 6 shows the

(unwanted) result of an unnormalized edit distance test.

DE(ab, ac) = 1

dE(abcdefgX, abcdefgY) = 1

Figure 6. The edit distance test should take string length

into account. The first string pair differs 50%, the second

pair much less than that, while edit distance is 1 in both

cases.

A score of 0 means that two strings are identical, a score

of 1 means that two strings are completely different. Since

we defined syntactic clones as two character arrays having

an edit distance of 0, this is a perfect test to detect

syntactic clones. The question is how good this test

performs at predicting semantic clones.

The reason we believe this test is able to detect semantic

clones is that two code units which fulfill the same

functionality are expected to be written down

approximately the same way. This would result in lower

edit distances for semantic clones.

A problem with this test could be that there are different

ways to fulfill the same requirement, while edit distance

between two different methods do not necessarily have to

be small. This test may be considered to stay “too close”

to syntax, because it does not take any semantic meaning

into account. But whether or not this effect is significant

remains to be seen. The algorithm of this technique is

shown in figure 7.

4.2 Exact Token Match

This test counts the number of tokens of the first code unit

that appear in the second code unit. Each code unit is

6

considered to be a collection of tokens. It counts the size

of the union of both collections and takes into account size

int LD (char s[1..m], char t[1..n])

{

 int d[0..m, 0..n];

 for i from 0 to m

 d[i, 0] := i;

 for j from 0 to n

 d[0, j] := j;

 for j from 1 to n

 {

 for i from 1 to m

 {

 if s[i] = t[j] then

 d[i, j] := d[i – 1, j – 1];

 else

 d[i, j] := min

 (

 d[i – 1, j] + 1,

 d[i, j – 1] + 1,

 d[i – 1, j – 1] + 1

);

 }

 }

 return (2 * d[m, n]) / (m + n + d[m, n]);

}

Figure 7. Normalized Levenshtein distance calculation

of the biggest collections. The result is a normalized score,

where 1 means that no tokens in the smallest code unit

appear in the largest, and 0 means that all tokens in the

smallest code unit appear in the largest. See Definition

5.11 (Exact Token Match Distance). It does not count

tokens that are smaller than a certain length. The reason

for a minimal size of tokens is that tokens smaller than 3,

for instance, do not carry any semantic meaning, speaking

in terms of natural language. This is demonstrated in

figure 8.

The idea behind this test is the hypothesis that people tend

to choose similar names for variables and functions when

functionality is identical.

int a = i * j * s;

int totalTableSize = numberOfRows *

numberOfColumns * cellSize;

Figure 8. Above a statement with small token size, carrying

almost no semantic meaning. Below a comparable statement with

meaningful names, also having greater average token size.

We do not know whether or not this test will be a

significant predictor for semantic clones. In a normal code

unit there are a lot of keywords and types that occur so

often that this test is expected to return high amounts of

false positives. These “aspecific” tokens are expected to

pollute results, but unknown is whether or not this effect is

strong enough to influence final test performance. Without

this effect, this test is expected to be a significant

predictor.

4.3 Kolmogorov LZMA

According to the Kolmogorov complexity theory, there

exists a smallest lossless form of storage for every piece of

information. Further compressing this piece of information

without losing information is not possible.

“abababababab”

“6xab”

“4c1j5b2p0cv4w1x8”

Figure 9. Above an uncompressed string and a more compressed

string, carrying the same information. The bottom string will be

more difficult to compress any further, since it contains random

numbers and characters.

The shortest notation for a piece of information cannot be

determined, but the difference in Kolmogorov complexity

between two code units can be approached by the

normalized compression distance. See Definition 5.9

(Normalized Compression Distance).

The reason why this test is supposed to detect semantic

clones is the idea that two code units that are a semantic

clone will carry the same amount of “information”,

irrespective of the way information is written down in

source code. By compressing this information, specific

notation of this method could be ignored. When two code

units are a semantic clone, both of them would compress

to a file of the same size.

Compression can be applied to source code or to compiled

object code. The advantage of using compiled object code

is that the compiler has already applied optimizations, in

which case two functional identical code units would

(hopefully) transform into comparable object code. A

presumption is that in both code units, a compiler with the

same settings is used.

Due to the highly experimental nature of this test, it is

highly unsure whether our theory will hold. Whatever the

outcome, we expect more from compression distance

between compressed object code files than plain source

code. When the same compiler and compiler settings are

used, functionally equivalent code is expected to compile

to syntactically identical object code. A good example that

supports this hypothesis is the fact that both while- and

for-loops eventually compile to an assembly construction

with a “jmp”-statement a label.

More aggressive compiler optimization settings are

expected to decrease compression distance between two

pieces of object code even further, since we expect that

object code of two semantically identical code units will

eventually converge to comparable syntactic assembly

instructions. We hypothesize that there is eventually only

one way to implement a certain functionality, which

cannot be optimized any further.

4.4 Metric Vector

This test calculates a vector of certain metrics which are

7

S-Complexity

| |

demonstrated by Kontogiannis to be a good indicator of

similarity in abstract syntax trees [3].

The included metrics are the following:

Where calls(Ux) is the number of individual function calls

in Ux (fan-out).

 D-Complexity

Where is the number of global variables

used or updated within Ux. A global variable for Ux is a

variable which is used or updated in Ux but not declared in

Ux.

McCabe Complexity

Where is the number of control decision

predicates in Ux.

Kafura Metric

 (()

 ())

Where is the number of formal parameters in Ux,
 the number of variables used in Ux,
 the number of function calls to Ux and

 the number of reference (pointer type)

parameters that are updated in Ux.

Kontogiannis bases this technique on the assumption that

if two code units are clones, they will share a number of

structural and data flow characteristics.

We expect that these characteristics as measured by these

metrics are also applicable to semantic clones because we

expect that functions that perform the same functionality

are likely to be implemented in the same way, which

would show in the number of calls made, the number of

globals used, etc.

4.5 Dictionary Lookup

This method can be regarded as an extension to the exact

token match test. When a word cannot be directly

matched, it is looked up in Wiktionary
1
, which will return

a list of words that appear inside a dictionary entry for this

keyword. The offline dump file
2
 of the English version of

Wiktionary is used to look up keywords. Matches between

words looked up in the dictionary and the other code unit

are counted. Figure 10 gives an example of a dictionary

lookup test.

1
http://en.wiktionary.org

2
http://download.wikipedia.org/enwiktionary/

latest/enwiktionary-latest-pages-articles

.xml.bz2

This test is an improvement of the exact token match test,

and should therefore at least have the same test

characteristics as the exact token match test, but expected

is that the test is a substantial improvement.

Figure 10. Example of a dictionary lookup test, with 2 direct

matches and 1 looked-up match.

4.6 AST comparison

This tree-based technique has Abstract Syntax Trees

(ASTs) as input and compares them by building a

characteristic vector of this tree, as described by L. Jiang

in [12]. Each number in this vector is the count of the

occurrence of a specific pattern (e.g. while, if, expression,

call) inside this tree. Code clones are detected by

calculating the Euclidian distance between two vectors.

See Definition 5.7 (Euclidian distance). For an

explanation of this technique, see figure 11.

In this example, only a small piece of code is shown. The

characteristic vector contains all possible nodes that can

occur inside an AST. In this example, only a small

selection of node types is shown. Node types that do not

occur in the tree (like a while-statement) are included with

a count of 0.

1 if (x > 0)

2 x = 0;

<if_stmt, while_stmt, bool_expr, asmgnt, gt> =

 <1, 0, 1, 1, 1>

Figure 11. Example of a characteristic vector of a piece of code.

Normally, all node types (even with a count of 0) are included in

the vector.

Code similar in functionality is expected to have structural

characteristics in common. This technique can also be

considered a metric-based technique which creates a

fingerprint of subtrees. A strong point of this technique is

that subtrees of code can be combined into a new vector

easily by adding two vectors, and thus clones in a

complete or partial tree can be easily detected. Another

advantage is that calculation of these vectors is fast and

straightforward. Even if no AST is available, pattern

counting could be performed by regular expression

if

=

x

>

0 x 0

abc

def

ghi

jkl

abc:

pqr mno

pqr

ghi

jkl

lookup match

direct match

direct match

t(U1) t(U2)

8

matching. A disadvantage of this approach is that vectors

of subtrees cannot be easily calculated.

5. Definitions

The following definitions are used in this study. For more

details see the explanation for each test in section

4 (Techniques).

Definition 5.1 (Code unit) A code unit Ux is the input of a

test T. In this study, it can be the text of a complete source

file or function, represented as a string.

Definition 5.2 (Test) In this study, a test is a function

T : U1 × U2 → R. In addition, the function satisfies the

following properties, which makes it a metric [5]:

 T U ,U T(U ,U)

 T U ,U

 T U ,U if and only if U U

 T U ,U T U , U T(U , U)

Definition 5.3 (Code clone) Two code units U1 and U2 are

a code clone according to a test T, if T(U1, U2) α, with α

being a threshold value.

Definition 5.4 (Syntactic clone) Two code units U1 and

U2 are a syntactic clone if dE(U1, U2) = 0 (they have

identical character arrays). See Definition 5.6

(Levenshtein edit distance).

Definition 5.5 (Semantic clone) Two code units are a

semantic clone if they fulfill the same requirement.

Definition 5.6 (Levenshtein edit distance) The

Levenshtein edit distance [15] of two code units U1 and

U2, denoted as dE(U1, U2) is the minimal sequence of edit

operations (substitute, insert or delete) that transforms U1

into U2. Equal weight of each operation is assumed.

dE(abcde, bcdef) = 2. abcde becomes bcde via deletion

of a. bcde then becomes bcdef through insertion of f.
Figure 12. Example of the Levenshtein edit distance

calculation.

Definition 5.7 (Euclidean distance) The Euclidian

distance of two vectors υ1 and υ2 is

d υ , υ √∑ υ i υ i

n

i

Where n is the length of both vectors. Equal vector lengths

are assumed.

Definition 5.8 (Kolmogorov Complexity) The

Algorithmic Kolmogorov Complexity of a code unit Ux is

defined as the length of the shortest program that

computes or outputs Ux, where the program is run on some

fixed reference universal computer. This complexity can

be approached by the length of the shortest description of

Ux [11].

Definition 5.9 (Normalized Compression Distance) The

Normalized Compression Distance NCD(U1, U2) is

defined as follows [16, 17]:

 D U ,U
 U U min{ U , U }

max{ U , U }

Where C(U1U2) is the size of compressed file containing

the concatenated text of U1 and U2.

Definition 5.10 (Normalized Edit Distance) The

Normalized Edit Distance [25] between two code units U1

and U2 is defined as follows:

 D U ,U
 d (U ,U

)

 |U | |U | d (U ,U
)

Where |U | is the number of characters in U1. Since equal

weight of substitution, insertion and deletion operations is

assumed, = 1.

Definition 5.11 (Exact Token Match Distance) The

exact token match distance between two code units U1 and

U2 is defined as follows:

 T D U ,U
max{|t U |,|t U |} |⋂(t(U

),t(U

)|

max{|t U |,|t U |}

where t(Ux) is the collection of tokens in Ux. A token is

every substring of Ux that is separated by a non-ASCII

character, underscore character or a capital. The selection

can be filtered by the length of each token, shown in the

following example.

Ux "calculateAverage(int first_value, int
second_value, int* r)"

t3(Ux) = ("calculate", "average", "int", "first", "value",
"second")

Figure 13. Example of tokens in a code unit, selecting only

unique tokens that have a length greater than or equal to

3.

Definition 5.12 (Dictionary look-up distance) The

dictionary lookup distance of two code units U1 and U2

is the same as the exact token match distance, but when a

token cannot be directly matched, it is looked up in a

dictionary, and is matched against the returned collection

of words in the dictionary entry.

Definition 5.13 (Abstract Syntax Tree) An abstract

syntax tree is an abstract representation of source code, as

generated by a parser. It is a more compact representation

of code in which details unnecessary for the compilation

process are omitted. See Figure 11 for an example.

9

6. Open source programs

The following open source programs were used in our

analysis:

kcalc 4.4.1
3
 and gcalctool 5.29.92

4
 are two C/C++

desktop calculators from the KDE desktop and from GNU

(Linux). Because of small size and limited domain, a lot of

duplicate functionality is expected.

bash 4.1
5
 and tcsh 6.17

6
 are two shells that are included

in most Linux distributions. Both shells should perform

the same functionality on a global level, although

implementation details are expected to differ.

joe 3.7
7
 and nano 2.2.1

8
 are two relatively small text

editors for Linux that are also expected to contain a lot of

cloned functionality.

Application # files

functions # lines

kcalc 8 396 7202

gcalctool 15 375 14895

bash 228 2588 119534

tcsh 74 1232 60857

joe 50 1077 38364

nano 15 407 22542

Figure 14. Characteristics of included test projects

7. Implementation

To collect test results, a calculation tool was created which

was implemented using C#. Source code of all code units

was manually collected and entered in a Microsoft SQL

Server database table.

1. for each code unit u1

2. for each code unit u2

3. su1 = fetch source text of u1 from db

4. su2 = fetch source text of u2 from db

5. for each test t

6. score = t(su1, su2)

7. write tuple to table:

8. <test id, u1 id, u2 id, score>

9. end for

10. end for

11. end for

Figure 15. Pseudo code for the calculation of test results

Source code was stored as plain text in a table with an

identifier that uniquely identifies a single code unit. All

tests and collected code units as described in Results were

iterated and served as input to each test. See Figure 15.

3
 http://utils.kde.org/projects/kcalc

4
 http://calctool.sourceforge.net

5
 http://www.gnu.org/software/bash

6
 http://www.tcsh.org

7
 http://joe-editor.sourceforge.net

8
 http://www.nano-editor.org

Eventually, tuples of the form <test_id, unit1_id,

unit2_id, score> were stored in the database. Since

scores have been normalized, scores range from 0 to 1.

To calculate and display each ROC curve, all tuples

belonging to a specific test were selected. Inside a loop the

threshold value was incremented with 1% of total range (0

to 1) and sensitivity and specificity values were calculated

for this threshold value. This produces sensitivity-

specificity pairs (sensitivity = TP / (TP + FN)), specificity

= TN / (TN + FP)) for approximately 100 threshold

values. These pairs were plotted in ROC diagrams.

To calculate accuracy/threshold diagrams, the same loop

was used to iterate over threshold values. For each

threshold value inside this loop, accuracy ((TP + TN) /

total) was calculated and a diagram was plotted as well.

We had great trouble finding a suitable ANSI C parser.

Since C is not a standardized language, several non-

standard extensions exists which are often specific to a

certain compiler. No single parser seemed able to cope

with all code given to it. The programs we tried include

ANTLR, Elkhound/Elsa, GCC and GCCXML, among

others. There were always some small features inside

some code units which caused the parsing program to

crash. GCC was able to parse each file in its entirety, but

adapting GCC itself was considered to be too big a task

and to be outside the scope of this study.

Finally, we found srcML
9
, which was able to parse every

piece of code we gave to it without trouble. SrcML was

capable of parsing source code and produce an abstract

syntax tree in the form of an XML document. From this

file an in-memory abstract syntax tree could be built which

could be compared to other abstract syntax trees.

Several other external tools were used to help calculate

scores. To calculate scores for the Kolmogorov LZMA

test, 7-Zip
10

 was used, an open source program that

contains a couple of different compression algorithms. In

our case, we used LZMA compression. We started the

program with the arguments "a -t7z -m0=LZMA -mx=9

<filename>", using the maximum amount of LZMA

compression available.

To help extract function headers and bodies, ctags
11

 was

used, a program that creates an index of language objects

found in source files. It was started with the arguments "-x

–s –e <filename>", which made sure static and external

headers were also included.

To extract object code for single functions out of object

files as generated by a compiler, objdump
12

 was used.

From the output of objdump hexadecimal start address and

length of each function could be extracted, which could

then be used to extract binary code out of object files.

Software quality We are confident about the quality of

developed software and reliability of our test results. We

9
 http://www.sdml.info/projects/srcml

10
 http://www.7-zip.org

11
 http://ctags.sourceforge.net

12
 http://linux.die.net/man/1/objdump

10

can not fully exclude the possibility that there are bugs in

the software that cause incorrect results, but software was

tested intensively and first results where checked

manually, which should reduce the chance of bugs that

influence test results in a major way.

Performance We did not take into account performance

considerations when building our tool. This had the

consequence that a single test could take minutes to finish,

and executing all input combinations for a single test could

take more than an hour. We did not have the goal to build

a tool that would be scalable or could be used outside a

research environment, but instead we wanted to obtain test

results in the easiest way without spending too much time

developing a tool.

8. Results

In this section, results of manual detection as originally

performed by a single observers will be shown first.

Second, results from multiple observers will be shown.

Finally, test characteristics of automated tests are shown,

which were calculated by combining manual test results

with automated test scores.

8.1 Manual collection, single observer

File

 gtk.c

 kcalcdisplay.cpp

Method

A.1 static void display_refresh(GCDisplay *display)

B.12 bool KCalcDisplay::updateDisplay(void)

A.21 void ui_set_accuracy(int accuracy)

B.17 void KCalcDisplay::setPrecision(int precision)

A.23 static void mp_add2(const MPNumber *x, const

 MPNumber *y, int y_sign, MPNumber *z)

B.21 static KNumber ExecAdd(const KNumber&

 left_op, const KNumber & right_op)

A.18 static void solve(const char *equation)

B.7 bool CalcEngine::evalStack(void)

A.14 static void do_paste(GCDisplay *display,

 int cursor_start, int cursor_end, const char *text)

B.1 void KCalcDisplay::slotPaste(bool bClipboard)

A.3 void display_pop(GCDisplay *display)

B.5 void KCalcDisplay::slotHistoryBack()

A.13 void display_push(GCDisplay *display)

B.15 void KCalcDisplay::slotHistoryForward()

A.6 void mp_and(const MPNumber *x, const

 MPNumber *y, MPNumber *z)

B.21 static KNumber ExecAnd(const KNumber &

 left_op, const KNumber & right_op)

Figure 16. Semantic clones found manually in gcalctool

(above) and kcalc (below).

The manual detection process resulted in 12 file-level

semantic clones and 18 function-level semantic clones in

three training projects. After manual detection, 11 random

file-level combinations and 19 random function-level

combinations (which were definitely not semantic clones)

were added to introduce noise in the detection process.

Without this the number of false positives and true

negatives would always be 0. In total, 78 code units where

selected from three different training projects, of which 54

code units were functions and 24 were files. An overview

of manually detected clones can be found in figures 16, 17

and 18. See section Discussion why so few code units

were found to be semantic clones.

File

 execute_cmd.c

 sh.exec.c

 expr.c

 sh.exp.c

 error.c

 sh.err.c

 bashhist.c

 sh.hist.c

 stringlib.c

 tc.str.c

 variables.c

 ma.setp.c

 jobs.c

 sh.proc.c

Method

A.4 void save_history()

B.2 void savehist(struct wordent *sp, int mflg)

A.15 void load_history()

B.9 void loadhist(Char *fname, int mflg)

A.19 int execute_command_internal(command,

 asynchronous, pipe_in, pipe_out, fds_to_close)

B.14 void doexec(struct command *t, int do_glob)

A.20 void sys_error(const char *format, ...)

B.23 void stderror(unsigned int id, ...)

A.11 intmax_t evalexp(expr, validp) char *expr; int

 *validp;

B.24 int expr(Char ***vp)

Figure 17. Semantic clones found manually in bash

(above) and tcsh (below).

File

 charmap.c

 chars.c

 help.c

 help.c

 utils.c

 utils.c

 pw.c

 prompt.c

Method

A.8 void help_display(Screen *t)

B.4 void do_help(void(*refresh_func)(void))

A.5 void help_init(void)

B.6 void usage(void)

Figure 18. Semantic clones found manually in joe (above)

and nano (below).

8.2 Manual collection, multiple observers

In figure 19, answers from the survey can be found. First,

our own answers are displayed. These are the clones we

originally used as gold standard. Numbers inside the table

refer to functions in figures 16, 17 and 18, referred

requirements can be found in figure 5. In the last three

11

columns, answers from other observers are shown. The

number of times a function is selected is displayed (3 x 11

means 3 observers chose function 11 for this requirement).

In the last column, the number of times A and B match

exactly as a pair with our own answer is counted, and

displayed with the proportion of people agreeing (2 (24%)

means that 2 users chose both A and B the same as we did,

and this is 24% of total answers for this requirement).

Requirement Our observation All observers

 A B A B A & B

Calculators

DC1 11 - 6 x 11

1 x 18

4 x 7

1 x 21

2 (29%)

DC2 1 12 2 x 1

2 x 13

2 x 18

4 x 12 0 (0%)

DC3 6 21 7 x 6 7 x 21 7 (100%)

DC4 - - 1 x 22 6 (86%)

DC5 16 - 4 x 16

1 x 6

1 x 21

4 (57%)

DC6 - - 7 (100%)

DC7 3 5 5 x 3 4 x 5 3 (43%)

DC8 13 15 1 x 4

1 x 16

1 x 2

1 x 9

4 x 15

0 (0%)

DC9 21 17 7 x 21 5 x 17 5 (71%)

DC10 - - 5 x 14 6 x 1 5 (71%)

DC11 17 - 7 x 17 2 x 12

1 x 1

4 (57%)

Shells

SH1 19 14 4 x 19

1 x 11

5 x 14

1 x 3

3 (43%)

SH2 20 23 7 x 20 7 x 23 7 (100%)

SH3 - - 7 (100%)

SH4 4 2 1 x 15

6 x 4

6 x 2 6 (86%)

Text editors

TE1 8 4 7 x 8 6 x 4 6 (86%)

TE2 5 - 5 x 5 4 x 3

1 x 4

1 x 8

1 (14%)

TE3 - - 1 x 10 6 (86%)

Figure 19. Our original observation and observations of

other observers. The references (“DC1”) in the first

column refer to the requirements in figure 5. The numbers

in the other columns refer to the functions in figure 16, 17

and 18.

Below, test characteristics of different tests are presented.

All functions from the three different projects have been

combined into a single set. This should be no problem

since files and functions are independent units, and test

outcomes are calculated for each file or function

individually.

8.3 Automated test results

8.3.1 Edit distance

Results for the edit distance test are shown below. As it

turns out, this test does not perform better than flipping a

coin (visible as the diagonal line going to the points (0, 0)

and (1, 1) in figure 17). For each test, the Delong Delong

Clarke-Pearson method [28] is used to compare curves.

In figure 21, “Area” is the area under the curve. This area

has to be significantly bigger than 0.5 to make this test a

good predictor for semantic clones. The farther the most

upper-left point of the curve comes to the point (0, 1), the

better the test is at predicting semantic clones.

With a p value of 0.30, this test does not perform

significantly better than chance, based on a 95%

confidence interval. When the number 0.5 is not included

in the range of the 95% confidence interval (in this case

0.36 to 0.74) the test is significant. Edit distance as

performed on tokens instead of separate characters

returned similar results.

Figure 20. ROC curve of edit distance test. TPR = True

Positive Rate = sensitivity = recall = TP / (TP + FN),

FPR = False Positive Rate = FP / (TN + FP).

Area 0.55

p 0.30

95% C.I. 0.36 - 0.74

Figure 21. Test characteristics.

8.3.2 Exact Token Match

With a p value < 0.0001, this test performs significantly

better than chance.

Excluding keywords decreases test performance, as can be

seen from the accuracy/threshold graph below. Without

keywords, maximum accuracy is approximately 70%,

while with keywords, maximum accuracy is 78.4%.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R
 (

se
n

si
ti

v
it

y
)

FPR (1 - specificity)

12

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.75 0.8 0.85 0.9 0.95 1

A
cc

u
ra

cy

Threshold

The figure below shows that this optimal accuracy (with

keywords) is reached at threshold values of approximately

0.94 and 0.96.

 With keywords Without keywords

Area 0.83 0.76

P 0.00 0.00

95% C.I. 0.69 - 0.97 0.60 – 0.91

Figure 22. Test characteristics

The numbers inside the binary classification matrix below

depend on the threshold value chosen, see definition 4.x

(Code clone). The lower the score for a test, the more

likely it is the two input units are a code clone, according

to that test. The threshold value is the cut-off point of the

test. Below this value, test outcome is considered to be

positive (a clone is detected).

 Confusion matrix

(functional level)

Manual detection

yes No

Test

outcome

yes 15 5

no 3 14

Figure 23. Confusion matrix of the exact token match test

at a threshold value of 0.94.

In figure 25, numbers for a threshold value of 0.94 are

shown.

Figure 24. ROC curve of exact token match test with and

without keyword matching.

Test characteristics calculated from this confusion matrix

are shown in figure 26.

Sensitivity (recall) 83%

Specificity 73.7%

Accuracy 78.4%

PPV (precision) 75%

Figure 26. Test characteristics at a threshold value of

0.94. PPV = Positive Predictive Value.

8.3.3 Kolmogorov LZMA

With a p value of 0.79, this test does not perform

significantly better than chance. Performing compression

on object code gives similar results, but is not shown in

the graph below.

Area 0.42

P 0.79

95% C.I. 0.23 - 0.61

Figure 27. Test characteristics

8.3.4 Metric Vector

With a p value of 0.38 this test does not perform

significantly better than chance. We originally added all

metrics as described by Kontogiannis, but other

combinations of metrics with different weighing factors

gave similar results.

Area 0.53

p 0.38

95% C.I. 0.34 – 0.72

Figure 29. Test characteristics

8.3.5 Dictionary Lookup

With a p value of 0.00, this test is a significant predictor

for semantic clones. The area shows that this test does not

perform better than the exact token match test (dotted

line), but worse. See section Discussion for more details.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

Figure 28. ROC curve of Kolmogorov LZMA

With keywords

Without keywords

With keywords

Without keywords

Figure 25. Accuracy/threshold curve

13

Figure 30. ROC curve of metric vector

Area 0.74

P 0.00

95% C.I. 0.57 - 0.90

Figure 31. Test characteristics

Figure 32. ROC curve of dictionary lookup test

8.3.6 AST Comparison

Figure 33. ROC curve of AST comparison test

With a p value of 0.53, this test does not perform

significantly better than chance.

Area 0.49

P 0.53

95% C.I. 0.29 - 0.69

Figure 34. Test characteristics

9. Discussion

The only test that returns significant results is the exact

token match test. This test has a sensitivity of 83%, a

specificity of 73.7% and a positive predictive value of

75%, given our test cases. This means that it correctly

identifies 83% of all semantic clones in our test sample,

and missed 17% of known semantic clones in our sample.

For all non-semantic clones in our sample, the chance that

this test recognizes them correctly as not being clones is

73.7%, which means that 26.3% of all non-semantic clone

pairs were incorrectly identified as clones. The positive

predictive value of this test states that of all clones as

positively identified by this test, 75% of cases are indeed

semantic clones. Extending this test by a dictionary match

decreased test performance.

These numbers are somewhat disappointing since we

expected the exact token match to return higher scores,

and we expected that adding a dictionary lookup would

increase test performance, instead of decreasing it. We are

also surprised to find out that other tests are not capable of

detecting semantic clones, given the fact that we limited

our selection of test cases to rather trivial examples, and

left out more complex ones.

Low scores We can think of a number of possible reasons

for these low scores. As shown in our survey, it is

extremely difficult even for human observers to correctly

classify two pieces of code without knowledge from the

design of the complete system. This contextual knowledge

is completely missing in our automated tests. One could

argue that some kind of structural knowledge is available

after parsing each function and building an AST, but given

results of our AST comparison test this is not enough.

Besides this, precision and recall scores such as ours are

not uncommon in classic information retrieval

experiments (for instance, in [3] and [34]).

All forms of edit distance tests (on characters and trees) do

not return significant results. This may be explained by the

fact that two semantic clones can fulfill the same

requirement through two completely different

implementations, which results in two functions that look

completely different in every aspect. The metric vector test

did not perform as well as expected. No individual metric

performed significantly well and combining several

metrics into a single vector did not improve test

performance. Chosen metrics apparently tell nothing about

semantic similarity, at least not in our collection of test

cases.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
P

R

Dictionary lookup

Exact token match

FPR

14

Manual detection process Semantic clones were

originally detected by a single observer. This raised

questions about the external validity and reliability of our

gold standard.

We tried to address this issue by asking multiple

independent observers to judge the same code samples. A

questionnaire was prepared which should be completed in

no longer than half an hour. This turned out to be harder

than expected, because the total number of semantic

clones as selected by us was simply too large to put in a

questionnaire all at the same time. This forced us to make

a selection of clones, which raised the question how

objective our selection was. We tried as hard as possible to

prevent selection bias in our questionnaire.

As it turns out, multiple independent observers are more

able to identify semantic clones within a short period of

time, although large differences in agreement between

different requirements exist. Most observers are able to

correctly identify the most trivial cases, which we believe

means that people generally have an intuitive notion of a

semantic clone and are capable of detecting them given a

certain set of functions. In cases where there exists

disagreement we are capable of exactly pointing out why

we believe other observers judged wrongly. This is mostly

caused by a lack of contextual information and because

some unrelated functions in our survey showed so much

resemblance that they were accidentally confused.

For instance, someone responded that according to him the

requirement “after every calculation, the result is

displayed on screen” belongs to the function static

void solve(const char *equation). Although

understandable, this function does not take care of

something after every calculation, but is the calculation

itself. Besides that, in this function no result is displayed

but the result is only calculated.

In another example, implementations of the requirement

“a help screen can be shown” were sometimes confused

with implementations of the requirement “after entering

„--help‟ on the command line, usage is printed”. Function

headers and requirements look alike on the surface but

goals are nevertheless completely different.

We could have taken an approach in which we completely

replaced our own observation with the one from the

survey. A binary classification setup ensures that current

manual results can safely be replaced by other

observations while leaving automated test results

unaffected. In this sense, there is no need to defend our

own observation since test characteristics could also have

been calculated from any observation, even if we

disagreed with them. We decided not to take this approach

because we believe that manual results from other

observers are not necessarily an improvement over our

own test results, as shown above.

Trivial requirements Supplying requirements with

functions in our survey may raise questions why observers

were not allowed to reconstruct these requirements from

functions themselves, or why we did not use requirements

as supplied by the original authors of the software.

Starting with the latter, none of the open source projects

we studied contained any documentation on requirements

of any kind.

A setup in which users are asked to reconstruct

requirements from given source code themselves without

supplying them would also have been possible. A survey

would then contain two lists of functions which observers

should connect themselves. This reduces the risk of

influencing observers through given requirements.

However, tryouts with our survey showed that supplying

only function bodies is not enough for observers to judge

code samples. More information on these functions is

needed. Another reason to add them is that without

requirements and with only a list of two functions, each

observer is free to maintain his own definition of a

semantic clone, which makes comparison between results

from different observers almost impossible.

We believe requirements as supplied by us are trivial, and

that other observers would think of the same requirements

as we did. Exactly how trivial most requirements are can

be seen in figure 5. We believe that anyone would have

thought of the requirement “a binary AND-operation can

be performed on two numbers” given the corresponding

function. For all other requirements, we believe this also

applies.

Without given requirements, some observers would apply

a definition of semantic clones that was too strict for our

purposes. These respondents would restrict to a

mathematical definition, in which only the most simple

functions were marked as semantic clone candidates (e.g.

adding and subtracting numbers). We originally planned to

use the same mathematical definition of semantic clones,

in which a semantic clone is defined as two functions

causing the same change in external state and side effects

(bi-simulation), but soon found out that this leads to a

number of clones that is too small to be useful. With this

definition, the number of clones found in all 6 projects

would be limited to less than 5.

Trivial cases We decided not to add syntactic clones

(copies of the same code, as in the multiple precision

arithmetic library in kcalc and gcalctool) because this

would make our tests appear better than they actually are.

Adding syntactic clones increases sensitivity, specificity

and positive predictive value for a test. This is due to the

fact that for syntactic clones, every automated test will

automatically return 0. For instance, edit distance between

two identical pieces of code is always 0. The same is true

for all other tests as described in this study. Since we

defined two pieces of syntactically identical code to be

semantic clones as well, adding these cases automatically

leads to an increase in the number of true positives, which

in turn increases sensitivity, specificity and positive

predictive value for this test.

We only selected trivial cases for our gold standard. These

cases are either obvious a semantic clone (on which most

other observers agree) or obviously not a semantic clone

15

(two random unrelated functions). This selection of cases

is a gross simplification as compared to real-world

systems. In the end, a single definition of a semantic clone

may not do justice to the complexity of real-life examples.

Note that adding cases which humans consider to be trivial

does not influence whether or not cases possess

characteristics from which a computer can draw a trivial

conclusion. In other words, even if humans find a case

trivial, a computer may still have a hard time finding out if

they are semantic clones or not.

And even with a single definition (“fulfilling the same

requirements”), there may be disagreement among

different observers which function implements exactly

which requirement. Types of disagreement can even be

divided into three categories: (1) Observers disagree

among each other, resulting in an average score which

does not fit in a single category; (2) Observers agree but

agree to be unsure; (3) Observers want to classify cases in

categories other than “yes” or “no” (maybe into different

types of semantic clones). Ways to solve this disagreement

include merging uncertain cases in “yes” or “no”

categories, adding new categories or limiting selection of

cases to trivial ones. We chose the latter. For further

discussion on an approach that takes a more complex

definition of a semantic clone into account, see section

Future work.

Original goal Our original goal was to get threshold

values from training data and to apply them to a real-world

production system. We performed a small experiment with

optimal threshold values for the exact token match test on

a real production system. We printed the top 10 functions

with the smallest distance according to this test, but results

did not include any significant matches. We therefore

concluded to focus on optimization of techniques instead

of trying to design a technique that performs well on real-

world examples.

Limitations in test setup Using a binary classification

matrix and calculating corresponding test characteristics

from this matrix is a proven method for the evaluation of

binary classification tests [31]. There is no doubt about the

correctness of the calculation of test characteristics from a

binary classification matrix, given a certain gold standard

(in this case, multiple independent human observers).

Internal validity of our study is ensured by this test setup.

The biggest problem of our test setup is the limited ability

to extrapolate test results to untested cases (external

validity). If tests perform well on a set of limited code

units, there is no guarantee that these tests will perform

equally well on untested cases. Another problem with our

results is that it only contains projects from three different

domains (desktop calculators, shells and text editors). One

could argue that this should have been more.

To what extent we can generalize results to other domains,

and whether selection of these domains influences test

results is uncertain. There are, however, a number of

reasons why it should be possible to extrapolate our test

results to untested cases: (1) since we did not include any

domain-specific knowledge in any of our tests, all tests

could be considered domain-independent and we therefore

have no reason to believe that chosen domains influence

test results, (2) we did include 3 totally unrelated domains

which is already a kind of random selection and (3) we

included a wide range of different types of functions,

which makes sure our conclusions do not apply only to

functions of a certain length or type.

Another limitation of our test setup is that manual

observers were only allowed to select semantic clones

from a given set of functions. This could result in a

selection bias in which “false negatives” (cases we

overlooked but are indeed semantic clones) are missed. If

we missed functions or we did not include them in our

survey, they could not be checked by other observers.

Ideally, all observers should look through the entire source

code and report all clones found. This approach has the

problem that it has taken us almost a week to complete.

We tried to address this problem by asking the original

developers of the software if they knew of any places in

their code and their functional equivalent (e.g. kcalc and

gcalctool) where there exist functional duplicates. This

resulted in a library which was used in both programs,

which we did not find interesting enough to include in our

analysis. It remains difficult to prove how representative

our sample of test cases is, but since we checked complete

source of all projects we have confidence in our own

results, and given our results, most independent observers

agree with our findings.

The number of selected clones (12 files and 18 functions)

and non-clones (11 files and 19 functions) may also pose a

threat to validity. Increasing the number of files and

functions will increase the validity and reliability of test

results. With too little test results, graphs will not have

enough detail to make sensible statements about test

performance. Besides this, calculation of test significance

is influenced by the number of input values (statistical

tests almost never return significant results when the

number of values is too low). This issue does not pose a

threat because we have a test that performs significantly

positive and the same number of test cases are used for all

tests.

Imperfect gold standard Even after consulting multiple

independent observers and the original authors of the

software, our gold standard remains imperfect. In this

sense, the term “gold standard” is misleading. A better

name would have been “reference test”. o matter how

many cases we add, there are always additional cases we

did not check. As long as automated techniques do not get

close to sensitivity scores of 100%, and there are no other

compelling reasons why other gold standard would have

been better, we believe that ours is good enough for this

study.

In medicine, imperfect gold standards are very common.

The first test to detect an aortic dissection (a serious

medical condition in which a tear in the wall of the aorta

causes blood to flow between tissue layers), was an

aortogram. This test has a sensitivity of 83% and a

16

specificity of 87%. This means that the “ideal” test of that

moment missed 17% of all cases! There were simply no

better alternatives at that time, and all other tests for the

same condition were compared to this one.

We fully acknowledge the limitations of our study. This

study determines the ability of tests to detect semantic

clones, given a limited set of test cases. We do not have

the intention to be totally complete in our selection of

cases, nor do we aim to provide a definite reference in the

field of semantic clones. The definition of a semantic

clone as stated by us is by no means intended as final, and

we welcome a discussion on this definition and on results

of our study.

10. Conclusion

Our results show that, given our input set of code units, the

only test capable of predicting semantic clones statistically

significant (Sensitivity 75% with a 95% confidence

interval) is the exact token match test. Adding a dictionary

lookup to words which were not directly matched did not

increase its performance. The exact token match test

performs best when keywords are included. This means

that every other test is not a significantly better predictor

than pure chance.

Our initial judgment was mostly confirmed by the

questionnaire we sent to independent observers. We can

easily advocate cases on which there exists mutual

disagreement between observers or disagreement between

observers and our own judgment. Each individual case can

be shown to be trivial, but may require more contextual

knowledge of the underlying system.

11. Future work

Extended confusion matrix As explained in the

previous section, a problem with our binary classification

scheme is that in reality, only the most trivial cases can be

included in our analysis which can be classified as either

being definitely a semantic clone, or definitely not being a

semantic clone.

Type of test

granularity

Manual detection

Def.

yes

Prob.

yes

Unc. Prob.

no

Def.

no

Test

Cat. 1

Cat. 2

Cat. 3

Cat. 4

Cat. 5

Figure 35. A more complicated classification matrix. Def.

= definitely, prob. = probably, unc. = uncertain.

Several examples of combinations of code units have been

found which could not easily be classified by humans in

these two categories. These examples would belong in

categories like “probably yes”, “probably no” or

“uncertain”. Due to the nature of our test setup (a x

table), these categories were not included in our study.

This choice is not without problems, as shown in the

previous section.

To make it possible to also include uncertain cases, a more

advanced test setup should be used. This is shown in

figure 35. In this table, uncertainty categories are

introduced. This would solve the problem of cases on

which even humans do not disagree, or on which humans

agree that the answer is uncertain. In case of disagreeing

observers, an average answer could be selected (1 x

definitely yes and 1 x definitely no = uncertain).

In this extended setup, each category has upper and lower

limits. For instance, category 1 contains all scores which

lie between 0 and 10, category 2 all cases which lie

between 10 and 20, etc. This setup enables the inclusion of

nontrivial cases in the analysis.

Another option is to include different types of semantic

clones. For instance, categories like “not functionally

related, “loosely functionally related”, “syntactic clone”,

“same base functionality” and “semantic clone” could be

used. These categories would appear in the columns of

figure 35, instead of probability categories.

Adding more cases and observers Reliability of the gold

standard could be further increased by adding more code

clones. Now less than 100 code clones have been

identified and were included in our study. The more this

number is increased, the more reliable the gold standard

becomes. All added cases should of course be judged by

independent observers. Increasing the number of observers

will also increase reliability.

Improving case selection in gold standard Given the

nature of our test setup, tests were only executed on pre-

selected cases. As shown in the discussion, this naturally

raises questions about the external validity of our study.

In a future study, all observers should receive a complete

copy of the source code. Each observer should be given

the assignment to look through the entire source and

identify semantic clones, without being restricted to a

limited selection of clones as assembled by us.

Requirements should not be supplied in advance. This

approach has taken us a week to complete, but would

nevertheless be the best way to create a gold standard.

Each observer should look for cases in each category as

described in the previous section (“probably” and

“uncertain” also included). Then, calculations can be

performed which combine data from different observers

into a single gold standard (e.g. Kappa score).

In a future study, more open source projects from different

domains should be added. Limiting the number of domains

to 3 (desktop calculators, shells and text editors) makes it

harder to extrapolate results to other domains. We stated

before that we do not know which influence our selection

of domains has on test results. What we are certain about

17

is that increasing the number of domains will enable us to

generalize the result over the domains we included

additionally.

Combining multiple tests Multiple test results can be

combined into a single score to improve test performance.

We already tried to apply this on the metric vector test, in

which a couple of different metrics can be combined in a

couple of different ways. Each test can be multiplied with

a weighing factor, to increase influence of one test over

the others. Combining multiple tests only works when

tests are “orthogonal” enough to each other to amplify

each other. One test that uses a certain measure and

another test that uses a derivative form of this measure

look for essentially the same value and therefore cannot

amplify each other. For example, if one test counts the

number of lines and another tests the number of tokens,

these values will be closely correlated to each other and

combining these values will probably not improve test

results. If, on the other hand, one test calculates the

cyclomatic complexity and another test performs an exact

token match, these values may be orthogonally enough to

amplify each other. A future study could include

calculating test characteristics for combined tests.

Adding a domain ontology test Checking only for

exactly matching tokens has shown to be a significant

predictor for semantic clones, but improvements are

possible. A semantic web is a collection of words from a

specific domain (such as desktop calculators) which are

connected with links, which are also named. This leads to

a web of connected terms. When two code units are

semantically related, expected is that words mapped on

this semantic web are more closely located to each other

than with unrelated functions. See figure 36 for a small

example of a semantic web of desktop calculators.

calculation

subtractadd multiply

type_of
type_of

type_of

calculator can_perform

number

performed_on

performed_on

performed_on

numeric

base

has_setting

precision

has_setting

Figure 36. Example of a part of a semantic web of a

desktop calculator.

12. Acknowledgements

We would like to thank Dik Prenger, Frans Kremer and

Daniela Dupré-Vasaru at Philips Healthcare, Jurgen Vinju

and Paul Griffioen at CWI for their valuable input. We

would also like to thank all people who answered our

semantic clone survey.

13. References

[1] J. Ferrante, K. J. Ottenstein and J. D. Warren. The

program dependence graph and its use in

optimization. In TOPLAS, 9(3), p. 319-349, 1987.

[2] C. K. Roy, J. R. Cordy and R. Koschke. Comparison

and evaluation of code clone detection techniques and

tools: A qualitative approach. In Science Of Computer

Programming, 74(7), p. 470-495, 2009.

[3] K. Kontoginannis. Evaluation Experiments on the

Detection of Programming Patterns Using Software

Metrics. In WCRE '97: Proceedings of the Fourth

Working Conference on Reverse Engineering, p. 44,

1997.

[4] S. S. Skiena. The algorithm design manual. Springer-

Verlag, New York, 1998.

[5] H. Machida. The Clone Space as a Metric Space. In

Acta Applicandae Mathematicae, volume 52: p. 297-

304, 1998.

[6] M. Gabel, J. Lingxiao and S. Zhendong. Scalable

detection of semantic clones. In ICSE '08:

Proceedings of the 30th international conference on

Software engineering, p. 321-330, 2008.

[7] F. Rysselberghe and S. Demeyer. Evaluating clone

detection techniques from a refactoring perspective.

In ASE '04: Proceedings of the 19
th

 IEEE

international conference on Automated software

engineering, p. 336-339, 2004.

[8] M. Bruntink, A. van Deursen, T. Tourwé and R van

Engelen. An Evaluation of Clone Detection

Techniques for Identifying Crosscutting Concerns. In

ICSM: Procedings of the International Conference on

Software Maintenance, p. 200-209, 2004.

[9] I. Baxter, A. Yahin, L. oura, . Sant‟Anna and L.

Bier. Clone detection using abstract syntax trees. In

ICSM '98: Proceedings of the International

Conference on Software Maintenance, p. 368, 1998.

[10] Walenstein, N. Jyoti, J. Li, Y. Yang and A. Lakhotia.

Problems Creating Task-relevant Clone Detection

Reference Data. In WCRE '03: Proceedings of the

10th Working Conference on Reverse Engineering, p.

285, 2003.

[11] R. J. Solomonoff, A preliminary report on a general

theory of inductive inference, 1960.
[12] L. Jiang, G. Misherghi, Z. Su and S. Glondu.

DECKARD: Scalable and accurate tree-based
detection of code clones. In Proceedings of ICSE,

2007, p. 96-105.

[13] J. Krinke. Identifying similar code with program

dependence graphs, 2001.

[14] T. Kamiya, S. Kusumoto and K. Inoue. CCFinder: a

multilinguistic token-based code clone detection

system for large scale source code. In IEEE

Transaction of Software Engineering, 28(7), p. 654-

670, 2002.

18

[15] I. Levenshtein. Binary codes capable of correcting

deletions, insertions and reversals. Soviet Physics

Doklady, 10, p. 707-710, 1966.

[16] R. Cilibrasi and P. Vitányi. Clustering by

compression. In IEEE Transactions on Information

Theory, 51(4), p. 1523-1545, 2005.

[17] M. Cebrián and M. Alfonseca. The normalized

compression distance is resistant to noise, IEEE,

2007.

[18] R. Geiger, B. Fluri, H.C. Gall and M. Pingzer.

Relation of code clones and change couplings. In

FASE’06: Proceedings of the 9
th

 International

Conference of Fundamental Approaches to Software

Engineering, p 411-425, 2006.

[19] S. Giesecke. Generic modelling of code clones. In

Proceedings of Duplication, Redundancy and

Similarity in Software, 2006.

[20] D. Gitchell and N. Tran. Sim: a utility for detecting

similarity in computer programs. In ACM SIGCSE

Bulletin, 31(1), p. 266-270, 1999.

[21] B. Baker. On Finding Duplication and Near-

Duplication in Large Software Systems. In WCRE’95:

Proceedings of the Second Working Conference on

Reverse Engineering, p. 86-95, 1995.

[22] J. Mayrand, C. Leblanc and E. Merlo. Experiment on

the automatic detection of function clones in a

software system using metrics. In ICSM’96:

Proceedings of the 12
th

 International Conference on

Software Maintenance, p. 244-253, 1996.

[23] S. Ducasse, M. Rieger and S. Demeyer. A language

independent approach for detecting duplicated code.

In ICSM '99: Proceedings of the International

Conference on Software Maintenance, p. 109-118,

1999.

[24] A. Marzal and E. Vidal. Computation of Normalized

Edit Distance and Applications. In IEEE Transactions

on Pattern Analysis and Machine Intelligence, 15(9),

p. 926-932, 1993.

[25] L. Yujian and L. Bo. A Normalized Levenshtein

Distance Metric. In IEEE Transactions of Pattern

Analysis and Machine Intelligence, 29(6), p. 1091-

1095, 2007.

[26] T. Sager, A. Bernstein, M. Pinzger and C. Keifer.

Detecting similar Java classes using tree algorithms.

In Proceedings of the 2006 International Workshop

on Mining Software Repositories (MSR’06), pp. 65-

71, 2006.

[27] Y. Wuu. Identifying syntactic differences between

two programs. In Software Practice and Experience,

21(7), 1991.

[28] Comparing the Areas Under Two or More Correlated

Receiver Operating Characteristic Curves: A

Nonparametric Approach. E.R. DeLong, D.M.

DeLong and D.L. Clarke-Pearson. In Biometrics 44,

p. 837-45, 1988.

[29] Z. Li and Y. Zhou. CP-Miner: A tool for finding

copy-paste and related bugs in operating system code.

In OSDI, 2004.

[30] T. Fawcett. An introduction to ROC analysis. In

Pattern Recognition Letters 27, p. 861–874,

2006.
[31] D.G. Altman and J.M. Bland. Diagnostic tests. 1:

Sensitivity and specificity". In British Medical

Journal (BMJ) 308 (6943), p. 1552, 1994.

[32] H. Basit, S. Pugliesi, W. Smyth, A. Turpin and S.

Jarzabek. Efficient token based clone detection with

flexible tokenization. In Proceedings of the Joint

Meeting of the European Software Engineering

Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE’07), p. 513-515,

2007.

[33] John Johnson. Substring matching for clone detection

and change tracking. In Proceedings of the 10
th

International Conference on Software Maintenance,

p. 120-126, Canada, 1994.

[34] M. de Marneffe, C. D. Manning, . Potts. “Was it

good? It was provocative.” Learning the meaning of

scalar adjectives. Stanford University, Linguisics

Department, 2010.

